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Generalized Sasaki-Einstein metric twisted with Weil-Petersson metric

Hassan Jolany

Existence of canonical metric on a Sasakian variety was a long standing conjecture and the major part of this

conjecture is about varieties which do not have definite basic first Chern class(most of the Sasakian varieties do not

have definite basic first Chern class). We give a program by using Fujino’s Minimal Model program to find canonical

metric on the canonical model of Sasakian varieties.

1 Introduction

Kähler geometry study even dimensional manifolds and Sasakian Geometry is the odd dimensional analogue
of Kähler geometry and special case of contact structure. Sasaki geometry in dimension 2n+ 1 is related to
Kähler geometry in both dimension 2n and 2n+ 2. Sasakian manifolds are foliated manifolds with a contact
structure, which are the generalization of Kähler manifolds. For details see [1], [2]. The geometry of Sasakian
manifolds has recently garnered a great deal of interest due to its important role in the anti-de Sitter/conformal
field theory correspondence of theoretical physic. In particular, a conformal field theory is dual to AdS5 ×M5 ,
where AdS5 is anti-de Sitter space and M is a 5-dimensional Sasaki-Einstein manifold. Sasaki-Einstein manifolds
are of interest in the study of non-compact Calabi-Yau manifolds.

Definition 1.1. A Riemannian manifold (M, g) is Sasakian if the metric cone (C(M), ḡ), C(M) := R+ ×M
and ḡ = dr2 + r2g, is Kähler, i.e. ḡ admits a compatible almost complex structure J so that (C(M), ḡ, J) is a
Kähler structure. We embed M in C(M) as the level set {r = 1}.

Sasakian manifold (M, g) inherits a contact structure, and Reeb vector field and so we can introduce
Sasakian manifolds with the following new datas.

1. A contact structure
η = dc log r = Jd log r

2. With Reeb vector field
ξ = Jr∂r ∈ Γ(TM)

where η(ξ) = 1, iξdη = 0
3. A strictly pseudoconvex CR-structure (D, I), D = ker η.
4. I induces a transversely holomorphic structure on Fξ, the Reeb foliation, with transverse Kähler form

ωT = 1
2dη

There is an orthogonal decomposition of the tangent bundle

TM = D ⊕ Lξ

where Lξ is the trivial bundle generalized by ξ. We can then introduce the (1, 1)-tensor field Φ such that

Φ(ξ) = 0 and Φ(X) = JX on X ∈ Γ(D)

It holds that Φ2 = −id+ ξ ⊗ η and g(Φ.,Φ.) = g + η ⊗ η
Note that Φ is compatible with the 2-form dη,

dη(ΦX,ΦY ) = dη(X,Y ), X, Y ∈ Γ(TM)
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and g(X,Y ) = 1
2dη(X,ΦY ), X,Y ∈ Γ(D). Hence dη defines a symplectic form on D.

Since Lr∂rω = 2ω, we can write globally,

ω =
1

2

√
−1∂∂̄r2

where ω is the Kähler form associated to ḡ on C(M). Hence 1
2r

2 is a global Kähler potential on C(M).

The coneM := C(M) ∪ {o} of a Sasakian manifold M is an affine algebraic variety with an algebraic action
of some tours T r = (C∗)r and can be embedded as M ↪→ CN .

The canonical example of a Sasaki-Einstein manifold is the odd dimensional sphere S2n−1, equipped with
its standard Einstein metric. In this case the Kähler cone is Cn \ {0}, equipped with its flat metric.

Sasakian manifolds can be characterizes in to three categories based on the orbits of the Reeb field. If the
orbits of the Reeb field are all closed, then the generates a locally free, isometric U(1) action on (M, g). If the
U(1) action is free, then (M, g) is said to be regular and the quotient manifold M/U(1) is Kähler. If the action
is not free, then (M, g) is said to be quasi-regular, and the quotient manifold is a Kähler orbifold. If the orbits
of are not closed, then the Sasakian manifold (M, g) is said to be irregular. It was widely believed that irregular
Sasaki-Einstein Manifolds did not exist as per a conjecture by Tian and Cheeger. However, in 2004 a landmark
paper of Sparks, Martelli, Gauntlett and Waldram [7], constructed an infinite sequence of Sasaki-Einstein metrics
on S2 × S3 which included irregular and quasiregular Sasaki-Einstein Manifolds.

We need to recall the notion of transverse cohomology.

