Characterizations of convex approximate subdifferential calculus in Banach spaces

Abstract : We establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.
Type de document :
Article dans une revue
Transactions of the American Mathematical Society, American Mathematical Society, 2016, 368 (7), pp.4831 - 4854. <http://www.ams.org/journals/tran/2016-368-07/S0002-9947-2015-06589-1/>. <10.1090/tran/6589>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01414713
Contributeur : Imb - Université de Bourgogne <>
Soumis le : lundi 12 décembre 2016 - 15:03:38
Dernière modification le : lundi 6 février 2017 - 15:34:14

Identifiants

Collections

Citation

R. Correa, A. Hantoute, A. Jourani. Characterizations of convex approximate subdifferential calculus in Banach spaces. Transactions of the American Mathematical Society, American Mathematical Society, 2016, 368 (7), pp.4831 - 4854. <http://www.ams.org/journals/tran/2016-368-07/S0002-9947-2015-06589-1/>. <10.1090/tran/6589>. <hal-01414713>

Partager

Métriques

Consultations de la notice

19