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ABSTRACT

The ordered values of a sample of observations are called the order statistics of the sample
and are among the most important functions of a set of random variables in probability
and statistics. However the study of ordered estimates seems to have been overlooked in
maximum-likelihood estimation. Therefore it is the aim of this communication to give an
insight into the relevance of order statistics in maximum-likelihood estimation by
providing a second-order statistical prediction of ordered normally distributed estimates.
Indeed, this second-order statistical prediction allows to refine the asymptotic perfor-
mance analysis of the mean square error (MSE) of maximum likelihood estimators (MLEs)
of a subset of the parameters. A closer look to the bivariate case highlights the possible
impact of estimates ordering on MSE, impact which is not negligible in (very) high
resolution scenarios.

1. Introduction

The ordered values of a sample of observations are called
the order statistics of the sample: if @ = (61,6, A.A,HM)T is a
vector! of M real valued random variables, then @y, =
(RN G(M,)T denotes the vector of order statistics
induced by @ where 6, <03 < - <6y, [1,2]. Order statis-
tics and extremes (smallest and largest values) are among the

E-mail addresses: eric.chaumette@isae.fr (E. Chaumette),
francois.vincent@isae.fr (F. Vincent), olivier.besson@isae.fr (O. Besson).

! The notational convention adopted is as follows: italic indicates a
scalar quantity, as in a; lower case boldface indicates a column vector
quantity, as in a; upper case boldface indicates a matrix quantity, as in A.
The n-th row and m-th column element of the matrix A will be denoted
by Apm or (A),,,. The n-th coordinate of the column vector a will be
denoted by a, or (a),. The matrix/vector transpose is indicated by a
superscript T as in A”. For two vectors a and b, a > b means that a—b is
positive componentwise. Mg(N,P) denotes the vector space of real
matrices with N rows and P columns. 1™ *+! denotes the M-dimensional
vector with all components set to 0 except components from m to m+1
set to 1. 1), denotes the M-dimensional vector with all components set to
1. Iy e RM*M denotes the identity matrix. 1,5, denotes the indicator
function of the event A. Eg[g(X)] = [ gX)p(X; ©®) dx denotes the statistical
expectation of the vector of functions g( ) with respect to x parameterized
by 6.

http://dx.doi.org/10.1016/j.sigpro.2015.02.026

most important functions of a set of random variables in
probability and statistics. There is natural interest in studying
the highs and lows of a sequence, and the other order statistics
help in understanding the concentration of probability in a
distribution, or equivalently, the diversity in the population
represented by the distribution. Order statistics are also useful
in statistical inference, where estimates of parameters are
often based on some suitable functions of the order statistics
vector (robust location estimates, detection of outliers, cen-
sored sampling, characterizations, goodness of fit, etc.). How-
ever the study of ordered estimates seems to have been
overlooked in maximum-likelihood estimation [4], which is
at first sight a little bit surprising. Indeed, if x denotes the
random observation vector and p(x;®) denotes the prob-
ability density function (p.d.f.) of x depending on a vector of P
real unknown parameters ® = (6, ...,60p) to be estimated,
then many estimation problems in this setting lead to estima-
tion algorithms yielding ordered estimates 6y, induced by a
vector @ of M estimates formed from a subset of the whole set
of P estimates ®. Among all various possible instances of
this setting, the most studied in signal processing is that of
separating the components of data formed from a linear
superposition of individual signals and noise (nuisance). For
the sake of illustration, let us consider the following simplified
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example:
% (0) =A@)s +n.. O = (0"l ..s])' 1

where 1 <t < T, Tis the number of independent observations,
X; is the vector of samples of size N, M is the number of signal
sources, s; is the vector of complex amplitudes of the M
sources for the tth observation, A(f) = [a(0,),...,a(fy)] and
a( ) is a vector of N parametric functions depending on a single
parameter 6, n, are Gaussian complex circular noises indepen-
dent of the M sources. Since (1) is invariant over permutation
of signal sources, i.e. for any permutation matrix P; e RM*M:

x:(0) = (A(Q)P;)(Pise) +n,

it is well known that (1) is an ill-posed unidentifiable
estimation problem which can be regularized, i.e. trans-
formed into a well-posed and identifiable estimation pro-
blem, by imposing the ordering of the unknown parameters
Om: 02 (04,...,0y),601 < - <Oy, and of their estimates as

well: ééé(m). Therefore in the MSE sense, the correct
statistical prediction is given by the computation of Eg