Definition 1.2. A p-form ω on (M, ξ) is called basic if iξ = 0, and Lξω = 0. The sheaf of basic functions
is denoted by C∞B (M). On the Sasakian manifold (M, ξ) we take ΛpB be the sheaf of basic p-forms, and
ΩpB = Γ(M,ΛpB) the global sections. The de Rham dierential d preserves basic forms, and hence restricts to

a well defined operator dB : ΛpB → Λp+1
B . We thus get a complex

0→ C∞B (M)→ Ω1
B

dB−−→ ...
dB−−→ Ω2n

B
dB−−→ 0

The basic de Rham cohomology groups denoted by Hp
B(M).

By transverse complex structure Φ we can decompose

ΛrB ⊗C =
⊕
p+q=r

Λp,qB

and hence we can write dB = ∂B + ∂̄B , and dcB = 1
2

√
−1(∂̄B − ∂B) where

∂B : Λp,qB → Λp+1,q
B and ∂̄B : Λp,qB → Λp,q+1

B

and it is clear that d2
B = dBd

c
B = 0.

The transverse metric gT is related to the Sasaki metric g by

g = gT + η ⊗ η

From the transverse metric gT , we can define the transverse Levi-Civita connection ∇T on D by

∇TXY = (∇XY )
p
X,Y ∈ Γ(D)

∇Tξ Y = [ξ, Y ]p, Y ∈ Γ(D)

where Xp denotes the projection of X onto D. The transverse Levi-Civita connection is the unique torsion free
connection.

Definition 1.3. The space of Sasaki metrics is defined as

H = {φ ∈ C∞B (M) | ηφ ∧ (dηφ)n 6= 0, ηφ = η + dcBφ}
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Definition 1.4. We can then define the transverse curvature operator by

RmT (X,Y ) = ∇TX∇TY −∇TY∇TX −∇T[X,Y ]

and by the same way we can define the transverse Ricci curvature and transverse scalar curvature. Take the
form ρT = RicT (Φ., .), is called the transverse Ricci form. One can see that

ρT = −
√
−1∂B ∂̄B log det(gT )

The (1, 1)-basic Dolbeault cohomology class [ρT ]B ∈ H1,1
B (M) is called the basic first Chern class which is

independent of the transverse metric gT and denoted by cB1 (M).

Now we recall the transverse Einstein metric which is an analogue of the Kähler-Einstein metric in Kähler
setting.

Definition 1.5. A transverse metric gT is called a transverse Einstein metric if it satisfies in RicT = cgT for
some constant c. The transverse metric gT is said to have transverse constant scalar curvature if

TrgTRic
T = c

Theorem 1.6. The metric g is Sasaki-Einstein metric if and only if gT is Kähler-Einstein if and only if
ḡ is Ricci-flat metric. Moreover, If there exists a transverse Kähler Einstein metric with RicT = λρT for
some constant λ, then cB1 = λ[dη]B ∈ H1,1

B (M). This implies that cB1 definite depending on the sign of λ and
c1(D) = 0. It immediately follows that for a Sasaki-Einstein manifold the restricted holonomy group of the cone
Hol0(ḡ) ⊂ SU(n).

2 Song-Tian program on Sasakian manifolds

El Kacimi-Alaoui [3] showed that by assuming cB1 = λ[dη]B , there is a basic function F such that

ρT − λdη =
√
−1∂B ∂̄BF

The transverse Kähler-Einstein equation can be reduced to the following transverse Monge-Ampere equation

det(gT
ij̄

+ φij̄)

det(gT
ij̄

)
= e−λφ+F , gTij̄ + φij̄ > 0

where here φ is basic. Note that, it is not elliptic, but transversal elliptic.
Sasakian Calabi Problem(Boyer-Galicki): Give a manifold M with Sasakian structure (ξ, η,Φ, g) and

the basic first Chern class cB1 is positive, negative or null, can one deform it to another Sasakian structure
(ξ, η′,Φ′, g′) with an η-Einstein metric g′?

We have the same analogue of Kähler Ricci flow in Sasakian setting and is called Sasaki-Ricci flow [4].

Theorem 2.1. On a compact manifold with Sasakian structure (M, ξ, η,Φ, g), cB1 = λ[dη]B . There is a smooth
family of Sasakian structures (ξ, η(t),Φ(t), g(t)) satisfying (ξ, η(0),Φ(0), g(0)) = (ξ, η,Φ, g) and

∂

∂t
gT (t) = −(RicT (g(t))− λgT (t))

and we can write it as transverse Monge-Ampere equation

∂

∂t
ϕ = log det(gTij̄ + ϕij̄)− log det(gTij̄) + λϕ− F

When the basic first Chern class cB1 is negative or null, then the Sasaki Ricci flow converges to η-Einstein
metric, [4]. When the basic first Chern class cB1 is positive we need the algebro-geometric notion of K-stability
in Sasakian setting which recently solved by T. Collins and Gábor Székelyhidi [8]. When the Sasakian manifold
is quasi-regular, then this is equivalent to the work of Ross-Thomas on K-stability for orbifolds.
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But the fact is that the most of Sasaki manifolds do not have definite basic first Chern class and the question
is, how can we find the canonical metric (generalized Sasaki-Einstein metric) on it.

