A numerical approach to determine mutant invasion fitness and evolutionary singular strategies

Abstract : We propose a numerical approach to study the invasion fitness of a mutant and to determine evolutionary singular strategies in evolutionary structured models in which the competitive exclusion principle holds. Our approach is based on a dual representation, which consists of the modelling of the small size mutant population by a stochastic model and the computation of its corresponding deterministic model. The use of the deterministic model greatly facilitates the numerical determination of the feasibility of invasion as well as the convergence-stability of the evolutionary singular strategy. Our approach combines standard adaptive dynamics with the link between the mutant survival criterion in the stochastic model and the sign of the eigenvalue in the corresponding deterministic model. We present our method in the context of a mass-structured individual-based chemostat model. We exploit a previously derived mathematical relationship between stochastic and deterministic representations of the mutant population in the chemostat model to derive a general numerical method for analyzing the invasion fitness in the stochastic models. Our method can be applied to the broad class of evolutionary models for which a link between the stochastic and deterministic invasion fitnesses can be established.
Type de document :
Article dans une revue
Theoretical Population Biology, Elsevier, 2017, 115, pp.89-99. 〈10.1016/j.tpb.2017.05.001〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01413638
Contributeur : Coralie Fritsch <>
Soumis le : mardi 23 mai 2017 - 13:43:10
Dernière modification le : jeudi 7 février 2019 - 16:04:25
Document(s) archivé(s) le : vendredi 25 août 2017 - 00:40:50

Fichiers

manuscript.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Coralie Fritsch, Fabien Campillo, Otso Ovaskainen. A numerical approach to determine mutant invasion fitness and evolutionary singular strategies. Theoretical Population Biology, Elsevier, 2017, 115, pp.89-99. 〈10.1016/j.tpb.2017.05.001〉. 〈hal-01413638v2〉

Partager

Métriques

Consultations de la notice

556

Téléchargements de fichiers

181