Relative Kähler-Einstein metric on Kähler varieties of positive Kodaira dimension
Hassan Jolany

To cite this version:
Hassan Jolany. Relative Kähler-Einstein metric on Kähler varieties of positive Kodaira dimension. 2017. hal-01413754v5

HAL Id: hal-01413754
https://hal.archives-ouvertes.fr/hal-01413754v5
Preprint submitted on 16 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Relative Kähler-Einstein metric on Kähler varieties of positive Kodaira dimension

By Hassan Jolany

Abstract

For projective varieties with definite first Chern class we have one type of canonical metric which is called Kähler-Einstein metric. But for varieties with an intermediate Kodaira dimension we can have several different types of canonical metrics. In this paper we introduce a new notion of canonical metric for varieties with an intermediate Kodaira dimension. We highlight that to get C^∞-solution of CMA equation of relative Kähler Einstein metric we need Song-Tian-Tsuji measure (which has minimal singularities with respect to other relative volume forms) be C^∞-smooth and special fiber has canonical singularities. Moreover, we conjecture that if we have relative Kähler-Einstein metric then our family is stable in the sense of Alexeev, and Kollár-Shepherd-Barron. By inspiring the work of Greene-Shapere-Vafa-Yau semi-Ricci flat metric, we introduce fiberwise Calabi-Yau foliation which relies in context of generalized notion of foliation. In final, we give Bogomolov-Miyaoka-Yau inequality for minimal varieties with intermediate Kodaira dimensions which admits relative Kähler-Einstein metric.

Contents

1. Introduction 2
2. Fiberwise Calabi-Yau metric 4
3. Relative Kähler-Einstein metric 5
4. Fiberwise Calabi-Yau foliation 9
5. Smoothness of fiberwise integral of Calabi-Yau volume 11
6. Fiberwise Kähler-Einstein stability 12
7. Existence of Initial Kähler metric along relative Kähler Ricci flow 14
8. Stable family and Relative Kähler-Einstein metric 17

MSC 2010: 32Q15, 32Q25, 32Q20.
© Hassan Jolany.
1. Introduction

Let X_0 be a projective variety with canonical line bundle $K \to X_0$ of Kodaira dimension
$$\kappa(X_0) = \limsup \frac{\log \dim H^0(X_0, K^{\otimes \ell})}{\log \ell}$$
This can be shown to coincide with the maximal complex dimension of the image of X_0 under pluri-canonical maps to complex projective space, so that $\kappa(X_0) \in \{-\infty, 0, 1, \ldots, m\}$.

Lelong number: Let $W \subset \mathbb{C}^n$ be a domain, and Θ a positive current of degree (q, q) on W. For a point $p \in W$ one defines
$$v(\Theta, p, r) = \frac{1}{r^{2(n-q)}} \int_{|z-p|<r} \Theta(z) \wedge (dd^c|z|^2)^{n-q}$$
The Lelong number of Θ at p is defined as
$$v(\Theta, p) = \lim_{r \to 0} v(\Theta, p, r)$$
Let Θ be the curvature of singular hermitian metric $h = e^{-u}$, one has
$$v(\Theta, p) = \sup\{\lambda \geq 0 : u \leq \lambda \log(|z-p|^2) + O(1)\}$$
Christophe Mourougane and Shigeharu Takayama, introduced the notion of relative Kähler metric as follows [20].

Definition 1.1. Let $\pi : X \to Y$ be a holomorphic map of complex manifolds. A real d-closed $(1, 1)$-form ω on X is said to be a relative Kähler form for π, if for every point $y \in Y$, there exists an open neighbourhood W of y and a smooth plurisubharmonic function Ψ on W such that $\omega + \pi^*(\sqrt{-1} \partial \bar{\partial} \Psi)$ is a Kähler form on $\pi^{-1}(W)$. A morphism π is said to be Kähler, if there exists a relative Kähler form for π, and $\pi : X \to Y$ is said to be a Kähler fiber space, if π is proper, Kähler, and surjective with connected fibers.

We consider an effective holomorphic family of complex manifolds. This means we have a holomorphic map $\pi : X \to Y$ between complex manifolds such that

1. The rank of the Jacobian of π is equal to the dimension of Y everywhere.
2. The fiber $X_t = \pi^{-1}(t)$ is connected for each $t \in Y$
3. X_t is not biholomorphic to $X_{t'}$ for distinct points $t; t' \in B$.

It is worth to mention that Kodaira showed that all fibers are diomorphic to each other.

The relative Kähler form is denoted by

$$\omega_{X/Y} = \sqrt{-1}g_{\alpha,\beta}(z, s)dz^\alpha \wedge d\bar{z}^\beta$$

Moreover take $\omega_X = \sqrt{-1}\partial\bar{\partial} \log \det g_{\alpha,\beta}(z, y)$ on the total space X. The fact is ω_X in general is not Kähler on total space and $\omega_{X/Y}$ may not be Kähler metric in general, but ω_F is Kähler metric. Now let ω be a relative Kähler form on X and $m := \text{dim } X - \text{dim } Y$,

We define the relative Ricci form $\text{Ric}_{X/Y,\omega}$ of ω by

$$\text{Ric}_{X/Y,\omega} = -\sqrt{-1}\partial\bar{\partial} \log(\omega^m \wedge \pi^*dy_1 \wedge dy_2 \wedge ... \wedge dy_k^2)$$

where $(y_1, ..., y_k)$ is a local coordinate of Y, where Y is a curve. See [35]

Let for family $\pi : \mathcal{X} \rightarrow Y$

$$\rho_{y_0} : T_{y_0}Y \rightarrow H^1(X, TX) = H^{0,1}_\partial(TX)$$

be the Kodaira-Spencer map for the corresponding deformation of X over Y at the point $y_0 \in Y$ where $X_{y_0} = X$

If $v \in T_{y_0}Y$ is a tangent vector, say $v = \frac{\partial}{\partial y}|_{y_0}$ and $\frac{\partial}{\partial s} + b^\alpha \frac{\partial}{\partial z^\alpha}$ is any lift to \mathcal{X} along X, then

$$\bar{\partial} \left(\frac{\partial}{\partial s} + b^\alpha \frac{\partial}{\partial z^\alpha} \right) = \frac{\partial b^\alpha(z)}{\partial z^\beta} \frac{\partial}{\partial z^\alpha}dz^\beta$$

is a $\bar{\partial}$-closed form on X, which represents $\rho_{y_0}(\partial/\partial y)$.

The Kodaira-Spencer map is induced as edge homomorphism by the short exact sequence

$$0 \rightarrow T_{X/Y} \rightarrow TX \rightarrow \pi^*TY \rightarrow 0$$

This short exact sequence gives a good picture to us to run the Kähler Ricci flow on the relative tangent bundle.

Weil-Petersson metric when fibers are Calabi-Yau manifolds can be defined as follows[6].

