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The ordered values of a sample of observations are called the order statistics of the sample
and are among the most important functions of a set of random variables in probability
and statistics. However the study of ordered estimates seems to have been overlooked in
maximum-likelihood estimation. Therefore it is the aim of this communication to give an
insight into the relevance of order statistics in maximum-likelihood estimation by
providing a second-order statistical prediction of ordered normally distributed estimates.
Indeed, this second-order statistical prediction allows to refine the asymptotic perfor-
mance analysis of the mean square error (MSE) of maximum likelihood estimators (MLEs)
of a subset of the parameters. A closer look to the bivariate case highlights the possible
impact of estimates ordering on MSE, impact which is not negligible in (very) high
resolution scenarios.
1. Introduction

The ordered values of a sample of observations are called
the order statistics of the sample: if θ¼ θ1;θ2;…;θM

� �T is a
vector1 of M real valued random variables, then θ Mð Þ ¼
θ 1ð Þ;θ 2ð Þ;…;θ Mð Þ
� �T denotes the vector of order statistics
induced by θ where θ 1ð Þrθ 2ð Þr⋯rθ Mð Þ [1,2]. Order statis-
tics and extremes (smallest and largest values) are among the
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most important functions of a set of random variables in
probability and statistics. There is natural interest in studying
the highs and lows of a sequence, and the other order statistics
help in understanding the concentration of probability in a
distribution, or equivalently, the diversity in the population
represented by the distribution. Order statistics are also useful
in statistical inference, where estimates of parameters are
often based on some suitable functions of the order statistics
vector (robust location estimates, detection of outliers, cen-
sored sampling, characterizations, goodness of fit, etc.). How-
ever the study of ordered estimates seems to have been
overlooked in maximum-likelihood estimation [4], which is
at first sight a little bit surprising. Indeed, if x denotes the
random observation vector and p x;Θ

� �
denotes the prob-

ability density function (p.d.f.) of x depending on a vector of P
real unknown parameters Θ¼ Θ1;…;ΘP

� �
to be estimated,

then many estimation problems in this setting lead to estima-
tion algorithms yielding ordered estimates bθ Mð Þ induced by a
vector bθ ofM estimates formed from a subset of the whole set
of P estimates bΘ. Among all various possible instances of
this setting, the most studied in signal processing is that of
separating the components of data formed from a linear
superposition of individual signals and noise (nuisance). For
the sake of illustration, let us consider the following simplified
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example:

xt Θ
� �¼A θ

� �
stþnt ; ΘT ¼ θT

; sT1 ;…; sTT
� �T

ð1Þ

where 1rtrT , T is the number of independent observations,
xt is the vector of samples of size N,M is the number of signal
sources, st is the vector of complex amplitudes of the M
sources for the tth observation, A θ

� �¼ a θ1
� �

;…; a θM
� �� �

and
að Þ is a vector of N parametric functions depending on a single
parameter θ, nt are Gaussian complex circular noises indepen-
dent of the M sources. Since (1) is invariant over permutation
of signal sources, i.e. for any permutation matrix PiARM�M:

xt Θ
� �¼ A θ

� �
Pi

� �
Pistð Þþnt ;

it is well known that (1) is an ill-posed unidentifiable
estimation problem which can be regularized, i.e. trans-
formed into a well-posed and identifiable estimation pro-
blem, by imposing the ordering of the unknown parameters
θm: θ9 θ1;…;θM

� �
;θ1o⋯oθM ; and of their estimates as

well: bθ9bθ Mð Þ. Therefore in the MSE sense, the correct
statistical prediction is given by the computation of EΘ
½ðbθ mð Þ �θmÞ2�;1rmrM. Unfortunately, the correct statistical
prediction cannot be obtained from scratch since most of the
available results in the open literature on order statistics [1–
3] have been derived the other way round, i.e. they request

