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Abstract—Modern embedded processors have gone through
multiple internal optimization to speed-up the average execution
time e.g., caches, pipelines, branch prediction. Besides, internal
communication mechanisms and shared resources like caches or
buses have a significant impact on Worst-Case Execution Times
(WCETs). Having an accurate estimate of a WCET is now a
challenge. Probabilistic approaches provide a viable alternative to
single WCET estimation. They consider WCET as a probabilistic
distribution associated to uncertainty or risk.

In this paper, we present synthetic benchmarks and asso-
ciated analysis for several LEON3 configurations on FPGA
targets. Benchmarking exposes key parameters to execution
time variability allowing for accurate probabilistic modeling of
system dynamics. We analyze the impact of architecture-level
configurations on average and worst-case behaviors.

Index Terms—Performance Analysis, Embedded Systems,
Benchmarking, Processor Synthesis, FPGA, LEON, Probabilistic
Worst-Case Execution Time

I. INTRODUCTION

Timing constraints contribute defining the correctness of
most of embedded systems. For example, the processor that
manages the injection of your engine or the electronic flight
controls of an aircraft have to provide results within well-
defined time windows. Such systems are called real-time sys-
tems. In particular, hard real-time systems if timing constraints
misses are not tolerated and soft-real-time systems if some
timing constraints misses can be tolerated.

Recent improvements and optimization of processors induce
huge complexity onto real-time systems. We are now facing
multi-core architectures with internal communications, cache
memories, interruptions, multi-functionalities, etc. Each of
which has to be properly analyzed in order to guarantee
both system correctness and predictability. Classical single
value Worst-Case Execution Time (WCET), based on mod-
eling internal architectures behavior, may have reached its
limit. Indeed, complexity in micro-architecture and/or costs in
modeling system interactions, may lead to a large pessimism
for the worst-case scenarios.

Probabilistic approaches now emerge as alternatives to
single value WCETs. The probabilistic real-time modeling
assumes the task WCET as worst-case distribution, the prob-
abilistic WCET (pWCET), able to upper-bound any possible
task execution behavior. The pWCETs allow accounting for
the probability of occurrence of worst-case conditions which
could be vanishingly small [1]. Hence, pWCETs may lead to
important reduction of computing capability over-provisioning
since they cope better with tasks actual behavior.

Contributions : In this paper we investigate the impacts of
CPU architecture elements on tasks execution behaviors.
For that purpose we synthesize LEON3 processors with dif-
ferent architectures on two Xilinx FPGAs. We modify some
core configuration parameters like cache policy, the branch
prediction and the floating-point unit to determine their im-
pact. We run some benchmarks selected from the Mälardalen
WCET project [2] on the synthesized architectures. Finally,
we analyze the results with the use of a measurement-based
probabilistic timing analysis tool called DIAGXTRM [3], to
perform average and worst-case performance analysis with
probabilistic models. We will publish a data pack with all the
models for the final version of the paper, at the following URL:
https:// forge.onera.fr/projects/ syntheticbench

Organization of the paper: In Section II and Section III we
present the architectural parameters applied for synthesizing
LEON3 processors. Section IV describes the benchmarks and
the task execution conditions applied. In Section V we intro-
duce the DIAGXTRM framework applied for computing the
pWCETs and for timing performance analysis. In Section VI
we present the results obtained in terms of both average
performance and worst-case probabilistic models. Section VII
is for conclusions and future work.

A. Related Work

Performance analysis of multi-core platforms is a quite
established research field, [4–5]. The approaches proposed
so far refer to measurements for evaluating the impact of
architectural elements on system average performance, [6–7].

The probabilistic timing analysis estimates pWCETs and
can be either static-based or measurements-based. Static Prob-
abilistic Timing Analysis (SPTA) [8–9] requires an exact
model of the system in order to infer the probability law, thus
computing the pWCETs. Measurements-Based Probabilistic
Timing Analysis (MBPTA) relies on measurements and on
the Extreme Value Theory (EVT) in order to provide pWCET
distributions, [1–3–10]. The MBPTA does not require models
of the system, but only measurements of its behavior.