Definition 1.2. Calabi-Yau manifold is a compact Kähler manifold with trivial canonical bundle. The local Kuranishi family of polarized Calabi-Yau manifolds $\mathcal{X} \rightarrow Y$ is smooth (unobstructed) by the Bogomolov-Tian-Todorov theorem. Let each fibers is a Calabi-Yau manifold. One can assign the unique (Ricci-flat) Yau metric $g(y)$ on X_y. The metric $g(y)$ induces a metric on
For $v, w \in T_y(Y)$, one then defines the Weil-Petersson metric on the base Y by

$$g_{WP}(v, w) = \int_X <\rho(v), \rho(w)>_{\gamma(y)}$$

2. Fiberwise Calabi-Yau metric

The volume of fibers $\pi^{-1}(y) = X_y$ is a homological constant independent of y, and we assume that it is equal to 1. Since fibers are Calabi-Yau manifolds so $c_1(X_y) = 0$, hence there is a smooth function F_y such that $\text{Ric}(\omega_y) = \sqrt{-1}\partial\bar{\partial}F_y$ and $\int_{X_y}(e^{F_y} - 1)\omega_y^{n-m} = 0$. The function F_y vary smoothly in y. By Yau’s theorem there is a unique Ricci-flat Kähler metric $\omega_{SRF,y}$ on X_y cohomologous to ω_0. So there is a smooth function ρ_y on $\pi^{-1}(y) = X_y$ such that $\omega_0 |_{X_y} + \sqrt{-1}\partial\bar{\partial}\rho_y = \omega_{SRF,y}$ is the unique Ricci-flat Kähler metric on X_y. If we normalize by $\int_{X_y}\rho_y\omega^n_0 |_{X_y} = 0$ then ρ_y varies smoothly in y and defines a smooth function ρ on X and we let

$$\omega_{SRF}|_{X_y} = \omega_0 + \sqrt{-1}\partial\bar{\partial}\rho$$

which is called as Semi-Ricci Flat metric. Such Semi-Flat Calabi-Yau metrics were first constructed by Greene-Shapere-Vafa-Yau on surfaces [4]. More precisely, a closed real $(1,1)$-form ω_{SRF} on open set $U \subset X \setminus S$, (where S is proper analytic subvariety contains singular points of X) will be called semi-Ricci flat if its restriction to each fiber $X_y \cap U$ with $y \in f(U)$ be Ricci-flat. Notice that ω_{SRF} is positive in fiber direction, but it is still open problem that such current to be semi-positive in horizontal direction. Moreover $[\omega_{SRF}] \neq [\omega_0]$.

For the log-Calabi-Yau fibration $f : (X, D) \to Y$, such that (X_t, D_t) are log Calabi-Yau varieties and central pair (X_0, D_0) has simple normal crossing singularities, if (X, ω) be a Kähler variety with Poincaré singularities then the semi-Ricci flat metric $\omega_{SRF}|_{X_t}$ is quasi-isometric with the following model which we call it **fibrewise Poincaré singularities**.

$$\sqrt{-1} \sum_{k=1}^{n} \frac{dz_k \wedge d\bar{z}_k}{|z_k|^2 (\log |z_k|^2)^2} + \sqrt{-1} \frac{1}{\pi \left(\log |t|^2 - \sum_{k=1}^{n} \log |z_k|^2 \right)^2} \left(\sum_{k=1}^{n} \frac{dz_k}{z_k} \wedge \sum_{k=1}^{n} \frac{d\bar{z}_k}{\bar{z}_k} \right)$$

We can define the same **fibrewise conical singularities**, and the semi-Ricci flat metric $\omega_{SRF}|_{X_t}$ is quasi-isometric with the following model

$$\sqrt{-1} \sum_{k=1}^{n} \frac{dz_k \wedge d\bar{z}_k}{|z_k|^2} + \sqrt{-1} \frac{1}{\pi \left(\log |t|^2 - \sum_{k=1}^{n} \log |z_k|^2 \right)^2} \left(\sum_{k=1}^{n} \frac{dz_k}{z_k} \wedge \sum_{k=1}^{n} \frac{d\bar{z}_k}{\bar{z}_k} \right)$$

In fact the previous remark will tell us that the semi Ricci flat metric ω_{SRF} has pole singularities with Poincare growth.
Remark: Note that we can always assume the central fiber has simple normal crossing singularities (when dimension of base is one) up to birational modification and base change due to semi-stable reduction of Grothendieck, Kempf, Knudsen, Mumford and Saint-Donat as follows.

Theorem (Grothendieck, Kempf, Knudsen, Mumford and Saint-Donat[24]) Let k be an algebraically closed field of characteristic 0 (e.g. $k = \mathbb{C}$). Let $f : X \to C$ be a surjective morphism from a k-variety X to a non-singular curve C and assume there exists a closed point $z \in C$ such that $f^{-1}(z) : X \to C \setminus \{z\}$ is smooth. Then we find a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & X' \\
\downarrow & & \downarrow \pi \\
C & \xleftarrow{\pi} & C'
\end{array}
\]

with the following properties

1. $\pi : C' \to C$ is a finite map, C' is a non-singular curve and $\pi^{-1}(z) = \{z'\}$.

2. p is projective and is an isomorphism over $C' \setminus \{z'\}$. X' is non-singular and $f^{\prime \prime}(z')$ is a reduced divisor with simple normal crossings, i.e., we can write $f^{\prime \prime}(z') = \sum E_i$ where the E_i are 1-codimensional subvarieties (i.e., locally they are defined by the vanishing of a single equation), which are smooth and, for all r, all the intersections $E_{i_1} \cap \ldots \cap E_{i_r}$ are smooth and have codimension r.

Now if the dimension of smooth base be bigger than one, then we don’t know the semi-stable reduction and instead we can use weak Abramovich-Karu reduction or Kawamata’s unipotent reduction theorem. In fact when the dimension of base is one we know from Fujino’s recent result that if we allow semi-stable reduction and MMP on the family of Calabi-Yau varieties then the central fiber will be Calabi-Yau variety. But If the dimension of smooth base be bigger than one on the family of Calabi-Yau fibers, then if we apply MMP and weak Abramovich-Karu semi-stable reduction [31] then the special fiber can have simple nature. But if the dimension of base be singular then we don’t know about semi-stable reduction which seems is very important for finding canonical metric along Iitaka fibration.

3. Relative Kähler-Einstein metric

Definition 3.1. Let X be a smooth projective variety with $\kappa(X) \geq 0$. Then for a sufficiently large $m > 0$, the complete linear system $|mK_X|$ gives a rational fibration with connected fibers $f : X \dashrightarrow Y$. We call $f : X \dashrightarrow Y$ the Iitaka fibration of X. Iitaka fibration is unique in the sense of birational
equivalence. We may assume that f is a morphism and Y is smooth. For Iitaka fibration f we have
1. For a general fiber F, $\kappa(F) = 0$ holds.
2. $\dim Y = \kappa(Y)$.

