H. Björklund and S. Vorobyov, A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games, Discrete Applied Mathematics, vol.155, issue.2, pp.210-229, 2007.
DOI : 10.1016/j.dam.2006.04.029

T. Brihaye, D. Pril, J. Schewe, and S. , Multiplayer Cost Games with Simple Nash Equilibria, Proceedings of the International Symposium on Logical Foundations of Computer Science (LFCS'13), pp.59-73, 2013.
DOI : 10.1007/978-3-642-35722-0_5

T. Brihaye, G. Geeraerts, S. Krishna, L. Manasa, B. Monmege et al., Adding Negative Prices to Priced Timed Games, Proceedings of the 25th International Conference on Concurrency Theory (CONCUR'14, pp.560-575, 2014.
DOI : 10.1007/978-3-662-44584-6_38

URL : https://hal.archives-ouvertes.fr/hal-01273480

T. Brihaye, G. Geeraerts, A. Haddad, E. Lefaucheux, and B. Monmege, Simple priced timed games are not that simple, Proceedings of the 35th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'15), Schloss Dagstuhl?Leibniz-Zentrum für Informatik, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452621

T. Brihaye, G. Geeraerts, A. Haddad, and B. Monmege, To reach or not to reach? Efficient algorithms for total-payoff games, Proceedings of the 26th International Conference on Concurrency Theory (CONCUR'15), Schloss Dagstuhl? Leibniz-Zentrum für Informatik, LIPIcs, pp.297-310, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01273475

L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J. Raskin, Faster algorithms for mean-payoff games, Formal Methods in System Design, vol.158, issue.24, pp.97-118, 2011.
DOI : 10.1007/s10703-010-0105-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis, Automatic verification of competitive stochastic systems, Formal Methods in System Design, vol.57, issue.3, pp.61-92, 2013.
DOI : 10.1007/s10703-013-0183-7

C. Comin, R. Rizzi, and J. Mycielski, An improved pseudo-polynomial upper bound for the value problem and optimal strategy synthesis in mean payoff games Positional strategies for mean payoff games, International Journal of Game Theory, vol.8, issue.2, pp.109-113, 1979.

E. Filiot, R. Gentilini, and J. Raskin, Quantitative Languages Defined by Functional Automata, Proceedings of the 23rd International Conference on Concurrency theory (CONCUR'12), pp.132-146, 2012.
DOI : 10.1007/978-3-642-32940-1_11

URL : https://hal.archives-ouvertes.fr/hal-01196264

T. Gawlitza and H. Seidl, Games through Nested Fixpoints, Proceedings of the 21st International Conference on Computer Aided Verification, pp.291-305, 2009.
DOI : 10.1007/978-3-642-02658-4_24

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Gimbert and W. Zielonka, When Can You Play Positionally?, Proceedings of the 29th International Conference on Mathematical Foundations of Computer Science, pp.686-698, 2004.
DOI : 10.1007/978-3-540-28629-5_53

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich et al., On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction, Theory of Computing Systems, vol.158, issue.1???2, pp.204-233, 2008.
DOI : 10.1007/s00224-007-9025-6

M. Klimo?, K. Larsen, F. Stefa?ák, and J. Thaarup, Nash Equilibria in Concurrent Priced Games, Proceedings of the 6th international conference on Language and Automata Theory and Applications (LATA'12, pp.363-376, 2012.
DOI : 10.1007/978-3-642-28332-1_31

D. Martin, Borel Determinacy, The Annals of Mathematics, vol.102, issue.2, pp.363-371, 1975.
DOI : 10.2307/1971035

M. Puterman, Markov Decision Processes Negative dynamic programming, The Annals of Mathematical Statistics, vol.37, pp.871-890, 1966.

R. Tarjan, Depth-First Search and Linear Graph Algorithms, SIAM Journal on Computing, vol.1, issue.2, pp.146-160, 1972.
DOI : 10.1137/0201010

W. Thomas, On the synthesis of strategies in infinite games, Symposium on Theoretical Aspects of Computer Science (STACS'95, pp.1-13, 1995.
DOI : 10.1007/3-540-59042-0_57

F. Thuijsman and O. Vrieze, The bad match; a total reward stochastic game, Operations-Research-Spektrum, vol.39, issue.2, pp.93-99, 1987.
DOI : 10.1073/pnas.39.10.1095

U. Zwick and M. Paterson, The complexity of mean payoff games, Theoretical Computer Science, vol.158, pp.343-359, 1996.
DOI : 10.1007/BFb0030814