the knowledge of the distribution of bθ. The distribution of bθ
can be obtained from a priori information on the problem at
hand or may have been derived in some regions of operation
of the observation model. For instance, it has been known for
a while that, under reasonably general conditions on the
observation model [4,7], the ML estimates are asymptotically
Gaussian distributed when the number of independent
observation tends to infinity. Additionally, if the observation
model is linear Gaussian as in (1), some additional asymptotic
regions of operation yielding Gaussian MLEs have also been
identified: at finite number of independent observations [5–
9] or when the number of samples and the number of
independent observations increase without bound at the
same rate, i.e. N; T-1, N=T-c, 0oco1 [10]. Nevertheless
a close look at the derivations of these results reveals an
implicit hypothesis: the asymptotic condition of operation
considered yields resolvable estimates [11,12], what prevents
from estimates re-ordering. Therefore, under this implicit

hypothesis bθ Mð Þ ¼ bθ. However when the condition of opera-
tion degrades, distribution spread and/or location bias of eachbθm increase and the hypothesis of resolvable estimates does
not hold any longer yielding observation samples for whichbθ Mð Þabθ [11,12].

Therefore it is the aim of this communication to give an
insight into the relevance of order statistics in maximum-
likelihood estimation by providing a second-order statistical
prediction of ordered normally distributed estimates. This
second-order statistical prediction allows to refine the asymp-
totic performance analysis of the MSE of MLEs of a subset θ of
the parameters set Θ.2 Indeed, in the setting of a multivariate
2 Note that these results are also applicable to other estimators, such
as M-estimators, Bayesian estimators (MAP, MMSE), as long as their
distribution is normal.
normal distribution with mean vector μbθ and covariance

matrix Cbθ , bθ �NM μbθ ;Cbθ� �
, with p.d.f. denoted

pNM
ðbθ;μbθ ;Cbθ Þ, the most general statistical characterization, i.

e. including distribution and moments, have been derived for
an exchangeable multivariate normal random vector [1,13,14],
that is a normal distribution with a common mean μ, a

common variance σ2 and a common correlation coefficient

ρ: bθ �NM μ1M ;σ2 1�ρ
� �

IMþρ1M1
T
M

� �� �
, with ρA 0;1½½ . If

the focus is on distribution, then the most general result has
been released recently in [3] where the exact distribution of
linear combinations of order statistics (L-statistics) [15] of
arbitrary dependent random variables has been derived (see
also [16] for the joint distribution of order statistics in a set of
univariate or bivariate observations). In particular, [3] examines
the case where the random variables have a joint elliptically
contoured distribution and the case where the random vari-
ables are exchangeable. Arellano-Vallea and Genton [3] inves-
tigate also the particular L-statistics that simply yield a set of
order statistics, and study their joint distribution. Unfortu-
nately, general derivations of closed form expressions for
moments and cumulants of L-statistics were beyond the scope
of [3] and were left for future research. However in the
particular case of a multivariate normal distribution, it is
possible to obtain closed forms for first and second order
moments of its order statistics directly, i.e. without explicitly
computing the order statistics distribution (see Section 2).
These closed forms not only generalize the earlier work from
the exchangeable case to the general case providing a second-
order statistical prediction of L-statistics from multivariate
normal distribution but are also required to characterize the
MSE of normally distributed vector parameter estimates.
Indeed, since it is always assumed that θ has distinct compo-
nents, any sensible estimation technique of θ must preserve
this resolvability requirement and yield distinct mean values,
leading to asymptotically non-exchangeable multivariate nor-
mal random vector.

2. Second-order statistical prediction of ordered
normally distributed estimates

First, note that bθ Mð ÞAPerðbθÞ, where PerðbθÞ ¼ fbθi ¼ Pi
bθ;

i¼ 1;…;M!g is the collection of random vectors bθ i corre-
sponding to theM! different permutations of the components

of bθ. Here PiARM�M are permutation matrices with PiaPj

for all ia j. Let ΔAR M�1ð Þ�M be the difference matrix such

that Δθ¼ θ2�θ1;θ3�θ2;…;θM�θM�1
� �T , i.e., the mth

row of Δ is dT
mþ1�dT

m, m¼ 1;…;M�1, where d1; …;dM

are the M-dimensional unit basis vectors. Let Si ¼ fbθ:
ΔbθiZ0g where bθi �NM μi;Ci

� �
, μi ¼ Piμbθ , Ci ¼ Pi CbθPT

i .