[(é(m) —6m)*], 1 < m < M. Unfortunately, the correct statistical
prediction cannot be obtained from scratch since most of the
available results in the open literature on order statistics [1-
3] have been derived the other way round, i.e. they request

the knowledge of the distribution of 6. The distribution of @
can be obtained from a priori information on the problem at
hand or may have been derived in some regions of operation
of the observation model. For instance, it has been known for
a while that, under reasonably general conditions on the
observation model [4,7], the ML estimates are asymptotically
Gaussian distributed when the number of independent
observation tends to infinity. Additionally, if the observation
model is linear Gaussian as in (1), some additional asymptotic
regions of operation yielding Gaussian MLEs have also been
identified: at finite number of independent observations [5-
9] or when the number of samples and the number of
independent observations increase without bound at the
same rate, i.e. N,T—oo, N/T—c, 0 <c <1 [10]. Nevertheless
a close look at the derivations of these results reveals an
implicit hypothesis: the asymptotic condition of operation
considered yields resolvable estimates [11,12], what prevents
from estimates re-ordering. Therefore, under this implicit

hypothesis é(M) — 6. However when the condition of opera-
tion degrades, distribution spread and/or location bias of each

O increase and the hypothesis of resolvable estimates does
not hold any longer yielding observation samples for which
Oy #0 [11,12].

Therefore it is the aim of this communication to give an
insight into the relevance of order statistics in maximum-
likelihood estimation by providing a second-order statistical
prediction of ordered normally distributed estimates. This
second-order statistical prediction allows to refine the asymp-
totic performance analysis of the MSE of MLEs of a subset @ of
the parameters set ©.? Indeed, in the setting of a multivariate

2 Note that these results are also applicable to other estimators, such
as M-estimators, Bayesian estimators (MAP, MMSE), as long as their
distribution is normal.

normal distribution with mean vector Ky and covariance
matrix Cg, §~N M (ﬂ;, CE)' with  p.df  denoted

Dy (é; wss Cg), the most general statistical characterization, i.

e. including distribution and moments, have been derived for
an exchangeable multivariate normal random vector [1,13,14],

that is a normal distribution with a common mean y, a

common variance ¢ and a common correlation coefficient
p:é ~Num (/HM, c? ((1 —p)lu +p1M1TM)), with pe[0,1[. If
the focus is on distribution, then the most general result has
been released recently in [3] where the exact distribution of
linear combinations of order statistics (L-statistics) [15] of
arbitrary dependent random variables has been derived (see
also [16] for the joint distribution of order statistics in a set of
univariate or bivariate observations). In particular, [3] examines
the case where the random variables have a joint elliptically
contoured distribution and the case where the random vari-
ables are exchangeable. Arellano-Vallea and Genton [3] inves-
tigate also the particular L-statistics that simply yield a set of
order statistics, and study their joint distribution. Unfortu-
nately, general derivations of closed form expressions for
moments and cumulants of L-statistics were beyond the scope
of [3] and were left for future research. However in the
particular case of a multivariate normal distribution, it is
possible to obtain closed forms for first and second order
moments of its order statistics directly, i.e. without explicitly
computing the order statistics distribution (see Section 2).
These closed forms not only generalize the earlier work from
the exchangeable case to the general case providing a second-
order statistical prediction of L-statistics from multivariate
normal distribution but are also required to characterize the
MSE of normally distributed vector parameter estimates.
Indeed, since it is always assumed that @ has distinct compo-
nents, any sensible estimation technique of @ must preserve
this resolvability requirement and yield distinct mean values,
leading to asymptotically non-exchangeable multivariate nor-
mal random vector.

