On the connection between Tug-of-War Games and Nonlocal PDEs on graphs
Abderrahim Elmoataz, Pierre Buyssens

To cite this version:
Abderrahim Elmoataz, Pierre Buyssens. On the connection between Tug-of-War Games and Nonlocal PDEs on graphs. 2016. <hal-01414526>

HAL Id: hal-01414526
https://hal.archives-ouvertes.fr/hal-01414526
Submitted on 14 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the connection between Tug-of-War Games and Nonlocal PDEs on graphs

Abderrahim Elmoataza, Pierre Buyssensa

aUniversité de Caen Normandie, GREYC Laboratory, Image Team, 6 Boulevard Maréchal Juin, F-14050 CAEN cedex FRANCE.

Abstract

In this paper, we are interested in the connection between some stochastic games, namely the Tug-of-War Games, and non-local PDEs on graphs. We consider a general formulation of Tug-of-War Games related to many continuous PDEs. Using the framework of Partial difference Equation, we transcribe this formulation on graph, and show that it encompasses several PDEs on graphs such as ∞-Laplacian, Game p-Laplacian with and without gradient terms, and Eikonal equation. We then interpret these discrete games as non-local Tug-of-War Games. The proposed framework is illustrated with general interpolation problems on graphs.

To cite this article: A. Elmoataz, P. Buyssens. Mecanique 333 (2005).

Résumé

Sur la connexion entre certains jeux stochastiques et les EDPs sur graphes.

Dans cet article, nous nous intéressons à la connexion entre certains jeux stocha-
tiques et certaines Équations aux Dérivées Partielles (EDPs) sur graphes. Nous considérons une formulation générale des jeux de type Tug-of-War reliés à de nombreuses EDPs continues. En utilisant le cadre des Équations aux différences Partielles, nous transcrivons cette formulation, et montrons qu'elle inclue de nombreuses EDPs sur graphes telles que l'\infty-Laplacien, le Game p-Laplacien avec et sans termes de gradients, ainsi que l'équation Eikonale. Nous interprétons ensuite ces jeux discrets comme des jeux de type Tug-of-War non-locaux. La méthode proposée est illustrée à travers de nombreux problèmes d'interpolation sur graphe.

Keywords: Tug-of-War games; graph; Partial Differential Equations; local and non-local PDE on graphs; Interpolation on graphs

Mots-clés : Jeux stochastiques; graphe; Équations aux Dérivées partielles; EDPs

Email addresses: abderrahim.elmoataz-billah@unicaen.fr (Abderrahim Elmoataz), pierre.buyssens@unicaen.fr (Pierre Buyssens)
Game theoretic stochastic or deterministic methods have recently emerged as a novel approach to study and to approximate various non-linear Partial Differential Equations (PDEs). In particular Tug-of-War Games (TOG) related to the ∞-Laplacian or to the p-Laplacian have attracted a lot of attention. They were first introduced by Peres, Schramm, Sheffield, and Wilson in [1, 2]. It is now used in many works to study the existence or the regularity of solutions...
for many PDEs (see [3] and references therein). Many of these games generally are formulated as well-known statistical functionals such as mean, min, or max operators. They are interpreted as a discrete approximation of the underlying PDE and solving the latter leads to taking a suitable limit of the solution of the discrete game.

Recently, there is a high interest in adapting classical signal processing tools on graphs and networks such as wavelets or PDEs [4, 5, 6]. The demand for such methods is motivated by existing and potential future applications, such as in machine learning and mathematical image processing. Indeed, any kind of data can be represented by a graph in an abstract form in which the vertices are associated to the data and the edges correspond to relationships within data.

In this paper, we consider a general Dynamic Programming Equation that encompasses many versions Tug-of-War Games arising in the discrete game-theoretic interpretation for various non-linear PDEs including ∞-Laplacian, game p-Laplacian and Hamilton-Jacobi related equations. We show that under our framework of Partial difference Equations (PdEs) [7, 5], these discrete games coincide with PDEs on particular Euclidean graphs.

The same PDEs on weighted graph of arbitrary topology lead to non-local statistical functionals, including well-known non-local means, non-local dilation, and non-local erosion operators [8]. We interpret them as non-local Tug-of-War Games and we show their connections to non-local PDEs on Euclidean graphs.

