How Xer-exploiting mobile elements overcome cellular control - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Proceedings of the National Academy of Sciences of the United States of America Année : 2016

How Xer-exploiting mobile elements overcome cellular control

Résumé

Most strains of Neisseria gonorrheae (Ng), the causative agent of the sexually transmitted disease gonorrheae, and a few strains of Neisseria meningitidis (Nm), which is responsible for a large number of meningitides, harbor a 57-kb horizontally acquired genetic element, the gonococcal genomic island (GGI) (1⇓–3). Certain versions of the GGI are associated with disseminated gonococcal infection (1, 4). In addition, the GGI encodes numerous homologs of type IV secretion system genes, which are necessary for DNA secretion and facilitate natural transformation of the Neisseria (1, 2, 4). GGI are found integrated at the chromosomal dimer resolution site of their host chromosome, dif, and are flanked by a partial repeat of it, difGGI (Fig. 1A) (1, 5). The dif site is the target of two highly conserved chromosomally encoded tyrosine recombinases, XerC and XerD, which normally serve to resolve dimers of circular chromosomes through the addition of a crossover between directly repeated dif sites (6). This reaction raises questions on how GGI could be stably maintained (5). The results presented by Fournes et al. (7) in PNAS shed a new light on this apparent paradox.
Fichier principal
Vignette du fichier
CMFXB.pdf (675.33 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01412338 , version 1 (08-12-2016)

Licence

Domaine public

Identifiants

Citer

Caroline Midonet, François-Xavier Barre. How Xer-exploiting mobile elements overcome cellular control. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (30), pp.8343-8345. ⟨10.1073/pnas.1608539113⟩. ⟨hal-01412338⟩
76 Consultations
122 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More