2. Second-order statistical prediction of ordered
normally distributed estimates

First, note that é(M) € Per(@), where Per(@): {éi =P,»§;

i=1,...,M! is the collection of random vectors @i corre-
sponding to the M! different permutations of the components

of §. Here P; e RM*M are permutation matrices with P; # P;
for all i j. Let A e RM-D=M be the difference matrix such
that AQ= (0,—6,,05—6,,...0u—0y_1)", ie, the mth
row of A is d},,;—d], m=1,...M—1, where d, ....dy
are the M-dimensional unit basis vectors. Let S;= {@:
AB; >0} where 8; ~ Ny (), i =P, C=P; capf.
Let P(D) be the probability of an event D. As the set of

events {S,—}f-"’:’1 is a partition of RM, whatever the real valued
function f(, ), by the theorem of total probability we have

E {f@(m), a(l))] = g:l E [f@(m), éu)) |Si] P(Si)



that is

Elf(Bun.00) = S [1((@),.(0) s]Pso. @

However, from a computational point of view, it is wiser to
express (2) as

£ B 0)] = SEH(0), (0) ulrer 0

—Ap;} and :A(ai—ﬂi) ~Nm-1
(0, AGA ) Then a smart exploitation of (3) (see Appendix
for details) yields

where ;= {U;:U; >

1

E[é(m)} = i (am\ipi‘i‘ﬂ;\iei) 4)

) M
E{e(m)} = Z ((Gi”+ar2n|i>Pi+2am\iﬂrTnuei +ﬂrTn\iRiﬁmu)
i=1
S)

E{a(mﬂ)é(m)} =%<E [a‘zmﬂ] +E{§(2m)} *E[(a(mﬂ)—a(m))z]) (6)
- (5 (S T )

@)
Pi=PU;), e =E[uly], Ri=E[Ui(Ui)T1u,} ®)
where [>1, ay;=dhu;, Hi=Pip, Ci= PCaP,T, Bri=
(AGAT) 'ACdy, 02 —d! (C-—GAT(AGAT) ' AC) do.

Finally, the second order statistical prediction of any
L-statistics, that is linear combinations of the vector of
order statistics, Z = L6, L e Mg(N, M), is given by

—

C=LC. LT,
z

By = Lﬂams O Ca,v,) —E [é(M)a(TM)] —E [a(M)] E[a(M)} T

and can be computed from expressions (4)-(7) ofE[g(m)],

N P 2
E [0(m+1)0(m)], E [G(m)} when the L-statistics derive from

multivariate normal distribution.

2.1. Cramér-Rao bound for ordered normally distributed
estimates

Let CRBg (@) denote the Cramér-Rao bound (CRB) for
unbiased estimates of @ [4,7]. Then (4) allows for the

computation of the ordered estimates bias (B@ (0)>m =
Eg [é(m)} — 0, which may be different from the (a priori)
theoretical bias (bg(0)),,=Ee [ém] —0p,, leading to the
CRB for ordered estimates given by [4,7]

CRB, (6) = be (0)bly (8) + <1M+‘)Ba‘;@>

_ T
x CRBg (0) <IM +ab;;#> s 9)

which may be different from the (a priori) theoretical
CRBY (0).

2.2. Implementation

Let D; be the diagonal matrix such that (D), =

\/m m=1,...,

(4)-(7) can be reduced by reformulating P;, e;, R; (8) as

M —1. The computational cost of

Pi=PV), e =DEV|V;], Ri=DE [‘71“7,?\1/11 D;, (10)

where Vi={\7i:\7,'27D,»‘lAﬂi} and V;~ANy_1(0,D;!

(AG; AT)D’1) is a vector of correlated standard normal
random variables satisfying P(|(V;),,| > 10) <10~ 2. Thus,
from a numerical point of view, the distribution support of
each (V;),, can be restricted to the interval [—10,10]
leading to |E[(V;),,|Vi]| < 10P(V) and |E[(V;),,(Vi),Vi]| <
10%P(V;). Therefore, since

pon=, i, (p().= - (05 '), ) ).
from a numerical point of view:

o if 3me[l,M—l]|(Di‘1Aﬂ,-) < —10, then:
m

P(V)=0, E[ViVi]=0, E [Gﬁﬁv,»] -0,

o if Vme[l,M—1], (Di’lA;ti) > 10, then:
m
POV =1, E[;V,| =E[V;] =0,
ptE [Gﬁﬂv,—] - E[‘?ﬁﬂ =D, ! (Ac,-AT) D!