Let X be a Kähler variety with an intermediate Kodaira dimension $\kappa(X) > 0$ then we have an Iitaka fibration $\pi : X \to Y = \text{Proj} R(X, K_X) = X_{\text{can}}$ such that fibers are Calabi-Yau varieties. We set $K_{X/Y} = K_X \otimes \pi^* K_Y^{-1}$ and call it the relative canonical bundle of $\pi : X \to Y$.

Definition 3.2. Let X be a Kähler variety with $\kappa(X) > 0$ then the **relative Kähler-Einstein metric** is defined as follows

$$\text{Ric}_{X/Y}^h(\omega) = -\Phi \omega$$

where Φ is a fiberwise constant function, ω is the relative Kähler form and,

$$\text{Ric}_{X/Y}(\omega) = \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\omega^n \wedge \pi^* \omega_{\text{can}}^m}{\pi^* \omega_{\text{can}}^n} \right)$$

and ω_{can} is a canonical metric on $Y = X_{\text{can}}$.

$$\text{Ric}_{X/Y}^{h_{\text{SRF}}}(\omega) = \sqrt{-1} \partial \bar{\partial} \log \left(\frac{\omega^n_{\text{SRF}} \wedge \pi^* \omega_{\text{can}}^m}{\pi^* \omega_{\text{can}}^n} \right) = \omega_{\text{WP}}$$

here ω_{WP} is a Weil-Petersson metric[6].

Note that if $\kappa(X) = -\infty$ then along Mori fibre space $f : X \to Y$ we can define Relative Kähler-Einstein metric as

$$\text{Ric}_{X/Y}^h(\omega) = \Phi \omega$$

when fibers and base are K-poly-stable. Here Φ is a fiberwise constant function. See[5]

Note that, if X be a Calabi-Yau variety and we have a holomorphic fibre space $\pi : X \to Y$, which fibres are Calabi-Yau varieties, then we have the relative Ricci flat metric $\text{Ric}_{X/Y}(\omega) = 0$. This metric is the right canonical metric on the degeneration of Calabi-Yau varieties. The complete solution of this canonical metric correspond to Monge-Ampere foliation of the fiberwise Calabi-Yau foliation and fiberwise KE stability.

For the existence of Kähler-Einstein metric when our variety is of general type, we need to the nice deformation of Kähler-Ricci flow and for intermediate Kodaira dimension we need to work on relative version of Kähler Ricci flow. i.e

$$\frac{\partial \omega}{\partial t} = -\text{Ric}_{X/Y}(\omega) - \Phi \omega$$
take the reference metric as $\tilde{\omega}_t = e^{-t}\omega_0 + (1 - e^{-t}) \text{Ric}(\omega^m_{SRF} \wedge \pi^\ast \omega^m_{can})$ then the version of Kähler Ricci flow is equivalent to the following relative Monge-Ampere equation

$$\frac{\partial \phi_t}{\partial t} = (\tilde{\omega}_t + \sqrt{-1} \partial \bar{\partial} \phi_t)^n / \omega^n_{SRF} \wedge \pi^\ast \omega^m_{can} - \Phi \phi_t$$

Take the relative canonical volume form $\Omega_{X/Y} = \omega^n_{SRF} \wedge \pi^\ast \omega^m_{can}$ and $\omega_t = \tilde{\omega}_t + \sqrt{-1} \partial \bar{\partial} \phi_t$, then

$$\frac{\partial \omega_t}{\partial t} = \frac{\partial \tilde{\omega}_t}{\partial t} + \sqrt{-1} \partial \bar{\partial} \phi_t$$

By taking $\omega_{\infty} = -\text{Ric}(\Omega_{X/Y}) + \sqrt{-1} \partial \bar{\partial} \phi_{\infty}$ we obtain after using estimates

$$\log \frac{\omega^n_{\infty}}{\Omega_{X/Y}} - \Phi \phi_{\infty} = 0$$

By taking $-\sqrt{-1} \partial \bar{\partial}$ of both sides we get

$$\text{Ric}_{X/Y}(\omega_{\infty}) = -\Phi \omega_{\infty}$$

and ω_{∞} has zero Lelong number[45].

Moreover, by using higher canonical bundle formula of Kawamata, Fujino-Mori, we can have another type of canonical pair (ω_X, ω_Y) such that

$$\text{Ric}(\omega_X) = -\omega_Y + \pi^\ast(\omega_{WP}) + [N]$$

More explicitly on pair (X, D) where D is a snc divisors, we can write

$$\text{Ric}(\omega(X,D)) = -\omega_Y + \omega^D_{WP} + \sum_P (b(1 - t^D_P))[\pi^\ast(\omega_{P})] + [B^D]$$

where B^D is a divisor on X such that $\pi_\ast \mathcal{O}_X([iB^D_P]) = \mathcal{O}_B (\forall i > 0)$. Here $s^D_P := b(1 - t^D_P)$ where t^D_P is the log-canonical threshold of $\pi^\ast P$ with respect to $(X, D - B^D/b)$ over the generic point η_P of P. i.e.,

$$t^D_P := \max \{t \in \mathbb{R} | (X, D - B^D/b + t\pi^\ast(P)) \text{ is sub log canonical over } \eta_P \}$$

For holomorphic fiber space $\pi : X \to X_{can}$, to have such pair of canonical metric, we need to have canonical bundle formula when base of fibration has canonical singularities and this is still open. In fact the canonical bundle formula of Fujino-Mori work base of CY fibration is smooth.

Remark: Note that the log semi-Ricci flat metric ω^D_{SRF} is not continuous in general. But if the central fiber has at worst canonical singularities and the central fiber (X_0, D_0) be itself as Calabi-Yau pair, then by open condition
property of Kahler-Einstein metrics, semi-Ricci flat metric is smooth in an open Zariski subset.

Remark: So by applying the previous remark, the relative volume form

\[\Omega_{(X,D)/Y} = \frac{(\omega_{\text{SRF}}^D)^n \wedge \pi^* \omega_{\text{can}}^m}{\pi^* \omega_{\text{can}}^m \mid S \mid^2} \]

is not smooth in general, where \(S \in H^0(X, L_N) \) and \(N \) is a divisor which come from canonical bundle formula of Fujino-Mori. Note that Song-Tian measure is invariant under birational change.

Now we try to extend the Relative Ricci flow to the fiberwise conical relative Ricci flow. We define the conical Relative Ricci flow on pair \(\pi : (X, D) \to Y \) where \(D \) is a simple normal crossing divisor as follows

\[\frac{\partial \omega}{\partial t} = -Ric_{(X,D)/Y}(\omega) - \Phi \omega + [N] \]

where \(N \) is a divisor which come from canonical bundle formula of Fujino-Mori.