The fact is that Sasakian manifold M is in deal with affine variety M instead of projective variety and we
must run MMP for affine varity to get canonical metric. We first need to introduce canonical model of M to
get canonical metric.

Let X0 be a projective variety with canonical line bundle K → X0 of Kodaira dimension

κ(X0) = lim sup
log dimH0(X0,K

⊗`)

log `

This can be shown to coincide with the maximal complex dimension of the image of X0 under pluri-canonical
maps to complex projective space, so that κ(X0) ∈ {−∞, 0, 1, ...,m}. Also since in general we work on Singular
Kähler variety we need to notion of numerical Kodaira dimension instead of Kodaira dimension.

κnum(X) = sup
k≥1

[
lim sup
m→∞

log dimCH
0(X,mKX + kL)

logm

]
where L is an ample line bundle on X.Note that the definition of κnum(X) is independent of the choice of

the ample line bundle L on X. Siu formulated that the abundance conjecture is equivalent as

κkod(X) = κnum(X)

Numerical dimension is good thing.
It is worth to mention that if f : X → Y be an algebraic fibre space and κ(X) ≥ 0, κ(Y ) = dimY , (for

example Iitaka fibration), then κ(X) = κ(Y ) + κ(F ), where F is a general fibre of F .
Let V be an irreducible algebraic variety. By Nagata’s theorem, we have a complete algebraic variety V̄

which contains V as a dense Zariski open subset. By Hironaka’s theorem, we have a smooth projective variety W̄
and a projective birational morphism µ : W̄ → V̄ such that if W = µ−1(V ) then D̄ = W̄ −W = µ−1(V̄ − V ),
is a simple normal crossing divisor on W̄ . The logarithmic Kodaira dimension κ̄(V ) of V is defined as

κ̄(V ) = κ(W̄ ,KW̄ + D̄)

κ̄(V ) is well-defined, that is, it is independent of the choice of the pair (W̄ , D̄). We have the following theorem
from Yoshinori Gongyo and Osamu Fujino [6].

Theorem 2.2. Let V be an affine variety. We can take a pair (W̄ , D̄) such that

κ̄(V ) = κ(W̄ ,KW̄ + D̄)

More precisely, by running a minimal model program with ample scaling, we have a finite sequence of flips
and divisorial contraction

(W̄ , D̄) = (W̄0, D̄0) 99K (W̄1, D̄1) 99K · · · 99K (W̄k, D̄k)

such that (W̄k, D̄k) is a good minimal model or has a Mori fiber space structure.

Now we introduce the canonical model of affine variety V .

Definition 2.3. Let V be an affine variety and let (W̄ , D̄) be a pair as in previous theorem. We define the
canonical model of V as

Vcan = Proj
⊕
m≥0

H0(W̄ ,OW̄
(
m(KW̄ + D̄))

)
and the gcan is the canonical metric on the canonical model of V .

Abundance conjecture tells us that if a minimal model exists, then the canonical line bundle Vmin induces
a unique holomorphic map

π : Vmin → Vcan

where Vcan is the unique canonical model of Vmin.
It is easy to see that the canonical ring R(V ) =

⊕
m≥0H

0(W̄ ,OW̄ (m(KW̄ + D̄))) is independent of the

pair (W̄ , D̄) and is well-defined. Then R(V ) is a finitely generated C-algebra. This is because we can choose
(W̄ , D̄) such that it has a good minimal model or a Mori fiber space structure.

