Algorithmic Height Compression of Unordered Trees
Farah Ben-Naoum, Christophe Godin

To cite this version:

HAL Id: hal-01412215
https://hal.archives-ouvertes.fr/hal-01412215
Submitted on 8 Dec 2016
Algorithmic Height Compression of Unordered Trees

Farah Ben-Naouma, Christophe Godinb

aEvolutionary Engineering and Distributed Information Systems Laboratory, Department of Computer Science, Djillali Liabes University of Sidi Bel Abbes, Algeria, farahbennaoum@yahoo.fr

bINRIA Sophia-Antipolis Mediterranee, Virtual Plants project-team, UMR AGAP, Montpellier, France, christophe.godin@inria.fr.

Abstract

By nature, tree structures frequently present similarities between their subparts. Making use of this redundancy, different types of tree compression techniques have been designed in the literature to reduce the complexity of tree structures. A popular and efficient way to compress a tree consists of merging its isomorphic subtrees, which produces a directed acyclic graph (\textit{DAG}) equivalent to the original tree. An important property of this method is that the compressed structure (i.e. the \textit{DAG}), has the same height as the original tree, thus limiting partially the possibility of compression. In this paper we address the problem of further compressing this \textit{DAG} in height. The difficulty is that compression must be carried out on substructures that are not exactly isomorphic as they are strictly nested within each-other. We thus introduced a notion of quasi-isomorphism between subtrees, that makes it possible to define similar patterns along any given path in a tree. We then proposed an algorithm to detect these patterns and to merge them, thus leading to compressed structures corresponding to \textit{DAG}s augmented with return edges. In this way, redundant information is removed from the original tree in both width and height, thus achieving minimal structural compression. The complete compression algorithm is then illustrated on the compression of various plant-like structures.

\textit{Keywords:} Plants modeling, branching structures, self-nestedness, quasi-isomorphism, height redundancy.
1. Introduction

Many plants like trees exhibit complex branching structures. These structures contain large numbers of components (branches, leaves, flowers, etc.) whose organization in space may give a mixed feeling of both order and disorder. The impression of disorder often comes from the fact that components apparently do not follow any clear deterministic rule and that spatial distribution of organs do not show exact symmetries. However, most of the time, behind this semi-chaos, the same branching structures also show some order in their organization as many sub-structures look similar, hierarchies can be identified among branches and some symmetries in shapes, although none exact-ones, seem to exist. During decades, botanists have strived to identify rules characterizing this order despite the apparent disorder in plant architectures, introducing notions such as repetition, modularity, gradients, symmetry of branching structures, e.g. Troll (1937); Arber (1950); Halle et al. (1978); Harper et al. (1986); Barthelemy (1991). These rules, mainly of qualitative nature, gave key insights on how to address the notion of order in plant architectures.

In the early 70's, computational formalisms started to emerge to represent formally the architecture of branching structures, e.g. Lindenmayer (1971); Lindenmayer and Rozenberg (1972); Lindenmayer (1975); Honda (1971). These new conceptual tools made it possible to consider the analysis of branching systems organization from a new and quantitative perspective. Many approaches started from there to describe models as finite automata or grammars that could reproduce by simulation the branching organization of plants, e.g. Borchert and Honda (1984); Reffye et al. (1989); Prusinkiewicz and Lindenmayer (1990). Among them, L-systems emerged in the plant modeling community as the most commonly used paradigm -based on rewriting rules- to model branching system development (Prusinkiewicz (1998)). Most of these approaches started from the design of a formal model embedding biological assumptions, and were defined to produce algorithmically branching systems similar to those observed in real plants. By contrast, the reverse (inverse) problem, namely building algorithmically a computational finite representation (model) from given observed branching systems, was much less studied.

On fractal images this inverse problem was solved on two dimensional images by Barnsley (1988, 2006) using models of fractal geometry. However, these models rely on iterated function systems (IFS) which correspond
to purely geometrical transformations. In particular, they don’t take into account topology of the studied biological structures.