II. MICROPROCESSOR DESIGN SPACE

Recent processors architectures rely on multiple building
blocks. In the following, we consider those with an impact on
the pWCET and present their key parameters.
• Cache memories have a direct impact on performance

through instruction/data prefetching. If there is no cache, the
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system is forced to load each instruction from the memory
and to do multiple loads and stores for each variable directly.
The consequent saturation of the memory buses will have an
impact on the instruction latencies.
• Cache replacement policies control how cache misses are

handled, and how new pages are loaded. Different policies
may either speed up or slow down a software.
• Branch prediction controls how instructions are prefetched

in the pipeline. Such policies usually rely on heuristics.
• Math co-processor enables faster mathematical operations

compared to software-emulated ones.
For this study, we implement LEON3 processors, which

general architecture is presented in Figure 1, [11]. The LEON3
is a 32-bit SPARC V8 processor, [12].

Fig. 1. LEON3 Architectural Blocks.

We synthesize each LEON3 platform configuration us-
ing the GAISLER GRLIB VHDL IP LIBRARY written in
VHDL, [13], for the GAISLER GR-XC6S-LX75 and the
XILINX ML605, which are two boards with XILINX FPGAs,
DDR RAM, Flash, Ethernet, USB, UART, etc. The two
FPGAs are flashed with various configurations, according to
the four key parameters considered. The architecture and its
configuration space are presented in the next subsections.

A. Architecture

The architecture we consider is based on two LEON3MP
processors at 50MHz. We make the following design choices.

The integer unit is configured with SPARC V8 multiply and
divide instructions. Emulated floating-point operations also
benefit from this option. The integer multiplier is based on
a 32x32 pipelined multiplier with a two-cycles latency.

For the cache system, LEON3 processors feature two sep-
arate instruction and data caches (Harvard architecture) with
snooping and locking. The Instruction Cache (IC) is imple-
mented as a multi-way cache with 4 ways, 4 kbytes/way and 32
bytes/line. Regarding the Data Cache (DC), it is implemented
with 4 ways, 4 kbytes/way and 16 bytes/line. Four cache
replacement algorithms are proposed: random, direct, Least-
Recently-Replaced (LRR) and Least-Recently-Used (LRU).
Local instruction and data RAM are disabled. We also choose
to disable the Memory Management Unit (MMU) by default.

We implement a hardware module called LEON3 STATIS-
TICAL UNIT (L3STAT). Eight counters are enabled, four per
processor: the execution time counter (counted in CPU ticks
at a frequency of 50MHz), the data and instruction cache miss
counters and the branch prediction miss counter. In this work
we make use of the execution time counter for evaluating each
each configuration and its impact on the task executions.

1) Cache Memory: Cache memories are key elements of
embedded systems since, depending on the state of the cache,
task execution time could change. Both the worst-case timing
analysis and the accuracy of the pWCET estimates would be
impacted by the cache. We implement two cases: with caches
(caches) and without caches (nocaches). In the first case the
cache hierarchy is fully active, while in the second we disabled
the twos caches for each processor. We expect a penalty on
the execution time from the absence of cache.

2) Cache Replacement Policies: Cache replacement poli-
cies impact system performance i.e. task execution time. The
way cache lines are replaced would affect next accesses; thus
the latency of retrieving the information in cache changes.
The replacement policies are critical to system variability
especially with benchmarks which saturate the cache. The dif-
ferent replacement algorithms implemented are: the Random
algorithm, which selects an item randomly and evicts it; the
Direct algorithm, where the address of the new item is directly
used to calculate its location in the cache; the LRR policy: it
evicts the item least recently replaced; the LRU policy which
evicts the item least recently accessed.

3) Branch Prediction (BP): The LEON3 is an advanced 7-
stage pipelined processor, which implies the use of an efficient
BP. According to the GRLIB Configuration Help, the BP
option would improve performance with up to 20%, depending
on application. In order to verify that gain of performance and
measure the impact of this option on the worst-case behavior,
we run the benchmarks on a platform with branch prediction
(BP) and without branch prediction (noBP) for comparison.

4) Floating-Point Unit (FPU): The FPU is a high-
performance, fully pipelined IEEE-754 FPU. The two FPUs
provided are the GAISLER RESEARCH’S GRFPU and
GRFPU-LITE. The GRFPU is a high-performance pipelined
FPU with high area requirements. GRFPU-LITE provides a
balanced option with high acceleration of floating-point com-
putations combined with lower area requirements compared to
GRFPU, [14]. They support all SPARC FPU instructions. If
the FPU is disabled, a simulated, software FPU can be used.
The option without FPU is identified noFPU, while that with
FPU are identified as GRFPU or GRFPU-lite.

