L. O. Chua and A. Ushida, Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies, IEEE Transactions on Circuits and Systems, vol.28, issue.10, pp.953-971, 1981.
DOI : 10.1109/TCS.1981.1084921

S. L. Lau, Y. K. Cheung, and S. Y. Wu, Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems, Journal of Applied Mechanics, vol.50, issue.4a, pp.871-876, 1983.
DOI : 10.1115/1.3167160

C. Kaas-petersen, Computation of quasi-periodic solutions of forced dissipative systems, Journal of Computational Physics, vol.58, issue.3, pp.395-408, 1985.
DOI : 10.1016/0021-9991(85)90170-6

C. Kaas-petersen, Computation, continuation, and bifurcation of torus solutions for dissipative maps and ordinary differential equations, Physica 25D, pp.288-306, 1987.

S. Choi and S. T. Noah, Response and stability analysis of piecewise-linear oscillators under multi-forcing frequencies, Nonlinear Dynamics, vol.16, issue.4, pp.105-121, 1992.
DOI : 10.1007/BF00118988

Y. Kim, QUASI-PERIODIC RESPONSE AND STABILITY ANALYSIS FOR NON-LINEAR SYSTEMS: A GENERAL APPROACH, Journal of Sound and Vibration, vol.192, issue.4, pp.821-833, 1996.
DOI : 10.1006/jsvi.1996.0220

T. M. Cameron and J. H. Griffin, An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems, Journal of Applied Mechanics, vol.56, issue.1, pp.149-154, 1989.
DOI : 10.1115/1.3176036

URL : https://hal.archives-ouvertes.fr/hal-01333697

N. Coudeyras, S. Nacivet, and J. Sinou, Periodic and quasi-periodic solutions for multi-instabilities involved in brake squeal, Journal of Sound and Vibration, vol.328, issue.4-5, pp.520-540, 2009.
DOI : 10.1016/j.jsv.2009.08.017

URL : https://hal.archives-ouvertes.fr/hal-00425156

M. Guskov, J. Sinou, and F. Thouverez, Multi-dimensional harmonic balance applied to rotor dynamics, Mechanics Research Communications, vol.35, issue.8, pp.537-545, 2008.
DOI : 10.1016/j.mechrescom.2008.05.002

URL : https://hal.archives-ouvertes.fr/hal-00322891

L. Peletan, S. Baguet, M. Torkhani, and G. Jacquet-richardet, Quasi-periodic harmonic balance method for rubbing self-induced vibrations in rotor???stator dynamics, Nonlinear Dynamics, vol.30, issue.5, pp.2501-2515, 2014.
DOI : 10.1007/s11071-014-1606-8

URL : https://hal.archives-ouvertes.fr/hal-01061265

B. Rasmussen, Numerical Methods for the Continuation of Invariant Tori, 2003.

F. Schilder, H. M. Osinga, and W. Vogt, Continuation of Quasi-periodic Invariant Tori, SIAM Journal on Applied Dynamical Systems, vol.4, issue.3, pp.459-488, 2005.
DOI : 10.1137/040611240

F. Schilder, W. Vogt, S. Schreiber, and H. M. Osinga, Fourier methods for quasi-periodic oscillations, International Journal for Numerical Methods in Engineering, vol.18, issue.5, pp.629-671, 2006.
DOI : 10.1002/nme.1632

B. Cochelin and C. Vergez, A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration, vol.324, issue.1-2, pp.243-262, 2009.
DOI : 10.1016/j.jsv.2009.01.054

URL : https://hal.archives-ouvertes.fr/hal-00315288

L. Azrar, B. Cochelin, N. Damil, and M. Potier-ferry, An asymptotic-numerical method to compute the postbuckling behaviour of elastic plates and shells, International Journal for Numerical Methods in Engineering, vol.13, issue.8, pp.1251-1277, 1993.
DOI : 10.1002/nme.1620360802

B. Cochelin, N. Damil, and M. Potier-ferry, The Asymptotic Numerical Method : an efficient perturbation technique for nonlinear structural mechanics, Revue Européenne des Eléments Finis, pp.281-297, 1994.

N. Damil and M. Potier-ferry, A New method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures, International Journal of Engineering Science, vol.28, issue.9, pp.943-957, 1990.
DOI : 10.1016/0020-7225(90)90043-I

B. Cochelin and F. Pérignon, R??solution de petits syst??mes alg??briques par la MAN sous Matlab, Revue Europ??enne des ??l??ments Finis, vol.314, issue.1-2, pp.79-96, 2004.
DOI : 10.3166/reef.13.79-96

B. Krauskopf, H. M. Osinga, and J. Galan-vioque, Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems, 2007.
DOI : 10.1007/978-1-4020-6356-5

A. Lazarus and O. Thomas, A harmonic-based method for computing the stability of periodic solutions of dynamical systems, Comptes Rendus M??canique, vol.338, issue.9, pp.510-517, 2010.
DOI : 10.1016/j.crme.2010.07.020

URL : https://hal.archives-ouvertes.fr/hal-01452004

L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, vol.18, issue.1, pp.1-22, 1997.
DOI : 10.1137/S1064827594276424

URL : https://hal.archives-ouvertes.fr/hal-01333731

A. H. Nayfeh and B. Balachandran, Applied nonlinear dynamics : analytical, computational and experimental methods, 2008.
DOI : 10.1002/9783527617548