To account on inference, many approaches based on L-systems were also developed and reviewed later on in (Ben-Naoum (2009)). However, due to the complexity of the general problem, these different approaches make various simplifying assumptions. These assumptions in general are not satisfactory in the context of study of biological organisms such as plants structures.

One particularly important simplifying hypothesis consists of focusing on the result of the developmental process without considering the intermediate stages of development. This leads to a whole class of approaches in which models are constructed to capture plant branching architecture in a minimal way. A first approach was proposed by Viennot et al. (1989) based on a statistical analysis of binary tree organization. Subtrees were characterized by an integer representing their amount of asymmetry (the so called Holton-Strahler -HS- number (Deussen and Lintermann (2002))). Then parameters were inferred from data to describe statistically the probability of finding a tree with HS number \(n \) knowing the HS number \(m \) of the parent tree. A similar statistical but more general approach was later used by Durand et al. (2005, 2007), based on Markovian processes to describe subtrees frequencies at any given node. These inference approaches are aimed to capture the statistical properties of tree organization. Viewed as compression techniques, they provide approximated strategies to compress trees, relying on different types of \textit{a priori} assumptions (e.g. Markovian property). An exact and deterministic approach was recently introduced in Godin and Ferraro (2010). In this latter work, the authors addressed the problem of recognizing similar, possibly nested, patterns in plant structures, and to compress them as directed acyclic graphs (DAGs) in a reversible way. Trees were represented as unordered labeled tree structures, where no order is assumed on the children of any node of the trees. Trees whose compression are linear DAGs define the class of self-nested trees, i.e. trees that have very high compressibility. From this, a degree of self-nestedness could be defined for any tree as the normalized edit-distance of this tree to the class of self-nested trees embedding the original tree, and a polynomial-time algorithm was designed to compute this distance.

The tree compressions techniques defined in Godin and Ferraro (2010) are based on the merging of isomorphic subtrees. Any two subtrees that are merged therefore result in a structure with the same height. As a result, the compressed DAG, where all the isomorphic subtrees have been merged, has
the same height as the original tree. If indeed compression occurs in width, no compression occurs in height. However, some trees such as high dichotomic trees or fish bone-like trees have a repetitive structure in height and are therefore poorly compressed by this technique. In this paper, we consider the problem of maximally compressing trees both in width and height with no loss of information. This idea is illustrated in Fig.1. In section 3, we recall the definition of tree reduction and self-nestedness introduced in Godin and Ferraro (2010). We then introduce and study in section 4 a weak extension of tree isomorphism, called quasi-isomorphism, that will make it possible to identify similar (but not identical) tree patterns at different heights of a tree. Based on these definitions and their properties, we present in section 5 an algorithm able to compress in height the reduction of any tree. This algorithm is then applied to both theoretical tree-like structures and vegetal branching systems to characterize its compression ability.

For seek of clarity all property proofs described in the main text are given in the Online Supplementary Material.

2. Notational conventions

An undirected graph, is a pair $G = (V, E)$ where V denotes a finite set of vertices and E a finite set of unordered pairs of vertices called edges. A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A clique in an undirected graph $G = (V, E)$ is a subset of the vertex set $C \subseteq V$, such that the subgraph induced by C is complete (in some cases, the term clique may also refer to the subgraph). A maximal clique is a clique that cannot be extended by including one more adjacent vertex from the original set of vertices.

A directed graph, is a pair $G = (V, E)$ where all edges correspond to ordered pairs of vertices. Let (x, y) be an edge in E, x is called a parent
of y and y is a child of x. A vertex that has no child is called a leaf. We will denote, in the sequel, by $\text{child}(x)$ the set of all the children of x, and $\text{parent}(x)$ the set of all parents vertices of x. In a directed graph G, the Indegree of a vertex v, denoted $\text{deg}^{-}(v)$, is the number of its parents, and its Outdegree, denoted $\text{deg}^{+}(v)$, is the number of its children. The Indegree and the Outdegree of G are respectively the maximum Indegree and the maximum Outdegree of all G vertices.