In any other case, P(V;), E[Vi|V;] and E [\71-\7,»T|V,l can be
computed by resorting to algorithms proposed by Genz [17]
for numerical evaluation of multivariate normal distribu-
tions and moments over domains included in [— 10, 10/".

3. The bivariate (two sources) case

Let CéCE. ﬂéﬂa. dyu =py,—pq, and dO =u; =0, 0.
As M=2 then uy = —uy, Apy =du=—Ap,, P1+P=1,

171 =1,e;—e; =E[u1] =0, Ry +Ry = E[u3] = 525, ACAT =
d
AGA" = 625 =Cy.1+Cy2—2C1 2. Moreover, if C= 6%((1—
d

Pl +p1,10), then o= /262(1—p) and a few additional
calculations yield

E [ém] —E [ém] +(=1"h@o -,
~2 ~2
E|in | =E |0 |+~ 1 - 11)0

Var [é(m)] =Var [ém] - O'jgh(‘[‘)(f +h(1))
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Fig. 1. MSE shrinkage factor &(z, p) versus r = d‘u/adg forp=-1,-0.5,0,0.5,1.

MSE [é(m)] —Var [@m] - ngTh(‘L'), 11

where 7= d,u/adg, h(y)=E [vl v Zy}] —yP(v>y) and
~ ~ 2
MSE [H(m)] £F {(G(m) —ﬂm) } An interesting feature is
the MSE shrinkage factor:
MSE [é(m)]

(z.p) W= 1-2(1-p)7h(@).

(12)

The computation of the derivatives vector o&(z, p)/o(z,p)

shows that, for a given p, &(7, p) admits a global minimum

which is the solution of E[v] {sz}] —2yP(v=y)=0,

y=1/4/2(1—p), that is, after a numerical resolution,
y~0.61 and leading to 7~0.863,/1—p, &(z,p) =1-0.2
(1—p) > 0.6 (see Fig. 1). Therefore the minimum of &(z, p)
is 0.6 (—2.2 dB) and is reached for couples (z, p) belonging
to the set {(z,p— —17)|r ~ 1.22}. This result is applicable
to any instantiation of (1) for which 0 is normal with
Cg =02 ((1 -p)L, +p121§), as for example, the asymptotic



Mean Square Error of MLEs

-75 1 1 1 1

1 1 1 1 1

20 25 30 35

45 50 55 60 65

Signal to Noise Ratio (dB)

Fig. 2. Average empirical and theoretical MSE (11) of order MLEs of two closely spaced frequencies versus SNR.

behaviour of the MLEs of the direction of arrival (DoA) of
two sources of equal power impinging on a uniform linear
array (ULA) with symmetric DoAs relative to boresight, or
two cisoids (tones) of equal power with opposite frequen-
cies, whatever the observation model is conditional or
unconditional [5]. Indeed in these two cases CRBg (6) =

o2 ((1 -p)Iy +p121£) [4,5,7] and a priori, a violation of the

CRB not attributable to the variance of the empirical MSE
is expected in some scenarios, unless the ad hoc CRB (9) is
computed. However, a closer look to Fig. 1 reveals that

t=du/o 5 must be inferior to 1020 ~ 6 in order to

exhibit a measurable MSE shrinkage effect. As the normality
of estimates and convergence to the CRB is obtained only
in asymptotic conditions where 6d5<<1' this means that

df = du<1 as well, that is the scenario considered is a (very)
high resolution scenario. To highlight the possible impact of
estimates ordering on MSE in (very) high resolution scenarios,
we consider the estimation of two tones (M = 2) of equal
power with opposite frequencies where the observation
model (1) is deterministic: a()" = (1,27, ..., ei2rN-10)
N=8, T=2, d0 =1/12N, Cy, =I5, Cs, = (SNR/N) ((1+})L—
%1215) where SNR is the signal to noise ratio measured at the
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Fig. 3. Average empirical and theoretical MSE shrinkage factor (12) of order MLEs of two closely spaced frequencies versus SNR.