B. Architectural Configurations

A platform configuration is made of a set of architectural
elements i.e. caches, cache replacement policies, BP and FPU.

We define the reference configuration as Reference =
(caches, Random (IC), Random (DC), BP, noFPU). In the
following, we make use of Reference for indicating also
the choice on the element composing the reference configu-
ration. For example, when talking about replacement policies,



by referring to Reference we mean the random replace-
ment policy. All the other configurations are compared with
Reference.

Other configurations considered are:
Direct = (caches, Direct (IC), Direct (DC), BP, noFPU),
LRR = (caches, LRR (IC), LRR (DC), BP, noFPU),
LRU = (caches, LRU (IC), LRU (DC), BP, noFPU),
noBP = (caches, Random (IC), Random (DC), noBP, noFPU),
nocaches = (nocaches, N/A, N/A, BP, noFPU),
GRFPU = (caches, Random (IC), Random (DC), BP, GRFPU),
GRFPU-lite = (caches, Random (IC), Random (DC), BP,
GRFPU-lite)

The configuration of a typical System on a Chip (SoC)
architecture like the GAISLER GR712RC is GR712RC =
(caches, LRU (IC), LRU (DC), BP, GRFPU), [15]. We will
consider each choice of this architecture.

III. MICROPROCESSOR SYNTHESIS

The first step of this work is to synthesize the different
architectural configurations presented in Section II. Figure 2
shows the entire methodology with the steps considered,
respectively for synthesizing, benchmarking and analyzing.
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We use the GR-XC6S board for the architectural con-
figurations Reference, Direct, LRR, LRU, noBP and
nocaches; we use the ML605 board instead for the con-
figurations GRFPU and GRFPU-lite to overcome limits in
synthetizing FPUs. The GR-XC6S is a SPARTAN-6 FPGA,
the ML605 board feature a Virtex-6 FPGA [16–17].

Figure 4 shows the occupations of the FPGAs in terms
of slice registers (mostly Flip Flops), slice Look-Up Tables
(LUTs, mostly used as logic) and the global numbers of
occupied slices. The Table I presents detailed values.

We compare the different architectures related to
Reference; as a reminder, Reference is the architecture
with both data and instruction caches using random policy,
without MMU, with branch prediction and without FPU.
• Removing the data and instruction caches reduce slices

by 6%, but deteriorate run-time performances, see Section VI.
• We can see that the architectures using the Direct or the

LRR replacement algorithm uses almost the same slices as the
Random policy. However, the LRU policy occupies 15% more

space. This area overhead is due to the addition of 5 flip-flops
per line (for a 4-way LRU) to store the accesses.
• Disabling the branch prediction only saves 3% of the

number of occupied slices, and reduces the performance.
• Regarding the implementation of the FPU on the ML605

board, we can see that the addition of the GRFPU uses almost
twice the slices required without FPU. The GRFPU-LITE is,
on the other hand, less demanding in terms of occupied slices.
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Fig. 4. Device utilization summary.

TABLE I
DEVICE UTILIZATION SUMMARY.

GR-XC6S Occupied slices ML605 Occupied slices
architecture out of 11662 architecture out of 37680
Reference 5219 ⇒ 44% Reference 10667 ⇒ 28%

Direct 4957 ⇒ 42% GRFPU 20198 ⇒ 53%
LRR 4791 ⇒ 41% GRFPU-lite 13724 ⇒ 36%
LRU 6895 ⇒ 59%
noBP 4868 ⇒ 41%

nocaches 4446 ⇒ 38%

IV. EMBEDDED SYSTEM BENCHMARKING

The main objective of the benchmarking is to reveal the
impact of each architectural change on both average and
worst-case execution time of tasks. We chose the Mälardalen
University WCET project benchmarks to implement tasks and
to push the processor to its limits.
• cnt and matmult are used to fill entirely the data cache

with a lot of matrix operations. cnt counts non-negative
numbers in a matrix with a parametrized size of 1000×1000.
matmult performs a matrix multiplication. As for cnt, the size
is parameterizable and we used 200 × 200 matrix. Those
benchmarks are applied to measure the performance of the
cache replacement policy and the impact of the lack of caches
if they were removed.
• nsichneu is similar to the first two benchmarks, but this

time for the instruction cache. It uses a large amounts of if-
statements (more than 250) to simulate an extended Petri Net.
The benchmark is provided in three different versions, the
nsichneu inner is considered.
• jfdctint is a typical application used in embedded real-time

systems. By typical application we mean an application that
does not saturate neither the data cache nor the instruction
cache. jfdctint performs a discrete-cosine transformation on



a 8×8 pixel block. The code is made of long calculation
sequences (i.e., long basic blocks) and single-nested loops.
• lms is used for FPU performances comparison. The

benchmark realizes a Least Mean Squares (LMS) adaptive
signal enhancement on a sine wave with added white noise.