This paper unfolds as follows: first, we briefly introduce several discrete games, their related PDEs, and the previously proposed Partial difference Equations (PdE) framework. Then, we naturally extend these games to non-local forms, and illustrate some interpolation problems on image and point cloud processing.

2. Tug-of-War Games and PDEs on Euclidean space

We first briefly review the principle of stochastic Tug-of-War Game (TOG) as described in [2], and one of its variants, namely TOG with noise [9]. A general formulation that encompasses these games is also described.

2.1. Tug-of-War Game (TOG) and continuous PDEs

Let us briefly review the notion of Tug-of-War Game (TOG). Let Ω ⊂ R^n be an open, bounded domain, h : Ω → R the running payoff function, and g : ∂Ω → R the payoff function. Fix a number ε > 0. The dynamics of the game are as follows: a token is placed at an initial position x₀ ∈ Ω. At the kth stage of the game, Player I and Player II select points x_I^k and x_II^k, respectively, each belonging to a specified set B_ε(x_k−1) ⊆ Ω (where B_ε(x_k−1) is the ε-ball centered in x_k−1). The token is then moved to x_k, where x_k can be either x_I^k or x_II^k with equal probability. In other words, a fair coin is tossed to determine where the token is placed (i.e., which player won this stage).

After the kth stage of the game, if x_k ∈ Ω then the game continue to stage k + 1. Otherwise, if x_k ∈ ∂Ω, the game ends and Player II pays Player I the
amount \(g(x_k) + \varepsilon^2 \sum_{j=0}^{k-1} h(x_j) \). Player I attempts to maximize the payoff while Player II attempts to minimize it. If both player are using optimal strategy, according to the Dynamic Programming Principle (DPP), the value functions for Player I and Player II for standard \(\varepsilon \)-turn Tug-of-War satisfy the relation:

\[
\begin{align*}
 \nu_\varepsilon(x) &= \frac{1}{2} \left[\sup_{y \in B(x)} \nu_\varepsilon(y) + \inf_{y \in B(x)} \nu_\varepsilon(y) \right] + \varepsilon^2 h(x), \quad x \in \Omega, \\
 \nu_\varepsilon(x) &= g(x), \quad x \in \partial \Omega.
\end{align*}
\] (1)

The authors of [2] have shown that if the running payoff function \(h \) is of constant sign, the value function \(\nu_\varepsilon \) converges to the unique viscosity solution of the normalized \(\infty \)-Poisson equation:

\[
\begin{align*}
 \Delta_\infty^N u(x) &= -h(x), \quad x \in \Omega, \\
 u(x) &= g(x), \quad x \in \partial \Omega,
\end{align*}
\] (2)

where \(\Delta_\infty^N u = \frac{1}{|\nabla u|} \Delta_\infty u \) is the normalized \(\infty \)-Laplacian and

\[
\Delta_\infty u = |\nabla u|^{-2} \sum_{i,j} u_{x_i} u_{x_j} u_{x_i} u_{x_j}.
\] (3)

2.2. TOG with noise

In its version with noise, the game is modified as follows: at point \(x_k \) in \(\Omega \), player I and player II play \(\varepsilon \)-step Tug-of-War game with probability \(\beta \in [0, 1] \), and a random point in ball of radius \(\varepsilon \) centered at \(x_k \) is chosen with probability \(1 - \beta \). The value functions of the game satisfy the DPP:

\[
\begin{align*}
 \nu_\varepsilon(x) &= \frac{\beta}{2} \left[\sup_{y \in B(x)} \nu_\varepsilon(y) + \inf_{y \in B(x)} \nu_\varepsilon(y) \right] + \frac{1 - \beta}{|B(x)|} \int_{B(x)} \nu_\varepsilon(y) dy + \varepsilon^2 h(x) \\
 \nu_\varepsilon(x) &= g(x), \quad x \in \partial \Omega
\end{align*}
\] (4)

with the boundary condition \(\nu_\varepsilon(x) = g(x) \) for \(x \in \partial \Omega \). A detailed proof for existence and uniqueness of these types of function was shown in [9].