Let P Dð Þ be the probability of an event D. As the set of
events Sif gM!

i ¼ 1 is a partition of RM , whatever the real valued
function f ;ð Þ, by the theorem of total probability we have

E f bθ mð Þ; bθ lð Þ
� �h i

¼
XM!

i ¼ 1

E f bθ mð Þ; bθ lð Þ
� �

jSi

h i
P Sið Þ



that is

E f bθ mð Þ; bθ lð Þ
� �h i

¼
XM!

i ¼ 1

E f bθ i

� �
m
; bθ i

� �
l

� �
jSi

h i
P Sið Þ: ð2Þ

However, from a computational point of view, it is wiser to
express (2) as

E f bθ mð Þ; bθ lð Þ
� �h i

¼
XM!

i ¼ 1

E f bθ i

� �
m
; bθ i

� �
l

� �
jU i

h i
P U ið Þ ð3Þ

where U i ¼ bu i: bu iZ�Δμi

� 	
and ui ¼Δ bθ i�μi

� �
�NM�1

0;ΔCiΔT
� �

. Then a smart exploitation of (3) (see Appendix

for details) yields

E bθ mð Þ
h i

¼
XM!

i ¼ 1

αmjiPiþβT
mjiei

� �
ð4Þ

E bθ2

mð Þ


 �
¼
XM!

i ¼ 1

σ2
mji
þα2

mji
� �

Piþ2αmjiβ
T
mjieiþβT

mjiRiβmji
� �

ð5Þ

E bθ mþ lð Þ
bθ mð Þ

h i
¼ 1
2

E bθ2

mþ lð Þ


 �
þE bθ2

mð Þ


 �
�E bθ mþ lð Þ �bθ mð Þ

� �2
 �� 

ð6Þ

E bθ mþ lð Þ �bθ mð Þ
� �2
 �

¼ 1m:mþ l�1
M�1

� �T XM!

i ¼ 1

Δμi Δμi

� �TPiþ
2ei Δμi

� �T þRi

0@ 1A0@ 1A1m:mþ l�1
M�1

ð7Þ

Pi ¼P U ið Þ; ei ¼ E ui1U i

� �
; Ri ¼ E ui uið ÞT1U i

h i
ð8Þ

where lZ1, αmji ¼ dT
mμi, μi ¼ Piμbθ , Ci ¼ PiCbθPT

i , βmji ¼

ðΔCiΔT Þ�1ΔCidm, σ2
mji ¼ dT

mðCbθ�CiΔT ΔCiΔT
� ��1

ΔCiÞ dm.
Finally, the second order statistical prediction of any

L-statistics, that is linear combinations of the vector of
order statistics, bz ¼ Lbθ Mð Þ, LAMR N;Mð Þ, is given by

μbz ¼ Lμbθ Mð Þ
; Cbz ¼ LCbθ Mð Þ

LT ;

μbθ Mð Þ
¼ E bθ Mð Þ
h i

Cbθ Mð Þ
¼ E bθ Mð ÞbθT

Mð Þ


 �
�E bθ Mð Þ
h i

E bθ Mð Þ
h iT

��������
and can be computed from expressions (4)–(7) of E bθ mð Þ

h i
,

E bθ mþ lð Þbθ mð Þ
h i

, E bθ2

mð Þ


 �
when the L-statistics derive from

multivariate normal distribution.

2.1. Cramér–Rao bound for ordered normally distributed
estimates

Let CRBΘ θ
� �

denote the Cramér–Rao bound (CRB) for
unbiased estimates of θ [4,7]. Then (4) allows for the

computation of the ordered estimates bias bΘ θ
� �� �

m
¼

EΘ bθ mð Þ
h i

�θm which may be different from the (a priori)

theoretical bias bΘ θ
� �� �

m ¼ EΘ
bθm

h i
�θm, leading to the

CRB for ordered estimates given by [4,7]

CRBb
Θ θ
� �¼ bΘ θ

� �
b
T
Θ θ
� �þ IMþ∂bΘ θ

� �
∂θT

 !
� CRBΘ θ
� �

IMþ∂bΘ θ
� �

∂θT

 !T

; ð9Þ

which may be different from the (a priori) theoretical

CRBb
Θ θ
� �

.