All benchmarks are single path tasks, and so no functional
variability (input vector) is considered. Also there is no need
to look for the worst case path.

We use GRMON to run all benchmarks, [18]. This monitor
allows a non-intrusive debugging of LEON3 systems. It also
performs communication with the modules implemented in
the architecture, like the L3STAT unit. Finally, it is used to
download and run applications on FPGAs.

A. Execution Conditions

The benchmarks are executed on all architectural configura-
tions, with medium optimization -O2 and SPARC V8 multiply
- divide instructions. We investigate two execution conditions:

The first execution condition is to run the task alone, without
any other interaction. This execution condition is the baseline,
as it is exempt of any interference tasks by construction. All
benchmarks were compiled for this execution condition, and
the flag -msoft-float was used to emulate floating-point
operations when no FPU was present. This execution condition
is named ELF after its compiler name.

The second execution condition consider using the RTEMS
Real-Time Operating System (RTOS), [19]. This execution
condition is more representative of an actual real-time em-
bedded system. It is compiled in Asymmetric Multi Processor
mode, to exercise perturbations between cores. This execution
condition is identified as RTEMS.

The RTEMS Multi-Processor application is running in the
pre-emptive mode on two cores. In the first core, two tasks
are launched: the benchmarking task with priority 2 and a
second interference task, doing infinite loops, with priority
1 (higher priority). The second core contains another task
made of an infinite loop. This minimal intra- and inter-core
interference is used to determine the effect of interactions
and is representative of a not heavily loaded system. The
methodology could apply to any kind of interference, and it
will be considered in future work.

B. Initial State Assumptions

The benchmarking execution diagram is presented in Fig-
ure 3. The trace of measurements is made of 5000 consecutive
executions of the same benchmark. There exists a trace per
benchmark, per configuration and per execution condition.

We have to ensure that the processor is in the same initial
state at each benchmark execution. Before each run, the
hardware counters from the L3STAT unit are reset, the caches
are flushed and the pipeline is filled with nop() instructions.
Then, the counters are activated, the benchmark is executed
and finally the eight countersare disabled and printed for that
execution. The resulting trace T is a matrix of size 8× 5000
(eight counters, measured for each of the 5000 executions).
The execution time is measured in CPU ticks and the trace

duration spans from 4 minutes to 30 hours, depending on the
benchmark to run as well as the architectural configuration.
This allows including multiple systemic effects in the traces
which could happen late in the executions.

V. PROBABILISTIC PERFORMANCE EVALUATION

The traces obtained from the benchmarking traces are
applied to estimate the pWCETs, Figure 2.

Measurements-Based Probabilistic Time Analysis (MBPTA)
allows defining tasks execution behaviors from runtime mea-
surements. We use the MBPTA approach called DIAGXTRM to
evaluate the impacts of architectural elements on both average
and worst-case behavior of tasks. Only the execution time
counter from the L3STAT traces is used.

The Extreme Value Theory (EVT) is the statistical tool
composing any MBPTA that produces continuous distributions
which are safe estimation of the task worst-case behavior1: the
pWCETs. For this specific paper, DIAGXTRM applies the EVT
in its peak over threshold version identifying the pWCETs
from the Generalized Pareto Distribution (GPD) family. The
distribution shape parameter ξ identifies the distribution that
better cope with the measurements within this family. In
particular, ξ < 0 is for a Weibull distribution, ξ = 0 is for
a Gumbel distribution and ξ > 0 is for a Frechet distribution.

Hence, the pWCET is a worst-case thresholds with a prob-
ability associated to the risk to go past this value.