Choosing the probability \(\beta = \frac{p-2}{p+n} \), this DPP gives a connection to viscosity solutions of the following \(p \)-Laplace equation [10, 11, 3]:

\[
\begin{align*}
 \Delta_p^N u(x) &= -h(x), \quad x \in \Omega, \\
 u(x) &= g(x), \quad x \in \partial \Omega,
\end{align*}
\] (5)

for \(p \geq 2 \) with \(\Delta_p^N u = \frac{1}{p} |\nabla u|^{2-p} \text{ div} \left(|\nabla u|^{p-2} \nabla u \right) \).

2.3. General formulation

A general formulation that encompasses these previous games can be defined as follows: \(x_{k+1}^{I} \) is chosen with a probability of \(\alpha \), \(x_{k+1}^{II} \) with a probability of \(\beta \), and there is a probability equal to \(\gamma \) that a random point in ball of radius \(\varepsilon \)
centered at \(x_k \) is chosen. In this setting, \(\alpha + \beta + \gamma = 1 \), and the value functions of the game satisfy:

\[
u^*(x) = \alpha \sup_{y \in B_\epsilon(x)} u^*(y) + \beta \inf_{y \in B_\epsilon(x)} u^*(y) + \gamma \int_{B_\epsilon(x)} u^*(y) \, dy + \epsilon^2 h(x) \tag{6}
\]

This general formulation recovers the Tug-of-War Game \((\alpha = \beta, \gamma = 0) \), its variant with noise \((\gamma > 0, \alpha = \beta) \), and its biased version \([12, 13]\) \((\alpha \neq \beta, \gamma = 0) \).

3. From Discrete Tug-of-War Games to PDEs on graphs

3.1. Notations and definitions

We recall here definitions and operators on graphs that constitute the basis of the Partial difference Equation (PdE) framework on graphs. These definitions are borrowed from \([7, 5]\) and references therein.

A weighted graph \(G = (V, E, w) \) is composed of a finite set \(V = \{v_1, \ldots, v_N\} \) of \(N \) vertices and a finite set \(E \subseteq V \times V \) of weighted edges. \(G \) is assumed to be simple (no self-loops nor multiple edges), connected, and undirected. Let \((u, v) \in E\) be the edge that connects two vertices \(u \) and \(v \) from \(V \). Its weight, denoted by \(w(u, v) \), represents the similarity between vertices \(u \) and \(v \). It is usually computed by using a positive symmetric function \(w : V \times V \rightarrow \mathbb{R}^+ \) satisfying \(w(u, v) = 0 \) if \((u, v) \notin E\).

The notation \(u \sim v \) is also used in the following to denote two adjacent vertices. In the following, we consider the real valued function \(f \) defined on \(V \).

Définition 3.1. Discrete upwind non-local weighted gradients are defined as:

\[
(\nabla^\pm_w f)(u) = ((\partial^\pm_v f)(u))_{v \in V}^T \tag{7}
\]

where \((\partial^\pm_v f)(u) = \left(\sqrt{w(u, v)} (f(v) - f(u)) \right)^\pm \), with \((x)^+ = \max(x, 0)\) and \((x)^- = -\min(x, 0)\).

The \(L_p \) and \(L_\infty \) norms of these gradients are defined as:

\[
\| (\nabla^\pm_w f)(u) \|_p = \left[\sum_{v \sim u} \sqrt{w(u, v)} (f(v) - f(u))^p \right]^\frac{1}{p}
\]

\[
\| (\nabla^\pm_w f)(u) \|_\infty = \max_{v \sim u} \left(\sqrt{w(u, v)} \cdot (f(v) - f(u))^\pm \right) \tag{8}
\]

Définition 3.2. The 2-Laplacian on graph is defined as:

\[
(\Delta_{w,2} f)(u) = \sum_{v \sim u} w(u, v) f(v) - f(u) \tag{9}
\]

Définition 3.3. The \(\infty \)-Laplacian on graph is defined as:

\[
(\Delta_{w,\infty} f)(u) = \frac{1}{2} \left[\| (\nabla^+_w f)(u) \|_\infty - \| (\nabla^-_w f)(u) \|_\infty \right] \tag{10}
\]
Définition 3.4. The game p-Laplacian on graph is defined as:

$$\left(\Delta_G^{w,p}f \right)(u) = a(p)\Delta_w,\infty f(u) + b(p)\Delta_w,2f(u)$$

with $2 \leq p < \infty$, $a(p) = \frac{p-2}{p}$ and $b(p) = \frac{2}{p}$.