Take the reference metric as \(\tilde{\omega}_t = e^{-t} \omega_0 + (1 - e^{-t}) Ric(\omega_{\text{SRF}}^D \wedge \pi^* \omega_{\text{can}}^m) \) then the conical relative Kähler Ricci flow is equivalent to the following relative Monge-Ampere equation

\[\frac{\partial \varphi}{\partial t} = \log \left(\frac{\tilde{\omega}_t + Ric(h_N) + \sqrt{-1} \partial \bar{\partial} \phi_t}{(\omega_{\text{SRF}}^D)^n \wedge \pi^* \omega_{\text{can}}^m} \right) \mid S_N \mid^2 - \Phi \varphi_t \]

Now we prove the \(C^0 \)-estimate for this relative Monge-Ampere equation due to Tian’s \(C^0 \)-estimate.

By approximation our Monge-Ampere equation, we can write

\[\frac{\partial \varphi_t}{\partial t} = \log \left(\frac{\omega_{\text{SRF}}^D \wedge \pi^* \omega_{\text{can}}^m (||S||^2 + \epsilon^2)^{(1-\beta)}}{(\omega_{\text{SRF}}^D)^m \wedge \pi^* \omega_{\text{can}}^m} \right) - \delta (||S||^2 + \epsilon^2)^{\beta} - \Phi \varphi_t \]

So by applying maximal principle we get an upper bound for \(\varphi_t, \epsilon \) as follows

\[\frac{\partial}{\partial t} \sup \varphi_t \leq \sup \log \left(\frac{\omega_{\text{SRF}}^D \wedge \pi^* \omega_{\text{can}}^m (||S||^2 + \epsilon^2)^{(1-\beta)}}{(\omega_{\text{SRF}}^D)^m \wedge \pi^* \omega_{\text{can}}^m} \right) - \delta (||S||^2 + \epsilon^2)^{\beta} \]

and by expanding \(\omega_{\text{SRF}}^D \) we have a constant \(C \) independent of \(\epsilon \) such that the following expression is bounded if and only if the Song-Tian-Tsuji measure be bonded, so to get \(C^0 \) estimate we need special fiber has mild singularities in the sense of MMP

\[\frac{\omega_{\text{SRF}}^D \wedge \pi^* \omega_{\text{can}}^m (||S||^2 + \epsilon^2)^{(1-\beta)}}{(\omega_{\text{SRF}}^D)^m \wedge \pi^* \omega_{\text{can}}^m} \approx C \]
and also \(\delta \to 0 \) so \(\delta (||S||^2 + \epsilon^2)^\beta \) is too small. So we can get a uniform upper bound for \(\varphi_\epsilon \). By applying the same argument for the lower bound, and using maximal principle again, we get a \(C^0 \) estimate for \(\varphi_\epsilon \). Moreover if central fiber \(X_0 \) has canonical singularities then Song-Tian-Tsuji measure is continuous.

So this means that we have \(C^0 \)-estimate for relative Kähler-Ricci flow if and only if the central fiber has at worst canonical singularities. Note that to get \(C^\infty \)-estimate we need just check that our reference metric is bounded and Song-Tian-Tsuji measure is \(C^\infty \)-smooth. So it just remain to see that \(\omega_{WP} \) is bounded. But when fibers are not smooth in general, Weil-Petersson metric is not bounded and Yoshikawa in Proposition 5.1 in [27] showed that under the some additional condition when central fiber \(X_0 \) is reduced and irreducible and has only canonical singularities we have

\[
0 \leq \omega_{WP} \leq C \sqrt{-1} \frac{|s|^{2r} ds \wedge d\overline{s}}{|s|^2 \left(- \log |s|\right)^2}
\]

4. Fiberwise Calabi-Yau foliation

Note that the main difficulty of the solution of \(C^\infty \) for the solution of relative Kähler-Einstein metric is that the null direction of fiberwise Calabi-Yau metric \(\omega_{SRF} \) gives a foliation along Iitaka fibration \(\pi : X \to Y \) and we call it fiberwise Calabi-Yau foliation (due to H. Tsuji) and can be defined as follows

\[
\mathcal{F} = \{ \theta \in T_{X/Y} | \omega_{SRF}(\theta, \overline{\theta}) = 0 \}
\]

and along log Iitaka fibration \(\pi : (X, D) \to Y \), we can define the following foliation

\[
\mathcal{F}' = \{ \theta \in T_{X'/Y} | \omega^D_{SRF}(\theta, \overline{\theta}) = 0 \}
\]

where \(X' = X \setminus D \). In fact the method of Song-Tian works when \(\omega_{SRF} > 0 \). More precisely, in null direction, the function \(\varphi \) satisfies in the complex Monge-Ampere foliation

\[
(\omega_{SRF})^\kappa = 0
\]

gives rise to a foliation by \(X \) by complex sub-manifolds.

A complex analytic space is a topological space such that each point has an open neighborhood homeomorphic to some zero set \(V(f_1, \ldots, f_k) \) of finitely many holomorphic functions in \(\mathbb{C}^n \), in a way such that the transition maps (restricted to their appropriate domains) are biholomorphic functions.

Definition: Let \(X \) be normal variety. A foliation on \(X \) is a nonzero coherent subsheaf \(\mathcal{F} \subset T_X \) satisfying

1. \(\mathcal{F} \) is closed under the Lie bracket, and
(2) \mathcal{F} is saturated in T_X (i.e., T_X/\mathcal{F} is torsion free). The Condition (2) above implies that \mathcal{F} is reflexive, i.e. $\mathcal{F} = \mathcal{F}^{**}$.

The canonical class $K_\mathcal{F}$ of \mathcal{F} is any Weil divisor on X such that $\mathcal{O}_X(-K_\mathcal{F}) \cong \det(\mathcal{F})$.

Definition 4.1. Let $\pi : X \to Y$ be a dominant morphism of normal varieties. Suppose that π is equidimensional. The relative canonical bundle can be defined as follows

$$K_{X/Y} := K_X - \pi^*K_Y$$

Let \mathcal{F} be the foliation on X induced by π, then

$$K_\mathcal{F} = K_{X/Y} - R(\pi)$$

where $R(\pi) = \bigcup_D ((\pi)^*D - ((\pi)^*D)_{red})$ is the ramification divisor of π. Here D runs through all prime divisors on Y. The canonical class $K_\mathcal{F}$ of \mathcal{F} is any Weil divisor on X such that $\mathcal{O}_X(-K_\mathcal{F}) \cong \det(\mathcal{F}) := (\wedge^r \mathcal{F})^{**}$ See [41]

Now take a $C^\infty(1,1)$-form ω on a complex manifold X of complex dimension n and let

$$\text{ann}(\omega) = \{W \in TX | \omega(W, \overline{V}) = 0, \forall V \in TX\}$$

Now we have the following lemma due to Schwarz inequality [16]

Lemma 4.1. If ω is non-negative then we can write,

$$\text{ann}(\omega) = \{W \in TX | \omega(W, \overline{W}) = 0, \forall W \in TX\}$$

Moreover, if we assume $\omega^{n-1} \neq 0$ and $\omega^n = 0$ then $\text{ann}(\omega)$ is subbundle of TX.