By extending Song-Tian program[10, 11] on Sasakian manifold M , it turns out that the normalized Sasaki-
Ricci flow doing exactly same thing to replace the Sasakian coneM by its minimal model by using finitely many
geometric surgeries and then deform minimal model to canonical model.
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Theorem 2.4. Let M be a Sasakian manifold and M with κ̄(M) ≥ 0 be the affine Sasakian cone, since the
canonical ring R(M) is finitely generated C-algebra then from [9],

π : (M, D̄)→MD
can

and we have

Ric(gcan) = −gcan + gD̄WP + +
∑
P

(b(1− tD̄P ))[π∗(P )] + [BD̄]

where BD̄ is Q-divisor on X such that π∗OX([iBD̄+ ]) = OB (∀i > 0). Here sD̄P := b(1− tD̄P ) where tD̄P is the

log-canonical threshold of π∗P with respect to (X, D̄ −BD̄/b) over the generic point ηP of P . i.e.,

tD̄P := max{t ∈ R |
(
X, D̄ −BD̄/b+ tπ∗(P )

)
is sub log canonical over ηP }

Sasakian manifolds are equipped with a contact CR-structure and a CR-holomorphic action of the
corresponding Reeb field. An analogue of a holomorphic map is obviously a CR-holomorphic submerssion X → B
. One would also require that the Reeb field action on B preserve X.

Theorem 2.5. Let X be a Sasakian manifold and π : X → B is a CR-holomorphic submerssion to a compact
Sasakian manifold B with cB1 (KB) < 0 where the general fibers are Calabi-Yau manifolds, i.e., c1(KXs) = 0,
and central fiber is Calabi-Yau manifold, Then X admits a unique smooth transverse Kähler-Einstein metric
ωB solving

RicT (ωB) = −ωTB + π∗ωWP

where ωWP is the Weil-Petersson form on the moduli space of Calabi-Yau fibers.

Proof . Set π∗(ωTB) = −
√
−1∂∂̄ log Ω where Ω is a relative volume form on D.

Since fibers are Calabi-Yau manifolds so c1(Xy) = 0, hence there is a smooth function Fy such that
Ric(ωy) =

√
−1∂∂̄Fy and

∫
Xy

(eFy − 1)ωn−my = 0. The function Fy vary smoothly in y. By Yau’s theorem there

is a unique Ricci-flat Kähler metric ωSRF,y on Xy cohomologous to ω0. So there is a smooth basic function
ρy on π−1(y) = Xy such that ω0 |Xy +

√
−1∂∂̄ρy = ωSRF,y is the unique Ricci-flat Kähler metric on Xy. If we

normalize by
∫
Xy

ρy(ω0)n |Xy= 0 then ρy varies in y and defines a function ρ on X and we let

ωTSRF = ωT0 +
√
−1∂∂̄ρ

which is called as transverse Semi-Ricci Flat metric. Such Semi-Flat Calabi-Yau metrics were first constructed by
Greene-Shapere-Vafa-Yau on surfaces in Kähler setting. More precisely, a closed real (1, 1)-form ωSRF on open
set U ⊂ X \ S, (where S is proper analytic subvariety contains singular points of X) will be called semi-Ricci
flat if its restriction to each fiber Xy ∩ U with y ∈ f(U) be Ricci-flat. Notice that ωSRF is semi-positive

We have

π∗(Ω) =
Ω

(ωSRF )m
=

∫
Xs

Ω

Now solve the complex Monge-Ampere equation on B(
(1− e−t)ωTB + e−tωWP +

√
−1∂∂̄vB

)m
= ev

B

π∗Ω

Take, ω = ω(t) = ωTB +
√
−1∂∂̄vB , we have

RicT (ω) =

= −
√
−1∂B ∂̄B log(ωT )m

= −
√
−1∂B ∂̄B log π∗Ω−

√
−1∂B ∂̄Bv

B

and
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√
−1∂B ∂̄B log π∗Ω +

√
−1∂B ∂̄Bv

B =

=
√
−1∂B ∂̄B log π∗Ω + ωT − ωTB

Hence, by using π∗(Ω) = Ω
(ωSRF )m , we get

√
−1∂B ∂̄B log π∗Ω +

√
−1∂B ∂̄Bv

B =

= ωT − π∗ωWP

So,

RicT (ω) = −ωT + π∗ωWP

where the Weil-Petersson metric is ωWP = Ricπ∗(KX/B)
We consider the following normalized transverse-Ricci flow.