2.2. Implementation

Let Di be the diagonal matrix such that Dið Þm;m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔCiΔT Þm;m;

q
, m¼ 1;…;M�1. The computational cost of

(4)–(7) can be reduced by reformulating Pi, ei, Ri (8) as

Pi ¼P V ið Þ; ei ¼DiE bv ijV i
� �

; Ri ¼DiE bv ibvT
i jV i

h i
Di; ð10Þ

where V i ¼ bv i: bv iZ�D�1
i Δμi

n o
and bv i �NM�1ð0;D�1

i

ðΔCiΔT ÞD�1
i Þ is a vector of correlated standard normal

random variables satisfying P bv i
� �

m

�� ��Z10
� �

o10�23. Thus,
from a numerical point of view, the distribution support of
each bv i

� �
m can be restricted to the interval ½�10;10�

leading to E bv i
� �

mjV i
� ��� ��r10P V ið Þ and E bv i

� �
m
bv i
� �

ljV i
� ��� ��r

102P V ið Þ. Therefore, since

P V ið Þr min
1rmrM�1

P bv i
� �

mZ� D�1
i Δμi

� �
m

� �n o
;

from a numerical point of view:
�
 if (mA 1;M�1½ �j D�1
i Δμi

� �
m
r�10, then:

P V ið Þ ¼ 0; E bv ijV i
� �¼ 0; E bv ibvT

i jV i

h i
¼ 0;

� �

�
 if 8mA 1;M�1½ �; D�1

i Δμi m
Z10, then:

P V ið Þ ¼ 1; E bv ijV i
� �¼ E bv i

� �¼ 0;

ptE bv ibvT
i jV i

h i
¼ E bv ibvT

i

h i
¼D�1

i ΔCiΔT
� �

D�1
i :
In any other case, P V ið Þ, E bv ijV i
� �

and E bv ibvT
i jV i

h i
can be

computed by resorting to algorithms proposed by Genz [17]
for numerical evaluation of multivariate normal distribu-
tions and moments over domains included in �10;10½ �M .

3. The bivariate (two sources) case

Let C9Cbθ , μ9μbθ , dμ¼ μ2�μ1, and dbθ ¼ u1 ¼ bθ2�bθ1.

As M¼2 then u2 ¼ �u1, Δμ1 ¼ dμ¼ �Δμ2, P1þP2 ¼ 1,

11:1
1 ¼ 1, e1�e2 ¼ E u1½ � ¼ 0, R1þR2 ¼ E u2

1

� �¼ σ2

dbθ , ΔC1ΔT ¼

ΔC2ΔT ¼ σ2

dbθ ¼ C1;1þC2;2�2C1;2. Moreover, if C¼ σ2 1�ðð

ρÞI2þρ121
T
2Þ, then σ

dbθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 1�ρ

� �q
and a few additional

calculations yield

E bθ mð Þ
h i

¼ E bθm

h i
þ �1ð Þmh τð Þσ

dbθ ;
E bθ2

mð Þ


 �
¼ E bθ2

m


 �
þ �1ð Þmh τð Þ μ2þμ1

� �
σ
dbθ ;

Var bθ mð Þ
h i

¼ Var bθm

h i
�σ2

dbθh τð Þ τþh τð Þð Þ
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Fig. 1. MSE shrinkage factor ξ τ; ρð Þ versus τ¼ dμ=σ
dbθ for ρ¼ �1; �0:5;0;0:5;1.
MSE bθ mð Þ
h i

¼ Var bθm

h i
�σ2

dbθ τh τð Þ; ð11Þ

where τ¼ dμ=σ
dbθ , h yð Þ ¼ E v1 vZyf g

h i
�yP vZyð Þ and

MSE bθ mð Þ
h i

9E bθ mð Þ �μm

� �2
 �
. An interesting feature is

the MSE shrinkage factor:

ξ τ;ρ
� �¼MSE bθ mð Þ

h i
Var bθm

h i ¼ 1�2 1�ρ
� �

τh τð Þ: ð12Þ

The computation of the derivatives vector ∂ξ τ;ρ
� �

=∂ τ;ρ
� �
shows that, for a given ρ, ξ τ;ρ
� �

admits a global minimum

which is the solution of E v1 vZyf g
h i

�2yP vZyð Þ ¼ 0,

y¼ τ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�ρ
� �q

, that is, after a numerical resolution,

yC0:61 and leading to τC0:863
ffiffiffiffiffiffiffiffiffiffiffi
1�ρ

p
, ξ τ;ρ
� �

Z1�0:2
1�ρ
� �

Z0:6 (see Fig. 1). Therefore the minimum of ξ τ;ρ
� �

is 0.6 (�2.2 dB) and is reached for couples τ;ρ
� �

belonging
to the set τ;ρ-�1þ� �jτC1:22

� 	
. This result is applicable

to any instantiation of (1) for which bθ is normal with

Cbθ ¼ σ2 1�ρ
� �

I2þρ121
T
2

� �
, as for example, the asymptotic
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Fig. 2. Average empirical and theoretical MSE (11) of order MLEs of two closely spaced frequencies versus SNR.
behaviour of the MLEs of the direction of arrival (DoA) of
two sources of equal power impinging on a uniform linear
array (ULA) with symmetric DoAs relative to boresight, or
two cisoids (tones) of equal power with opposite frequen-
cies, whatever the observation model is conditional or
unconditional [5]. Indeed in these two cases CRBΘ θ

� �¼
σ2 1�ρ

� �
I2þρ121

T
2

� �
[4,5,7] and a priori, a violation of the

CRB not attributable to the variance of the empirical MSE
is expected in some scenarios, unless the ad hoc CRB (9) is
computed. However, a closer look to Fig. 1 reveals that

τ¼ dμ=σ
dbθ must be inferior to 1015=20C6 in order to
exhibit a measurable MSE shrinkage effect. As the normality
of estimates and convergence to the CRB is obtained only
in asymptotic conditions where σ

dbθ≪1, this means that

dθ¼ dμ≪1 as well, that is the scenario considered is a (very)
high resolution scenario. To highlight the possible impact of
estimates ordering onMSE in (very) high resolution scenarios,
we consider the estimation of two tones M¼ 2ð Þ of equal
power with opposite frequencies where the observation

model (1) is deterministic: a θ
� �T ¼ 1; ej2πθ ;…;

�
ej2π N�1ð ÞθÞ,

N¼8, T¼2, dθ¼ 1=12N, Cnt ¼ I2, Cst ¼ SNR=N
� �

1þ1
8

� �
I2�

�
1
8121

T
2Þ where SNR is the signal to noise ratio measured at the
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Fig. 3. Average empirical and theoretical MSE shrinkage factor (12) of order MLEs of two closely spaced frequencies versus SNR.
output of the frequency matched filter. Fig. 2 displays the
empirical and theoretical MSE of ordered estimates (11)
averaged over the two frequencies (since equal by symmetry)
and the associated unbiased CRB. Fig. 3 displays the empirical
and theoretical MSE shrinkage factor (12) averaged over the
two frequencies as well. The empirical MSE are assessed with
104 Monte-Carlo trials and a frequency step δθ¼ 1=12N

� �
1
64.

As expected there is a perfect match between the theoretical
results and the empirical results in the asymptotic region
(SNR Z 55 dB) where Gaussianity is reached by MLEs,
highlighting the non-negligible impact (�0.6 dB) of estimates
ordering on high resolution scenarios. As the SNR values enter
the threshold area, the MLEs start to explore the side lobe
peaks of the matched filter producing outliers and loosing
gradually their Gaussian distribution [4]. Because of this
phenomenon, as the SNR values enter the threshold area,
the results derived in this section must be regarded as an
approximation which accuracy is somewhat difficult to quan-
tify in general. Indeed, it would require to recompute the
second-order statistical prediction of ordered estimates taking
into account the probability of outlier [4], which is far beyond
the scope of this communication. We can simply notice, but
without generality, that in our example, the approximation is
quite good for SNR Z30 dB.