Furthermore, we have the following straightforward lemma which make $\text{ann}(\omega)$ to be as foliation

Lemma 4.2. If ω is non-negative, $\omega^{n-1} \neq 0$, $\omega^n = 0$, and $d\omega = 0$, then

$$\mathcal{F} = \text{ann}(\omega) = \{W \in TX | \omega(W, \overline{W}) = 0, \forall W \in TX\}$$

define a foliation \mathcal{F} on X and each leaf of \mathcal{F} being a Riemann surface

Now Tsuji [10][42] took relative form $\omega_{X/Y}$ instead ω in previous lemma and wrote it as a foliation. In my opinion Tsuji’s foliation is fail to be right foliation and we need to revise it. First of all we don’t know such metric ω_{SRF} is non-negative and second we must take $W \in T_{X/Y}$ in relative tangent bundle and we don’t have in general $d\omega_{SRF} = 0$, In fact we know just that $d_{X/Y}\omega_{SRF} = 0$. Moreover ω_{SRF} is not smooth in general and it is a $(1,1)$-current with log pole singularities.
Hence on Calabi-Yau fibration, we can introduce the following bundle

$$\mathcal{F} = \text{ann}(\omega_{SRF}) = \{ W \in T_{X/Y} | \omega_{SRF}(W, \bar{W}) = 0, \forall W \in T_{X/Y} \}$$

in general is the right bundle to be considered and not something Tsuji wrote in [14]. It is not a foliation in general. In fact it is a foliation is fiber direction and may not be a foliation in horizontal direction, but it generalize the notion of foliation. The correct solution of it as Monge-Ampere foliation still remained as open problem.

In the fibre direction, \mathcal{F} is a foliation and we have the following straightforward theorem due to Bedford-Kalka.[40][15][4]

Theorem 4.3. Let \mathcal{L} be a leaf of $f_\ast \mathcal{F}$, then \mathcal{L} is a closed complex sub-manifold and the leaf \mathcal{L} can be seen as fiber on the moduli map

$$\eta : Y \to \mathcal{M}_{\text{CY}}^D,$$

where \mathcal{M}_{CY} is the moduli space of calabi-Yau fibers with at worst canonical singularites and

$$\mathcal{Y} = \{ y \in Y_{\text{reg}} | X_y \ has \ Kawamata \ log \ terminal \ singularities \}$$

5. Smoothness of fiberwise integral of Calabi-Yau volume

Let X be a closed normal analytic subspace in some open subset U of \mathbb{C}^N with an isolated singularity. Take $f : X \to \Delta$ be a degeneration of smooth Calabi-Yau manifolds, then

$$s \to \int_{X_s} \Omega_s \wedge \bar{\Omega}_s \in C^\infty$$

if and only if the monodromy M acting on the cohomology of the Milnor fibre of f is the identity and the restriction map $j : H^n(X^s) \to H^n(F)^M$ is surjective, where $X^s = X \setminus \{ 0 \}$ and M denotes monodromy acting on $H^n(F)$ and $H^n(F)^M$ is the M-invariant subgroup and F is the Milnor fiber at zero(see Corollary 6.2. [21]). In fact the C^∞-smoothneess of fiberwise Calabi-Yau volume $\omega_{SRF}^s \wedge \pi^s \omega_{Y}^m$ must correspond to such information of Daniel Barlet program.

Note that to get C^∞-estimate for the solution of CMA along fibration $f : X \to Y$ we need to have C^∞-smooth relative volume form $\Omega_{X/Y}$. So such volume forms are not unique and in fact Song-Tian-Tsuji measure has minimal singularites. If we consider a CMA equation with the relative volume form constructed by $\int_{X_s} \Omega_s \wedge \bar{\Omega}_s$, then such fiberwise integral volume forms must be smooth and in an special case when X is an analytical subspace of \mathbb{C}^N with an isolated singularities we get the C^∞-smoothness of such fiberwise integral.
Note that, if \(X_0 \) only has canonical singularities, or if \(X \) is smooth and \(X_0 \) only has isolated ordinary quadratic singularities, then if \(\pi : X \to \mathbb{C}^* \) be a family of degeneration of of Calabi-Yau fibers. Then the \(L^2 \)-metric
\[
\int_{X_s} \Omega_s \wedge \bar{\Omega}_s
\]
is continuous. See Remark 2.10. of [26].

So this fact tells us that the relative volume form is not smooth in general and finding suitable Zariski open subset such that the relative volume form (like Song-Tian-Tsuji volume form) be smooth outside of such Zariski open subset is not easy. In fact we are facing with two different singularities, one singularity arise from fiber direction near central fiber and also we have another type of singularity in horizontal direction near central fiber. So this comment tells us that Koodziej’s \(C^0 \)-estimate does not work for finding canonical metric along Calabi-Yau fibration.

6. Fiberwise Kähler-Einstein stability

Now we use the Wang[32], Takayama[29], and Tosatti [30] result for the following definition.

\textit{Definition 6.1.} Let \(\pi : X \to B \) be a family of Kähler-Einstein varieties, then we introduce the new notion of stability and call it fiberwise KE-stability, if the Weil-Petersson distance \(d_{WP}(B,0) < \infty \) (which is equivalent to say Song-Tian-Tsuji measure is bounded near central fiber). Note when fibers are Calabi-Yau varities, Takayama, by using Tian’s Kähler-potential for Weil-Petersson metric for moduli space of Calabi-Yau varieties showed that Fiberwise KE-Stability is as same as when the central fiber is Calabi-Yau variety with at worst canonical singularities. So this definition work when the dimension of base is one. But if the dimension of base be bigger than one, then it is better to replace boundedness of Weil-Petersson distance with boundedness of Song-Tian-Tsuji measure which seems to be more natural to me. We mention that the Song-Tian-Tsuji measure is bounded near origin if and only if after a finite base change the Calabi-Yau family is birational to one with central fiber a Calabi-Yau variety with at worst canonical singularities.

So along canonical model \(\pi : X \to X_{can} \) for mildly singular variety \(X \), we have \(\text{Ric}_{X/X_{can}}(\omega) = -\Phi \omega \) if and only if our family of fibers be fiberwise KE-stable

Let \(\pi : (X,D) \to B \) is a holomorphic submersion onto a compact Kähler manifold \(B \) with \(c_1(K_B) < 0 \) where the fibers are log Calabi-Yau manifolds and \(D \) is a simple normal crossing divisor in \(X \). Let our family of fibers be fiberwise
KE-stable. Then \((X, D)\) admits a unique twisted Kähler-Einstein metric \(\omega_B\) solving

\[
Ric(\omega_{(X, D)}) = -\omega_B + \omega_{WP}^D + (1 - \beta)[N]
\]

where \(\omega_{WP}\) is the logarithmic Weil-Petersson form on the moduli space of log Calabi-Yau fibers and \([D]\) is the current of integration over \(D\).