The EVT, thus the MBPTA, is applicable if the measure-
ments are 1. stationary, 2. independent or 3. extremal indepen-
dent and 4. they match a specified theoretical model, Figure 5.
These situations correspond to four hypothesis that can be
asserted from measurements. DIAGXTRM verifies all those
hypotheses with the corresponding statistical tests. The confi-
dence on the hypotheses validation is related to the quality of
the pWCET model produced, named reliability of the pWCET.
Only if all the tests succeed, the pWCET obtained is reliable
and safe. To note that the independence and the extremal
independence are partially overlapping hypotheses; if one is
verified, there is no need to verify the other, Figure 5.

The robust statistics [3–20] is applied by DIAGXTRM for
quantifying the uncertainties from statistical tests. It defines
the confidence cl on the hypothesis verified.
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Fig. 5. Decision diagram of DIAGXTRM with tests and action applied.

1By safe estimation we mean a pWCET which is larger than or equal to
any possible task execution time, [8].



a) Stationarity Hypothesis: The analysis of trace can
show the relationship between consecutive measurements and
evaluate the impact that previous (in time) measurements on
future ones, i.e. the independence between measurements. The
EVT applicability relates to stationary traces. An established
test for verifying this hypothesis is the Kwiatowski Phillips
Schmidt Shin test, [21]. The confidence associated is cl1.

b) Independence Hypothesis: The statistical dependence
is checked through the existence of correlated patterns of
measurements, using the Brock Dechert Scheinkman statistical
test [22]. The confidence on the independence is cl2.1.

c) Extremal Independence Hypothesis: When overall in-
dependence does not hold, another way is to look for the
independence of extreme measurements2. The extremal index
θ ∈ [0, 1] is an indicator of dependence degree between
extreme measurements, [23]. We denote this parameter cl2.2.

d) Matching Hypothesis: The matching test is based
on a quadratic statistic which measures the square distance
between the pWCET model estimated and an hypothetical
exact pWCET model following the GPD. The Cramer Von
Mises criterion is applied for verifying the degree of matching
between the two distributions, leading to parameter cl3.

Finally, DIAGXTRM computes pWCET parameters such as
the threshold u and the pWCET distribution shape ξ that
guarantee the best pWCET model among the possible EVT
pWCETs, see [3] for details.

We stress the fact that with MBPTA approaches, the result-
ing pWCET model represents the worst-case for the execution
conditions accounted for by the measurements. It is not an
absolute worst-case. Thus safety, confidence and reliability
relates to the specific measurements considered.

VI. TRACE ANALYSIS

Given a trace of measurements, DIAGXTRM profiles both
the average and the worst-case behavior of tasks. We use that
tool for each architectural configuration and present the results
in the following subsections.

A. Average Performance

At first we focus on the average execution time to compare
the architectural configuration effects.

1) Execution Time Variability: Figure 6 illustrate the ex-
ecution time variability of any system. More precisely, the
trace is the result of 5000 executions of the cnt benchmark
on the reference architecture without any RTOS. That proves
that even when an application is run in a standalone mode,
variability is present due to systemic and functional changes
happening at runtime.

2) Impact of the Cache Replacement Policy: We analyze
the traces of the two benchmarks matmult and nsichneu which
saturate respectively the data and the instruction caches.

Figure 7a presents the box plots of execution times for the
matmult benchmark. We can see that in order to improve
the average performance of the data cache, the best cache

2By extremal measurements we allude to observations relatively far from
the average values as well as observations well separated in time.

replacement policy is the LRU algorithm. Then comes the
random, the direct and finally the LRR algorithm.

As a matter of fact, programs usually compute results thanks
to a restricted set of variables. It is then natural that the LRU
algorithm is the best choice for the data cache replacement
policy. This result is consistent with the fact that multiple
SoC architectures implement the LRU algorithm for their data
cache replacement policy, like the GR712RC configuration.

Figure 7b illustrates the execution times as box plots for the
benchmark nsichneu. We can see that the LRU algorithm is
not the best replacement policy for the instruction cache. The
random algorithm is the first, then the direct, the LRU and
finally the worst is the LRR.

For instruction cache the random replacement policy has
better performance on average than the other policies, [9].
Unlike data variables accesses, sequences of instructions of
any program are not really regular. That explains why the
random algorithm is the best instruction cache replacement
policy. However, the choice of another algorithm is not critical
as the drawback induced on the execution time is not sig-
nificant, comparatively to the bigger differences of execution
times related to the data cache replacement policies, Figure 7a
(to note that the scales are not the same in the two figures).
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3) Disabling Key Architectural Elements: In order to evalu-
ate the gain of performance provided by the branch prediction
or the cache memories, we disabled them from reference
architecture. The Table II summarizes the execution time dis-
tributions and the performance drawbacks for different bench-
marks. We chose matmult and nsichneu because they overuse
the cache memories when present. Thus, those benchmarks
are prone to reveal the catastrophic effects of disabling the
instruction and the data caches. The third benchmark analyzed
is jfdctint which is applied for investigating the impact on the
execution time for an application that does not saturate caches.