4. Conclusion

In this communication we have provided a second-
order statistical prediction of ordered normally distributed
estimates which allows to refine the asymptotic perfor-
mance analysis of the MSE of MLEs of a subset θ of the
parameters set Θ. Analytical expressions of the MSEs of
the whole parameters setΘ after re-ordering of the subset
θ should be the next topic to be addressed.

Appendix

As the vector bξm;i ¼ ððbθ iÞm; buT
i ÞT , bu i ¼Δðbθ i�μiÞ �

NM�1ð0;ΔCiΔT Þ, is a M-dimensional normal vector result-
ing from a bijective affine transformation of bθ i, then we
have [1]

pNM

bξm;i;μm;i;Cm;i

� �
¼ pN 1

bθ i

� �
m
jbui;μmji;σ

2
mji

� �
pNM � 1

bui;0;ΔCiΔT
� �

where μmji ¼ dT
m μiþCiΔT ΔCiΔT

� ��1bui

� 

and σ2

mji ¼ dT
m

Cbθ�CiΔT ΔCiΔT
� ��1

ΔCi

� 

dm. Let U i ¼ bu i: bu iZ�Δμi

� 	
,

then whatever the real valued function f ð Þ:

E f bθi

� �
m

� �
jSi

h i
¼ E f bθi

� �
m

� �
jU i

h i
¼ E E f bθi

� �
m

� �
jbu i

h i
jU i

h i
In the particular cases where f bθ mð Þ

� �
¼ bθk

mð Þ; kA 1;2f g:

E bθi

� �
m
jbui

h i
¼ μmji ¼ αmjiþβT

mjibu i

E bθi

� �2
m
jbu i


 �
¼ σ2

mji
þμ2

mji ¼ σ2
mji
þα2

mji

þ2αmjiβ
T
mjibuiþβT

mjibu ibuT
i βmji

where αmji ¼ dT
mμi, βmji ¼ ΔCiΔT

� ��1
ΔCidm, and (2) can

finally be expressed as

E bθ mð Þ
h i

¼
XM!

i ¼ 1

αmjiP U ið ÞþβT
mjiE bu i1U i

� �� �
E bθ2

mð Þ


 �
¼
XM!

i ¼ 1

σ2
mji
þα2

mji
� �

P U ið Þþ2αmjiβ
T
mjiE bu i1U i

� ��
þβT

mjiE bu i bui
� �T1U i

h i
βmji

�
ð13Þ

From (2), 8mA 1;M½ �, 8 ljmþ lA 1;M½ �:

E bθ mþ lð Þ �bθ mð Þ
� �2
 �

¼
XM!

i ¼ 1

E bθi

� �
mþ l

� bθi

� �
m

� 
2

jSi

" #
P Sið Þ

Additionally, 8 lZ1jmþ lA 1;M½ �:
bθi

� �
mþ l

� bθ i

� �
m
¼ 1m:mþ l�1

M�1

� �T
Δbθ i

therefore

bθ i

� �
mþ l

� bθi

� �
m

� 
2

¼ 1m:mþ l�1
M�1

� �T
ΔbθiΔbθT

i 1
m:mþ l�1
M�1
Finally

E bθ mþ lð Þ �bθ mð Þ
� �2
 �

¼
XM!

i ¼ 1

1m:mþ l�1
M�1

� �T�

E ΔbθiΔbθT

i jSi


 �
1m:mþ l�1
M�1



P Sið Þ ð14Þ

Last, as

E ΔbθiΔbθT

i jSi


 �
¼ E buibuT

i jU i

h i
þE bu ijU i
� � Δμi

� �T
þΔμiE buijU i

� �T þΔμi Δμi

� �T
an equivalent expression of (14) is (7).
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