More precisely, we have

\[
Ric(\omega_{(X, D)}) = -\omega_B + \omega_{WP}^D + \sum_P (b(1 - t_P^D))\left[\pi^*(P)\right] + [B^D]
\]

where \(B^D\) is \(\mathbb{Q}\)-divisor on \(X\) such that \(\pi_*\mathcal{O}_X([iB^D_+]) = \mathcal{O}_B (\forall i > 0)\). Here \(s_P^D := b(1 - t_P^D)\) where \(t_P^D\) is the log-canonical threshold of \(\pi^*P\) with respect to \((X, D - B^D/b)\) over the generic point \(\eta_P\) of \(P\). i.e.,

\[
t_P^D := \max\{t \in \mathbb{R} \mid (X, D - B^D/b + t\pi^*(P)) \text{ is sub log canonical over } \eta_P\}
\]

and \(\omega_{can}\) has zero Lelong number.

With cone angle \(2\pi\beta\), \((0 < \beta < 1)\) along the divisor \(D\), where \(h\) is an Hermitian metric on line bundle corresponding to divisor \(N\), i.e., \(L_N\). This equation can be solved. Take, \(\omega = \omega(t) = \omega_B + (1 - \beta)Ric(h) + \sqrt{-1}\partial\bar{\partial}v\) where \(\omega_B = e^{-t}\omega_0 + (1 - e^{-t})Ric\left(\frac{(\omega_{SRF}^D)^n \wedge \pi^*\omega_{can}^m}{\pi^*\omega_{can}^{m+2}}\right)\), by using Poincare-Lelong equation,

\[
\sqrt{-1}\partial\bar{\partial}\log|s^N|_h^2 = -c_1(L_N, h) + [N]
\]

we have

\[
Ric(\omega) =
\]

\[
= -\sqrt{-1}\partial\bar{\partial}\log\pi_*\Omega_{(X, D)/Y} - \sqrt{-1}\partial\bar{\partial}v - (1 - \beta)c_1([N], h) + (1 - \beta)[N]
\]

and

\[
\sqrt{-1}\partial\bar{\partial}\log\pi_*\Omega_{(X, D)/Y} + \sqrt{-1}\partial\bar{\partial}v =
\]

\[
= \sqrt{-1}\partial\bar{\partial}\log\pi_*\Omega_{(X, D)/Y} + \omega - \omega_B - Ric(h)
\]

Hence, by using

\[
\omega_{WP}^D = \sqrt{-1}\partial\bar{\partial}\log\left(\frac{(\omega_{SRF}^D)^n \wedge \pi^*\omega_{can}^m}{\pi^*\omega_{can}^{m+2}}\right)
\]
we get
\[
\sqrt{-1} \partial \bar{\partial} \log \pi^* \Omega_{(X,D)/Y} + \sqrt{-1} \partial \bar{\partial} v = \\
= \omega_Y - \omega_{WP}^D - (1 - \beta)c_1(N)
\]

So,
\[
Ric(\omega_{(X,D)}) = -\omega_Y + \omega_{WP}^D + (1 - \beta)[N]
\]

7. Existence of Initial Kähler metric along relative Kähler Ricci flow

Uniqueness of the solutions of relative Kahler Ricci flow along Iitaka fibration or \(\pi : X \to X_{can} \) or along log canonical model \(\pi : (X, D) \to X_{can} \) is highly non-trivial. In fact such canonical metric is unique up to birational transformation.

Now we show how the finite generation of canonical ring can be solved by positivity theory and Analytical Minimal Model Program via Kähler- Ricci flow.

Now we give a relation between the existence of Zariski Decomposition and the existence of initial Kähler metric along relative Kähler Ricci flow:

Finding an initial Kähler metric \(\omega_0 \) to run the Kähler Ricci flow is important. Along holomorphic fibration with Calabi-Yau fibres, finding such initial metric is a little bit mysterious. In fact, we show that how the existence of initial Kähler metric is related to finite generation of canonical ring along singularities.

Let \(\pi : X \to Y \) be an Itaka fibration of projective varieties \(X, Y \), (possibly singular) then is there always the following decomposition

\[
K_Y + \frac{1}{m!} \pi_* O_X(m!K_{X/Y}) = P + N
\]

where \(P \) is semiample and \(N \) is effective. The reason is that, If \(X \) is smooth projective variety, then as we mentioned before, the canonical ring \(R(X, K_X) \) is finitely generated. We may thus assume that \(R(X, kK_X) \) is generated in degree 1 for some \(k > 0 \). Passing to a log resolution of \(|kK_X| \) we may assume that \(|kK_X| = M + F \) where \(F \) is the fixed divisor and \(M \) is base point free and so \(M \) defines a morphism \(f : X \to Y \) which is the Iitaka fibration. Thus \(M = f^*O_Y(1) \) is semiample and \(F \) is effective.

In singular case, if \(X \) is log terminal. By using Fujino-Mori’s higher canonical bundle formula, after resolving \(X' \), we get a morphism \(X' \to Y' \) and a klt pair \(K_Y' + B_Y' \). The Y described above is the log canonical model of \(K_Y' + B_Y' \) and so in fact (assuming as above that \(Y' \to Y \) is a morphism), then
$K_Y' + B_Y' \sim_{\mathbb{Q}} P + N$ where P is the pull-back of a rational multiple of $O_Y(1)$ and N is effective (the stable fixed divisor). If $Y' \rightarrow Y$ is not a morphism, then P will have a base locus corresponding to the indeterminacy locus of this map. (Thanks of Hacon answer to my Mathoverflow question [22] which is due to E. Viehweg [23].)

So the existence of Zariski decomposition is related to the finite generation of canonical ring (when X is smooth or log terminal). Now if such Zariski decomposition exists then, there exists a singular hermitian metric $\omega_0 = \sqrt{-1}\Theta_h + [N]$ or $\omega_0 = \sqrt{-1}\Theta_h + \sqrt{-1}\delta \partial \bar{\partial} \parallel S_N \parallel^2$ along relative Kähler Ricci flow

$$\frac{\partial \omega(t)}{\partial t} = -\text{Ric}_{X/Y}(\omega(t)) - \Phi\omega(t)$$

with log terminal singularities.

So when X, Y have at worst log terminal singularities (hence canonical ring is f.g and we have initial Kähler metric to run Kähler Ricci flow with starting metric ω_0) and central fibre is Calabi-Yau variety, and $-K_Y < 0$, then all the fibres are Calabi-Yau varieties and the relative Kähler-Ricci flow converges to ω which satisfies in

$$\text{Ric}_{X/Y}(\omega) = -\Phi\omega$$

Remark: The fact is that the solutions of relative Kähler-Einstein metric or Song-Tian metric $\text{Ric}(\omega_X) = -\omega_Y + f^*\omega_{WP} + [N]$ may not be C^∞. In fact we have C^∞ of solutions if and only if the Song-Tian measure or Tian’s Kähler potential be C^∞. Now we explain that under some following algebraic condition we have C^∞-solutions for

$$\text{Ric}(\omega_X) = -\omega_Y + f^*\omega_{WP} + [N]$$

along Iitaka fibration. We recall the following Kawamata’s theorem [17].