TABLE II
EXECUTION TIME DISTRIBUTIONS AND PERFORMANCE DRAWBACKS FOR

DIFFERENT BENCHMARKS AND ARCHITECTURES.

(a) Benchmark matmult on the GR-XC6S without RTEMS.

GR-XC6S Execution Time Distribution Perf.
architecture Min Mean Max drawback
Reference 139147148 139292184 139447778 –

noBP 154722839 154869205 155006999 11.19%
nocaches 1095326983 1095468302 1095562181 687.17%

(b) Benchmark nsichneu on the GR-XC6S without RTEMS.

GR-XC6S Execution Time Distribution Perf.
architecture Min Mean Max drawback
Reference 10828017 12624121 14445302 –

noBP 11597909 13516958 15485162 7.20%
nocaches 94652781 110600474 126897285 778.47%

(c) Benchmark jfdctint on the GR-XC6S without RTEMS.

GR-XC6S Execution Time Distribution Perf.
architecture Min Mean Max drawback
Reference 2468750 2468762 2468788 –

noBP 2546749 2546760 2546791 3.16%
nocaches 16326625 16328010 16329192 561.43%

As described in Section II, the branch prediction deteriorates
performances up to 20% if disabled. A maximal drawback of
11.19% is measured, Table IIa.

The cache memories impact on the execution time distribu-
tion is huge. For the same application, a factor of 8.78 on the
execution time can be observed (Table IIb), where a factor of at
least 2-3 was expected according to the GRLIB Configuration
Help. For a typical application, the performance drawbacks are
not negligible, Table IIc.

The results demonstrate that branch prediction and cache
memories are key elements for embedded systems. Although
they clearly improve average performances, they increase
execution time variability. The system predictability or ana-
lyzability are affected by those elements.

4) Impact of The FPU Architecture: We use the benchmark
lms that computes a lot of floating-point operations. Figure 8
presents the first 1000 executions of the resulting traces.
We note that there are different execution modes, each with
some variability, depending on the FPU architecture. The
only element which is not reset between each benchmark
execution is the FPU branch prediction, as the integer unit
branch prediction and the cache memories are flushed each
time. The multiple modes are then probably due to a non-zero
prediction distance as detailed in [24].
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(a) Reference architecture with software FPU (emulated).
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(b) Architecture with hardware FPU: GRFPU.
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(c) Architecture with hardware FPU: GRFPU-LITE.
Fig. 8. Time traces of execution times for different Floating-Point
architectures (benchmark lms on the ML605 without RTEMS).

In the remaining 4000 measurements only one execution
mode exists, revealing a convergence to a mode after some
executions. Its mean value is used for comparison between the
3 FPUs. The emulated FPU has a mean level of 17′826′717
CPU ticks, the GRFPU converges around 522′888 CPU ticks
and the GRFPU-LITE at 923′719 CPU ticks. This corresponds
to improvements of respectively 33× and 18× faster.

The advantages of using a hardware FPU instead of an
emulated FPU for floating-point applications are comforted.
The GRFPU is up to 34 times faster than a software FPU. The
GRFPU-LITE is a good compromise between speed improve-
ment (19 times faster) and occupied slices (see Section III).

A side comment regards the capability that DIAGXTRM has
of modeling architectural elements without the need for an
exact element model. For example, with lms and the FPU
architecture, although not knowing the internal behavior of the
FPUs applied, DIAGXTRM is able to characterize the different
modes just from measurements.

Table III summarizes the average execution time of each
architectural change. This is done for the five benchmarks of
interest and for each execution condition.

Two additional configurations were synthesized for each
FPGA: theyare identified as Best. For the GR-XC6S it is
Best1 = (caches, Random (IC), LRU (DC), BP, noFPU)
and for the ML605 it is Best2 = (caches, Random (IC),
LRU (DC), BP, GRFPU). They are the best configuration since
they collect the choices which improves the most the average
performances, respectively for each FPGA architectures.