3.2. Transcription of TOG on graphs

Now, let us investigate the Euclidean graph $G = (V, E, w)$ with $V = \Omega \subset \mathbb{R}^n$, $E = \{(u, v) \in V \times V | w(u, v) > 0\}$, and

$$w(u, v) = \begin{cases} \frac{1}{\epsilon}, & \text{if } |v - u| < \epsilon, \\ 0, & \text{otherwise}. \end{cases}$$

(12)

Using w in the discrete upwind gradient L_∞-norm, we get

$$\| (\nabla^+w f)(u) \|_\infty = \max_{v \sim u} \left(\sqrt{w(u, v)}(f(v) - f(u)) \right)$$

$$\| (\nabla^-w f)(u) \|_\infty = \frac{1}{\epsilon} \max_{v \sim u} (f(u) - f(v))$$

(13)

We can define the min and max functions as:

$$\max_{v \sim u} f(v) = \epsilon^2 \| (\nabla^+w f)(u) \|_\infty - f(u),$$

$$\min_{v \sim u} f(v) = f(u) - \epsilon^2 \| (\nabla^-w f)(u) \|_\infty.$$

(14)

By replacing the min and max functions in equation 6 by their respective discrete gradient variants, we get the following PDE on graph:

$$\alpha \| (\nabla^+w f)(u) \|_\infty - \beta \| (\nabla^-w f)(u) \|_\infty + \gamma (\Delta_w,2f)(u) = -h(u)$$

(15)

This formulation recovers the Tug-of-War Game (equation 2) with $\alpha = \beta = 0.5, \gamma = 0$, the Biased TOG \cite{12, 13} with $\alpha \neq \beta, \gamma = 0$, the Eikonal equation with $\alpha = \gamma = 0, \beta = 1$, and the TOG with noise (equation 5) with $\gamma \neq 0, \alpha = \beta$.

Equation 15 can also be written as

$$2\min(\alpha, \beta)\Delta_w,\infty f(u) + \gamma \Delta_w,2f(u) + (\alpha - \beta)^+ |\nabla^+w f(u)|_\infty - (\alpha - \beta)^- |\nabla^-w f(u)|_\infty = -h(u)$$

(16)

that clearly exhibits the discrete approximations on graphs of ∞-Laplacian and game p-Laplacian with or without gradient terms.

4. Extension to non-local discrete TOG

In this section, we consider a general weighted connected graph $G = (V, E, w)$, and a null running payoff function $h(u) = 0, \forall u$.
4.1. Interpolation and the associated Dirichlet problem

Let $A \subset V$ be a subset of vertices, and $g : \partial A \to \mathbb{R}$ a function defined on the boundary of A. We consider the general PdE:

$$\begin{align*}
\left\{ \begin{array}{l}
\alpha \|\nabla_w^+ f(u)\|_\infty - \beta \|\nabla_w^- f(u)\|_\infty + \gamma (\Delta_w 2f)(u) = 0, \\
f(u) = g(u),
\end{array} \right. \\
u \in A, \\
u \in \partial A
\end{align*}$$

(17)

Solving this general PdE is an interpolation problem aiming at determining the value of f on the whole domain A from known values defined on ∂A. The existence and uniqueness of the solution of equation 17 can be shown by using the Brouwer fixed point theorem and the comparison principle respectively [14, 15].

4.2. Extension to non-local TOG

Before interpreting the PDE (equation 15) as a non-local game, we first introduce 3 non-local operators defined on graphs, namely non-local dilation (NLD), non-local erosion (NLE), and non-local mean (NLM), by:

$$\begin{align*}
\text{NLD}(f) &= \|\nabla_w^+\|_\infty + f \\
\text{NLE}(f) &= f - \|\nabla_w^-\|_\infty \\
\text{NLM}(f) &= \Delta_w 2f + f
\end{align*}$$

(18) (19) (20)

Due to the generality of the weight function w and the arbitrary graph topology, these operators do not necessarily act locally.