Theorem 7.1. Let $f : X \rightarrow B$ be a surjective morphism of smooth projective varieties with connected fibers. Let $P = \sum_j P_j$, $Q = \sum_l Q_l$, be normal crossing divisors on X and B, respectively, such that $f^{-1}(Q) \subset P$ and f is smooth over $B \setminus Q$. Let $D = \sum_j d_j P_j$ be a \mathbb{Q}-divisor on X, where d_j may be positive, zero or negative, which satisfies the following conditions A, B, C:

A) $D = D^h + D^v$ such that any irreducible component of D^h is mapped surjectively onto B by f, $f : \text{Supp}(D^h) \rightarrow B$ is relatively normal crossing over $B \setminus Q$, and $f(\text{Supp}(D^v)) \subset Q$. An irreducible component of D^h (resp. D^v) is called horizontal (resp. vertical)

B) $d_j < 1$ for all j

C) The natural homomorphism $\mathcal{O}_B \rightarrow f_*\mathcal{O}_X([-D])$ is surjective at the generic point of B.
D) $K_X + D \sim_{\mathbb{Q}} f^*(K_B + L)$ for some \mathbb{Q}-divisor L on B.

Let

$$f^*Q_l = \sum_j w_{lj} P_j$$

$$\bar{d}_j = \frac{d_j + w_{lj} - 1}{w_{lj}}, \text{ if } f(P_j) = Q_l$$

$$\delta_l = \max\{\bar{d}_j; f(P_j) = Q_l\}.$$

$$\Delta = \sum_l \delta_l Q_l.$$

$$M = L - \Delta.$$

Then M is nef.

The following theorem is straightforward from Kawamata’s theorem

Theorem 7.2. Let $d_j < 1$ for all j be as above in Theorem 0.11, and fibers be log Calabi-Yau pairs, then

$$\int_{X_s \setminus D_s} (-1)^{n^2/2} \Omega_s \wedge \overline{\Omega_s}$$

is continuous on a nonempty Zariski open subset of B.

Since the inverse of volume gives a singular hermitian line bundle, we have the following theorem from Theorem 0.11

Theorem 7.3. Let $K_X + D \sim_{\mathbb{Q}} f^*(K_B + L)$ for some \mathbb{Q}-divisor L on B and

$$f^*Q_l = \sum_j w_{lj} P_j$$

$$\bar{d}_j = \frac{d_j + w_{lj} - 1}{w_{lj}}, \text{ if } f(P_j) = Q_l$$

$$\delta_l = \max\{\bar{d}_j; f(P_j) = Q_l\}.$$

$$\Delta = \sum_l \delta_l Q_l.$$

$$M = L - \Delta.$$

Then
(\int_{X \setminus D_s} (-1)^{n^2/2} \frac{\Omega_s \wedge \overline{\Omega_s}}{|S_s|^2})^{-1}

is a continuous hermitian metric on the \mathbb{Q}-line bundle $K_B + \Delta$ when fibers are log Calabi-Yau pairs.

8. Stable family and Relative Kähler-Einstein metric

For compactification of the moduli spaces of polarized varieties Alexeev and Kollar-Shepherd-Barron,\cite{25} started a program by using new notion of moduli space of "stable family". They needed to use the new class of singularities, called semi-log canonical singularities.

Let X be an equidimensional algebraic variety that satisfies Serre’s S_2 condition and is normal crossing in codimension one. Let Δ be an effective \mathbb{R}-divisor whose support does not contain any irreducible components of the conductor of X. The pair (X, Δ) is called a semi log canonical pair (an slc pair, for short) if

1. $K_X + \Delta$ is \mathbb{R}-Cartier;
2. (X^v, Θ) is log canonical, where $v : X^v \to X$ is the normalization and $K_{X^v} + \Theta = v^*(K_X + \Delta)$

Note that, the conductor \mathcal{C}_X of X is the subscheme defined by, $\text{cond}_X := \text{Hom}_{\mathcal{O}_X}(v_* \mathcal{O}_{X^v}, \mathcal{O}_X)$.

A morphism $f : X \to B$ is called a weakly stable family if it satisfies the following conditions:
1. f is flat and projective
2. $\omega_{X/B}$ is a relatively ample \mathbb{Q}-line bundle
3. X_b has semi log canonical singularities for all $b \in B$

A weakly stable family $f : X \to B$ is called a stable family if it satisfies Kollar’s condition, that is, for any $m \in \mathbb{N}$

$$\omega_{X/B}^{[m]}|_{X_b} \cong \omega_{X_b}^{[m]}.$$

Note that, if the central fiber be Gorenstein and stable variety, then all general fibers are stable varieties, i.e, stability is an open condition

Conjecture: Weil-Petersson metric (or logarithmic Weil-Petersson metric)on stable family is semi-positive as current and such family has finite distance from zero i.e $d_{WP}(B, 0) < \infty$ when central fiber is stable variety also.

Moreover we predict the following conjecture holds true.

Conjecture: Let $f : X \to B$ is a stable family of polarized Calabi-Yau varieties, and let B is a smooth disc. then if the central fiber be stable variety
as polarized Calabi-Yau variety, then we have following canonical metric on total space.

\[\text{Ric}(\omega_X) = -\omega_B + f^*(\omega_{WP}) + [N] \]

Moreover, if we have such canonical metric then our family of fibers is stable.

We predict that if the base be singular with mild singularites of general type (for example \(B = X_{\text{can}} \)) then we have such canonical metric on the stable family.

Now the following formula is cohomological characterization of Relative Kähler-Ricci flow due to Tian.

Theorem 8.1. The maximal time existence \(T \) for the solutions of relative Kähler Ricci flow is

\[T = \sup \{ t \mid e^{-t}[\omega_0] + (1 - e^{-t})c_1(K_{X/Y} + D) \in \mathcal{K}((X, D)/Y) \} \]

where \(\mathcal{K}((X, D)/Y) \) denote the relative Kähler cone of \(f : (X, D) \to Y \).