On a global scale, the Best configurations improve the
performance more than they deteriorate it, Table III. The
architectures without BP or without caches are clearly the
worst. The LRU algorithm is not always the faster, as we can
see with the nsichneu benchmark, but its choice rather than
the random replacement policy for the data cache is profitable.
As we can see, Best configurations allows an additional gain
of 1.01% on the GR-XC6S and of 8.36% on the ML605



TABLE III
MEAN EXECUTION TIME IN THOUSANDS OF CPU TICKS OF EACH BENCHMARK FOR DIFFERENT ARCHITECTURAL CONFIGURATIONS.

Embedded system GR-XC6S Architectures ML605 Architectures
benchmarking Cache Replacement Policies Key Elements Best FPU Best

Env. Bench. Reference Direct LRR LRU noBP nocaches Best1 Reference GRFPU GRFPU-lite Best2

ELF

cnt 77.082 77.082 77.082 77.082 81.132 436.601 77.082 77.276 77.276 77.276 77.276
matmult 139.292 142.168 149.393 132.077 154.869 1095.468 132.077 129.721 129.721 129.721 129.721
nsichneu 12.624 18.337 29.122 21.806 13.517 110.600 12.624 21.638 21.791 21.785 12.627
jfdctint 2.469 2.469 2.469 2.469 2.547 16.328 2.469 2.501 2.485 2.485 2.501

lms 17.738 17.737 18.312 17.737 19.108 178.854 17.738 17.827 0.523 0.924 0.524

RTEMS
jfdctint 2.496 2.498 2.503 2.495 2.575 18.268 2.496 2.530 2.532 2.532 2.532

lms 17.980 18.032 18.304 17.977 19.387 207.048 17.979 18.078 0.535 0.939 0.535
Global time scores3 – +8.32% +24.58% +11.67% +6.62% +663.63% -1.01% – -19.35% -18.91% -27.71%

in comparison with the second best architectures, respectively
Reference and GRFPU.

Finally, the effect of the RTOS can be observed: the mean
execution times undergo a penalty of 2.52% on average with
RTEMS as compared to standalone ELF.

B. Worst-Case Performance

This section focuses on the worst-case performance and the
model used for estimating the pWCETs. The methodology
applied as well as the quality of the pWCET models (reli-
ability and hypothesis confidence) are detailed. Two cases are
investigated: the impact of different cache replacement policies
and the impact of the RTOS on worst-case behaviors.
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Fig. 9. Measurements and model for pWCET estimation
(benchmark matmult on the GR-XC6S without RTEMS).

1) Probabilistic Distribution Fitting: Figure 9 shows the
measurements and the pWCET derived from the EVT. The
inverse cumulative distributions are represented. u is the
threshold parameter that DIAGXTRM computes for obtaining
the best pWCET model; k is the number of measurements
above the threshold selected. We see how the pWCET model
is able to perfectly cope with the input measurements and then
safely infers the rare events (risk probability ≤ 10−9).

2) Quality of the Probabilistic WCET Model: As de-
scribed in Section V, the reliability of the pWCET model
is based on the confidence levels of the four hypotheses
{cl1, cl2,1, cl2,2, cl3}. Each hypothesis is scored out of 4.0,
and a minimum of 1.0/4.0 is required in order to apply the
method. Hypotheses cl2.1 and cl2.2 are covering each other,
so that a score of 1.0/4.0 in one of the two is sufficient. The
spider net in Figure 10 represents the reliability of the pWCET
model from these confidence levels.

3For each benchmark, a score is determined as executionTime
max(executionTimes)

.
Then, the sum of the scores are compared relatively to those of the
Reference configurations.

Hence, all the assumptions are satisfied, the model is re-
liable. Stationarity, independence, extremal independence and
matching are verified with almost the maximal confidence.
The EVT is applicable with realistic architectures as there is
enough variability from the measurements.

cl1

cl2.1

cl2.2

cl3

xc6s.elf.Reference
xc6s.elf.Direct
xc6s.elf.LRR
xc6s.elf.LRU

(a) Different cache replacement
policies (bench. matmult on the
GR-XC6S without RTEMS).

cl1

cl2.1

cl2.2

cl3

ml605.elf.GRFPU
ml605.rtems.GRFPU

(b) Impact of the RTOS: without
and with RTEMS (benchmark
lms on the ML605).

Fig. 10. Reliability of the pWCET estimations
(scores out of 4.0 for each hypothesis).