output of the frequency matched filter. Fig. 2 displays the
empirical and theoretical MSE of ordered estimates (11)
averaged over the two frequencies (since equal by symmetry)
and the associated unbiased CRB. Fig. 3 displays the empirical
and theoretical MSE shrinkage factor (12) averaged over the
two frequencies as well. The empirical MSE are assessed with
10* Monte-Carlo trials and a frequency step 60 = (1/12N) ;.
As expected there is a perfect match between the theoretical
results and the empirical results in the asymptotic region
(SNR > 55dB) where Gaussianity is reached by MLEs,
highlighting the non-negligible impact (— 0.6 dB) of estimates
ordering on high resolution scenarios. As the SNR values enter

the threshold area, the MLEs start to explore the side lobe
peaks of the matched filter producing outliers and loosing
gradually their Gaussian distribution [4]. Because of this
phenomenon, as the SNR values enter the threshold area,
the results derived in this section must be regarded as an
approximation which accuracy is somewhat difficult to quan-
tify in general. Indeed, it would require to recompute the
second-order statistical prediction of ordered estimates taking
into account the probability of outlier [4], which is far beyond
the scope of this communication. We can simply notice, but
without generality, that in our example, the approximation is
quite good for SNR > 30 dB.



4. Conclusion

In this communication we have provided a second-
order statistical prediction of ordered normally distributed
estimates which allows to refine the asymptotic perfor-
mance analysis of the MSE of MLEs of a subset @ of the
parameters set @. Analytical expressions of the MSEs of
the whole parameters set @ after re-ordering of the subset
0 should be the next topic to be addressed.

Appendix

As the vector Em,i =((§i)m,ﬁiT)Tv u; = A(ai_ﬂi) ~
Np-1(0, AC,—AT), is a M-dimensional normal vector result-
ing from a bijective affine transformation of @;, then we
have [1]

Py (BumisbtmisCri) =P, ((67), 186t 02, )P, (0. AGAT)
where i, =d", (ﬂi+C,-AT(AC,-AT) ’1ﬁ,-) and o2, =d,
(Ca—CiAT<ACiAT> _lACl-)dm. Let o4 = {U;:u; > — Ap;},
then whatever the real valued function f():
Elr((8:),,)1s] =Elr((),,)ua] =E[ElF((0),,) 8] 4]
In the particular cases where £ (m ) = 8y). ke (1.2):
E[(8), 161] =i = im0

E[(0), 18] = 1=

T ~ T ~ ~T
+2am\iﬁm\iui+ﬂm|iuiuiﬂm\i

where am‘i:d;ﬂi, B = (AC,AT> 71ACidm, and (2) can
finally be expressed as
M

E[0um]| = > (amiP@+BrElUi) )
L m
E{H(m)} =Y (02, + @) PU) -+ 20m iy E[0i 1]
i=1
+ﬂ:nuE [ﬁ,- (ﬁi)T1Mi]ﬂm|i) (13)

From (2), Yme[1,M], VIm+le[1,M]:

£ (Omn-m) ] = 32((0),,~@),)"s

Additionally, VI>1im+Ile[1,M]:

(0),.,-(0), = (157") 8

therefore

(@),.,-@),)

P(S)

2 mm+l-1\ A ADT qmm+1-1
=(1M-,]+ )A0,»A0,-1M'j

Finally
M!

:(a(mﬂ)_a(m))z} = Z ((IWTTI_1)T

i=1

ey

m

(2 AaT mm+1-1
A¢9,4A(91.|s,}1m_1 )73(8,-) (14)

Last, as

(A2 AaT ~ T ~ T
E|A0,A0, |s,} — B[] o] + E[Gi4,] (Apy)

+ ApE[Gifu] "+ Ap; (Ap;)"
an equivalent expression of (14) is (7).
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