Now take we have holomorphic fibre space \(f : X \to Y \) such that fibers and base are Fano K-polystable, then we have the relative Kähler-Einstein metric

\[\text{Ric}_{X/Y}(\omega) = \Phi \omega \]

we need to work on relative version of Kähler Ricci flow. i.e

\[\frac{\partial \omega}{\partial t} = -\text{Ric}_{X/Y}(\omega) + \Phi \omega \]

take the reference metric as \(\tilde{\omega}_t = e^t \omega_0 + (1 + e^t)\text{Ric}(\frac{\omega_{\text{SKKE}}}{\pi^*\omega_Y}) \) then the version of Kähler Ricci flow is equivalent to the following relative Monge-Ampere equation

\[\frac{\partial \phi_t}{\partial t} = \frac{\left(\tilde{\omega}_t + \sqrt{-1} \partial \bar{\partial} \phi_t \right)^n \wedge \pi^* \omega_Y^m}{\left(\omega_{\text{SKKE}} \right)^n \wedge \pi^* \omega_Y^m} + \Phi \phi_t \]

where \(\omega_Y \) is the Kähler-Einstein metric corresponding to \(\text{Ric}(\omega_Y) = \omega_Y \) and \(\omega_{SKKE} \) is the fiberwise Fano Kähler-Einstein metric.

In fact the relative volume form is \(\Omega_{X/Y} = \frac{(\omega_{\text{SKKE}})^n \wedge \pi^* \omega_Y^m}{\pi^* \omega_Y^m} \) and we have the following relative Monge-Ampere equation

\[\frac{\partial \phi_t}{\partial t} = \frac{\left(\tilde{\omega}_t + \sqrt{-1} \partial \bar{\partial} \phi_t \right)^n}{\Omega_{X/Y}} + \Phi \phi_t \]

Hence from \(\text{Ric}_{X/Y}(\omega) = \Phi \omega \). Moreover we must develop canonical bundle formula when fibers are K-stable and if we have such formula then we obtain \(\text{Ric}(\omega_X) = \omega_Y + f^*(\omega_{WP}) + [S] \), for the Weil-Petersson metric \(\omega_{WP} \) on the base.
which this metric is correspond to canonical metric on moduli part of family of fibers, \(\omega_{WP} = \int_{X/Y} c_1(K_{X/Y}, h)^{n+1}\).

Remark: Note that we still don’t know canonical bundle type formula along Mori-fiber space. So finding explicit Song-Tian type metric on pair \((X, D)\) along Mori fiber space when base and fibers are K-poly stable is not known yet.

Conjecture: Let \(\pi : X \to B\) be smooth, and every \(X_t\) is K-poly stable. Then the plurigenera \(P_m(X_t) = \dim H^0(X_t, -mK_{X_t})\) is independent of \(t \in B\) for any \(m\).

Idea of proof. We can apply the relative Kähler Ricci flow method for it. In fact if we prove that

\[
\frac{\partial \omega(t)}{\partial t} = -\text{Ric}_{X/Y}(\omega(t)) + \Phi \omega(t)
\]

has long time solution along Fano fibration such that the fibers are K-poly stable then we can get the invariance of plurigenera in the case of K-poly stability.

9. **Bogomolov-Miyaoka-Yau inequality for minimal varieties with intermediate Kodaira dimension**

From the differential geometric proof of Yau [44] and the algebraic proof of Miyaoka [43] for minimal varieties of general type \(\kappa(X) = \dim X\), we know that by using Kähler Ricci flow method we can get the following inequality

\[
(-1)^n c_1^n(X) \leq (-1)^n \frac{2(n+1)}{n} c_1^{n-2}(X)c_2(X)
\]

So we can extend this idea for the Bogomolov-Miyaoka-Yau inequality for minimal varieties with an intermediate Kodaira dimension \(0 < \kappa(X) < \dim X\).

So, we have the following inequality as soon as relative Kähler Ricci flow has \(C^\infty\)-solution:

\[
\left(\frac{2(n-m+1)}{n-m} c_2(T_{X/X_{can}}) - c_1^2(T_{X/X_{can}}) \right)[\Phi \omega]^{n-2} \geq 0
\]

where \(\omega\) is a relative Kähler form on the minimal projective variety \(X = X_{\min}\) and \(X_{can} = \text{Proj} \bigoplus_{m \geq 0} H^0(X, K_X^m)\) is the canonical model of \(X\) (here \(T_{X/X_{can}} = \text{Hom}(\Omega^1_{X/X_{can}}, O_X)\) mean relative tangent sheaf) via Iitaka fibration \(\pi : X \to X_{can}\).

Certainly we must require stability in order that this inequality holds true. The stability must be equivalent with the fact that the following flow \(C^\infty\)-converges in \(C^\infty\)

\[
\frac{\partial \omega(t)}{\partial t} = -\text{Ric}_{X/X_{can}}(\omega(t)) - \Phi \omega(t)
\]
Here $Ric_{X/X_{can}} = dd^c \log \Omega_{X/X_{can}}$ (where $\Omega_{X/X_{can}}$ is the relative volume form) means relative Ricci form and Φ is fiberwise constant function. Note that if such relative Kähler Ricci flow has solution then $K_{X/X_{can}}$ is psudo-effective. I think that the analytical minimal model program can prove this.

In fact, if we have relative Kähler-Einstein metric $Ric_{X/X_{can}} \omega = -\Phi \omega$, then Bogomolov-Miyaoka-Yau inequality for minimal varieties with intermediate Kodaira dimension $0 < \kappa(X) < \dim X$ holds true.

10. Canonical metric on foliations

In fact we can study the canonical metric on foliations on its canonical model of projective varieties. We have minimal model program on foliations developed by Michael McQuillan [49] and we can extend Song-Tian program on foliations. But in general study of canonical metric on foliations is more complicated. For example abundance conjecture is not true on foliations. We need to the analytical surgery by using Partial Kähler Ricci flow, or mixed scalar curvature introduced by Vladimir Rovenski and Vladimir Sharafutdinov which must be compatible with algebraic surgery (Minimal Model program on foliations). So when for the foliation \mathcal{F} of general type, we have $c_1(\mathcal{F}) < 0$ the right canonical metric can be as same as the Kähler-Einstein metric but instead Ricci curvature we must use Partial Ricci curvature and leafwise constant to design such canonical metric. The fact is that we need new techniques to get C^∞ solution and continuity method does not work!

11. Acknowledgements

I would like to thanks of my Ph.D. advisor, professor Gang Tian for proposing this project to me and invited me to visit him in department of Mathematics of Princeton university.

References

[16] Eleonora Di Nezza, Uniqueness and short time regularity of the weak Kähler-Ricci flow, arXiv:1411.7958
[26] Dennis Eriksson, Gerard Freixas i Montplet, Christophe Mourougane, Singularities of metrics on Hodge bundles and their topological invariants, arXiv:1611.03017

[33] Hassan Jolany, Canonical metric on moduli spaces of log Calabi-Yau varieties, https://hal.archives-ouvertes.fr/hal-01413746v4

[38] Hassan Jolany, Canonical metric on moduli spaces of log Calabi-Yau varieties, https://hal.archives-ouvertes.fr/hal-01413746v4

[49] Michael McQuillan, Canonical Models of Foliations, Pure and Applied Mathematics Quarterly Volume 4, Number 3 (Special Issue: In honor of Fedor Bogomolov, Part 2 of 2) 8771012, 2008

Lille 1 University, Lille, France
E-mail: hassan.jolany@math.univ-lille1.fr