∂ωTt
∂t

= −RicT (ωt)− ωTt

with any transverse Kähler metric ωT0 as the initial metric. We have π∗[ωTB ] = −cB1 (X) for some transverse
Kähler class [ωTB ] over B. Now take the reference metric

ω̂t = (1− e−t)π∗(ωTB) + e−tωT0

Now [ω̂Tt ] = [ωTt ] and from ∂B ∂̄B-lemma we can write ωTt = ω̂Tt +
√
−1∂B ∂̄Bϕt for some basic function ϕt. Let

Ω be a volume form on X such that
π∗(ωTB) =

√
−1∂B ∂̄BΩ

The transverse Kähler Ricci flow is equivalent with the following Monge-Ampere equation

∂ϕt
∂t

= log
(ω̂Tt +

√
−1∂B ∂̄Bϕt)

n

e−rtΩX/B
− ϕt

From maximum principle we have |ϕt| < C. Also by simple computation we have(
∂

∂t
−∆B

)
(−ϕt − (1− et)∂ϕt

∂t
) = ∆B(−ϕt − (1− et)∂ϕt

∂t
)− TrωT

t
ωT0 + ret + n− r

Then by applying Maximum Principle and the bounds for ϕt, we have an upper bound for ∂ϕt

∂t < C. Now from

the stimate of |ϕt| < C, ∂ϕt

∂t < C, and using our Monge-Ampere equation, we have(
∂

∂t
−∆B

)
(2ϕt +

∂ϕt
∂t

) >
∂ϕt
∂t
− C + Ce−

∂ϕt
∂t

and again by applying Maximum Principle, we have a lower bound for ∂ϕt

∂t > C ′. By using these estimates in
our Monge-Ampere equation we have,

C−1e−rtΩ ≤ (ωTt )n ≤ Ce−rtΩ

where dimXz = π−1(z) = r. Now, take the following Monge-Ampere equation

(ωTB +
√
−1∂B ∂̄Bu)n−r = Feu(ωTB)n−r

where

F =
Ω(

n
r

)
(ωTB)n−r ∧ (ωSRF )r

The solution ϕt for our Monge-Ampere equation converges uniformly to u as t→∞. Now set vt =
ϕt − u− e−tρB . Then by taking time derivative of vt and rewriting it based on our Monge-Ampere equation
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and using maximum principle we see that |ϕt − u| < Ce−t/2. Now by the same method of Song-Tian [1],[2],
ω̂Tt ≤ ωTt ≤ C−1ω̂Tt . Since ωTt , ωT0 and ω̂Tt are uniformly equivalent, we have

|(∆B)ω0
ϕt| ≤ C

and we get the C1,α convergence.

Now we formulate G.Tian’s conjecture in Sasakian setting via relative Sasaki Ricci flow. A compact Sasakian
manifold X is said to admit a Fano fibration if there exists a CR-holomorphic immersion f : X → Y with
connected fibers and 0 ≤ dimY < dimX and such that −KX is f -ample, i.e., with positive basic first Chern
class of fibers cB1 (Xy) > 0 and the generic fiber is of dimX − dimY . If Y be a point then we say X is Fano
Sasakian manifold with positive basic first Chern class cB1 (X) > 0.

Conjecture 1. Let Xn be a compact Sasakian manifold. Then there exists a Sasaki metric ωT0 such that the
relative Sasaki-Ricci flow {

∂ωT (t)
∂t = −RicTX/Y (ω(t))

ωT (0) = ωT0

has finite time collapsing if and only if X admits a Fano fibration f : X → Y . In this case, we can write

[ωT0 ] = T (cB1 (X) + f∗(ωTY ))

for some Sasaki metric ωY on Y , where T is the maximal existence time of the flow.

Conjecture 2. Let (Xn, ω0) be a compact Sasaki manifold, let ω(t) be the solution of the Sasaki-Ricci flow,
defined on the maximal time interval [0, T ) with T <∞.{

∂ωT (t)
∂t = −RicT (ω(t))

ωT (0) = ωT0

Then as t→ 0 we have

diam(X,ωT (t))→ 0

if and only if [ωT0 ] = λcB1 (X), for some λ > 0.

Lemma 2.6. For every Fano fibration for Sasakian manifold X there always exists a solution of the relative
Sasaki-Ricci flow which collapses in finite time.

Proof . Let we have Fano fibration. From the relative Sasaki-Ricci flow starting at ωT0

∂ωT (t)

∂t
= −RicTX/Y (ω(t))

from the definition of relative Ricci form RicTX/Y for some Sasaki form ωTY in Y , we get

∂[ωT (t)]

∂t
= −cB1 (X) + f∗(ωTY )

hence

[ωT (t)] = [ωT0 ] + t(cB1 (KX) + f∗(ωTY ))

and since f is Fano fibration on Sasakian manifolds, we can write [ωT0 ] = f∗(ωTY ) + cB1 (X) so

[ωT (t)] = (1− t)(f∗(ωTY ) + cB1 (X))

showing that [ωT (t)] shrinks homothetically and would become degenerate at t = 1. Moreover the total
volume goes to zero when t→ 1.
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