3) Comparisons of Worst-Case Behaviors: From the
pWCET distributions we can extract the WCET thresholds
with a 10−9 risk probability i.e. confidence. This allows us
to identify the impact of each architectural change on the
worst-case behaviors with single values. Table IV indicates
the pWCET distribution shape parameter ξ for each pWCET
model as well as the theoretical estimations i.e. the WCET
thresholds at 10−9. DIAGXTRM automatically selects ξ to best
fit the input measurements. As it can be seen, the measure-
ments have small variance hence they are better approximated
with a Weibull GPD distribution, ξ < 0.

The accuracy of the pWCET is: accuracy
def
=

Theoretical estimation−Max measured
Max measured and defines how close the

pWCET (Theoretical estimation) is to the maximum
measured execution time (Max measured). As the models
are all Weibull distributions, thus bounded to the right,
they are quite close to the maximum measured values,
Table IV. The small accuracy indicates that the measured
values embed already the worst-case conditions. Thus, the
pWCET as Weibull distribution is able to perfectly cope with
the measurements and the task average behavior. The case
with accuracy equal to 1.32E-01, Table IV ELF, indicates
that the measurements have large variability. This means that
the worst-case conditions could have a significant impact on
the task execution times. The resulting Weibull, in order to
account for that and foreseen the worst-cases, has to differ



more from the measurements. Nonetheless, the pWCET is
equally reliable due to the maximum confidences achieved.

The impact of the cache replacement policy on the worst-
case behavior is presented in Table IVa. The results are
consistent with those presented in Section VI-A2.

The benchmark lms was used to characterize the impact
of the RTOS. We noted that the behavior of the FPU is not
stable in the first 1000 runs of the benchmark, thus we use the
last 4000 iterations to determine the pWCET distribution (i.e.
achieve the hypotheses scores presented before in Figure 10b).
The Table IVb gives the results. They confirm that the use of
a RTOS like RTEMS induces a small penalty of 2.85% on the
task performance: minimal interference were added and then
accounted by a more pessimistic pWCET.

TABLE IV
PWCET DISTRIBUTION PARAMETERS AND ESTIMATIONS FOR DIFFERENT

BENCHMARKS AND ARCHITECTURES

(a) Impact of the cache replacement policy
(benchmark matmult on the GR-XC6S without RTEMS).

GR-XC6S Distribution DIAGXTRM results
architecture shape ξ Theoretical Measured Accuracy
Reference -0.249 139447252.58 139433822 9.63E-03

Direct -0.219 142170799.12 142170390 2.88E-04
LRR -0.095 149397501.05 149396595 6.06E-04
LRU -0.317 132076829.57 132076819 8.00E-06

(b) Impact of the RTOS (benchmark lms on the ML605).

ML605 Distribution DIAGXTRM results
with GRFPU shape ξ Theoretical Measured Accuracy

ELF -0.149 527244.18 526547 1.32E-01
RTEMS -0.596 542279.08 542228 9.42E-03

VII. CONCLUSION AND FUTURE WORK

In this work, we review i) configuration space of LEON
processors on FPGA and ii) benchmarking LEON3 proces-
sors elements. Some architectural choices have been made,
described and then synthesized on two FPGA platforms. Tasks
benchmarks have been selected for their ability of revealing
the impact of each architectural configuration on average and
worst-case behaviors. Some execution conditions have been
chosen in order to expose key parameters in execution time
variability in both standalone and RTOS environments.

The results verify that time execution variability is present
in any embedded processor. Average performance analyses
show that the best data cache replacement policy is the LRU
algorithm, while the random algorithm is the best choice for
the instruction cache. The results confirm that cache memories,
branch predictions and high-performance math co-processor
are key elements of modern processors. Both contribute in
improving average performance at the cost of increased vari-
ability in the system. We highlight configurations that are best
compromise: they improve performance in almost every case,
and provide guidelines for predictable embedded systems.

Probabilistic models have been estimated in order to see the
impact of different cache replacement policies and the impact
of the RTOS on the worst-case task behaviors. We validated
the reliability and the accuracy of the resulting pWCETs.

Our approach could be applied with other benchmarks
or other architectural configurations. Future work will study

interference among tasks in RTOS, and evaluate the impact of
scheduler or resource sharing at software and hardware levels
(cache, MMU, etc.). This will improve our understanding of
modern processors so as to guarantee time constraints.
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