Incorporating these operators into equation 15 and setting $h(u) = 0$, $\forall u$ leads to the equation:

$$f(u) = \alpha \text{NLD}(f) + \beta \text{NLE}(f) + \gamma \text{NLM}(f)$$

(21)

This last equation can be interpreted as a non-local Tug-of-War Game as follows: the token at the k-th stage of the game is moved to a new destination x_k^I with a probability

$$P_1 = \frac{\alpha \sqrt{w(u, y)}}{\alpha \sqrt{w(u, y)} + \beta \sqrt{w(u, z)} + \gamma}$$

$x_k = x_k^I$ with a probability $P_2 = \frac{\beta \sqrt{w(u, z)}}{\alpha \sqrt{w(u, y)} + \beta \sqrt{w(u, z)} + \gamma}$ and $x_k = x_k^{II}$ chosen randomly in $\{x_k \in V \mid x_k \sim x_{k-1}\}$ with a probability $1 - P_1 - P_2$.

4.3. Connection to non-local PDEs on Euclidean graphs

Let $G = (V, E, W)$ be an Euclidean graph with $V = \Omega \subset \mathbb{R}^n$, $E = \{(x, y) \in V \times V \mid w(x, y) > 0\}$.

- Setting $\gamma = 0$, $\alpha = \beta \neq 0$, and

$$w(x, y) = \begin{cases}
\frac{1}{|x-y|^s} & \text{if } x \neq y, s \in [0, 1] \\
0 & \text{otherwise},
\end{cases}$$

(23)
equation 15 corresponds to the H"{o}lder \(\infty \)-Laplacian equation proposed by Chambolle et al. in [16], which is given by

\[
\Delta_{w,\infty} f(x) = \frac{1}{2} \left[\max_{y \in \Omega, y \neq x} \left(\frac{f(y) - f(x)}{|y - x|^s} \right) + \min_{y \in \Omega, y \neq x} \left(\frac{f(y) - f(x)}{|y - x|^s} \right) \right] \tag{24}
\]

This operator is formally derived from the minimization of the following energy functional

\[
\int_{\Omega} \int_{\Omega} \frac{|f(y) - f(x)|^p}{|y - x|^{p \times s}} \, dx \, dy \tag{25}
\]

with \(p \to \infty \).

- Setting \(\alpha = \beta = 0 \), and for a general weighting function \(w \), it gets clear that equation 15 recovers the continuous non-local Laplacian equation:

\[
\int_{\Omega} w(x, y) \cdot (f(y) - f(x)) \, dy = 0 \tag{26}
\]

This operator has been recently used in many applications including continuum mechanics, population dynamics, and many different non-local diffusion problems [17]. A particular case is given by

\[
w(x, y) = \begin{cases}
\frac{1}{|y - x|^{n+2s}}, & x \neq y, s \in [0, 1] \\
0, & \text{otherwise}
\end{cases} \tag{27}
\]

Here, we recover the continuous fractional Laplacian which is commonly used to model anomalous diffusion \((-\Delta)^s f(x) = C_{n,s} \cdot \int_{\mathbb{R}^n} \frac{f(x) - f(y)}{|x - y|^{n+2s}} \, dy \) where \(C_{n,s} \) is a normalization constant.

- In a more general way, the proposed formulation of non-local graph \(p \)-Laplacian (eq. 15, with arbitrary values for \(\alpha, \beta, \gamma \), and \(w \)) corresponds to PDEs that interpolate between the \(\infty \)-Laplacian, the Laplacian, and gradient terms.

5. Illustrations of interpolation problems on graphs

Our framework can handle many interpolation problems on graphs such as inpainting, colorization, and distance computation. For details about graph construction for images and point clouds, see [18] and references therein.

Figure 1 (rows 1 to 3) shows local and non-local inpaintings of a 2D image and a 3D point cloud for different values of \(\alpha, \beta, \) and \(\gamma \). Distance computation on a mesh using \(\beta = 1 \) (Eikonal equation), and 3D point cloud colorization from scribbles using \(\alpha = 0 \) also illustrates the benefits of using PDEs on graphs (fourth row).
6. Conclusion and further work

We have proposed a transcription of several Dynamic Programming Equations arising in the discrete game-theoretic interpretation for various non-linear PDEs. Build upon our simple Partial difference Equations framework, we have shown that these discrete games coincide with PDEs on Euclidean graphs, and that their extension to non-local forms can be interpreted as non-local Tug-of-War games. This paper makes a bridge between stochastic games, continuous local and non-local PDEs and their graph-based counterparts. We plan to propose in the future new algorithms based on the min/max operators to solve efficiently these PDEs on graphs.