A path from a vertex x to a vertex y is a (possibly empty) sequence of edges $\{(x_i, x_{i+1})\}_{i=1}^{M-1}$ such that $x_1 = x$, $x_M = y$, and M correspond to $|P|$ the length of P. For a path P we denote by V_P the set of all vertices that belong to P. In an other hand, $P = \lambda$ if P is an empty path. Where we denote by λ the empty path. Analogously, we say that there are no path between x and y, or there is an empty path.

A vertex x is called an ancestor of a vertex y (and y is called a descendant of x), noted $x \prec y$, if there exists a path from x to y. Analogically, for the edges $e = (x, y)$ and $e' = (x', y')$ we can say that $e \prec e'$ iff $y \prec x'$.

Given two paths $P_1 = \{(x_i, x_{i+1})\}_{i=1}^{N-1}$ and $P_2 = \{(y_j, y_{j+1})\}_{j=1}^{M-1}$:

- for $x_N = y_1$ we define the paths union $P_1 \cup P_2 = \{(x_1, x_2), \ldots, (x_{N-1}, x_N), (y_1, y_2), \ldots, (y_{M-1}, y_M)\}$
- we denote $V_{P_1} \cap V_{P_2}$ the vertices paths intersection i.e. the subset of vertices common to both P_1 and P_2
- we say that
 - $P_1 \subset P_2$ if the sequence made by the subset of edges common to both P_1 and P_2 correspond to P_1 (path inclusion)
 - $P_1 \prec P_2 \iff x_N \prec y_1$
 - $P_1 \prec P_2 \iff x_N = y_1$ (paths succession).

In a directed graph, we call cycle a non empty path whose extremities coincide to the same vertex. If the path is elementary, i.e. does not pass twice through the same vertex, it is called elementary cycle.

A directed acyclic graph (DAG) is a graph containing no cycle (but which may contain undirected cycles), (Preparata and Yeh (1973)). A linear DAG is a DAG containing at least one path that goes through all its vertices.

A tree T is a connected graph containing neither directed of undirected cycle. A rooted tree is a tree such that there exists a unique vertex, called
the root, which has no parent vertex. In a tree, each vertex, different from
the root, has exactly one parent vertex. In the following, a rooted tree is
simply called a tree.

In this paper, we consider rooted unordered trees, meaning that the order
among the sibling vertices of any given vertex is not significant.

The degree \deg of a tree is the maximum number of children of a vertex
of T. The notation $|T|$ represents the number of T vertices.

The height $h(x)$ of a vertex x in a DAG is the length of the longest path
from x to a leaf. The height $h(D)$ of a DAG D is the height of its root
vertex, and its width, denoted $l(D)$, is the maximum number of vertices of
the same height in all the DAG.

A subtree is a particular connected subgraph of a tree. Let x be a vertex
of a tree $T = (V, E)$, $T[x]$ is a complete subtree if it is the maximal subtree
rooted in x with:

$T[x] = (V[x], E[x])$, where $V[x] = \{ y \in V / x \text{ is the ancestor of } y \}$ and
$E[x] = \{ (u, v) \in E / u \in V[x], v \in V[x] \}$. In the sequel, we will only consider
complete subtrees and use the simpler term "subtree".

Let us consider two trees, $T_1 = (V_1, E_1)$ and $T_2 = (V_2, E_2)$. A bijection ϕ
from V_1 to V_2 is a tree isomorphism if for each $(x, y) \in E_1$, $(\phi(x), \phi(y)) \in E_2$.
If there exists an isomorphism between T_1 and T_2, the two structures are thus
identical up to a relabeling of their components. In this case we say that T_1
is isomorphic to T_2.

A multi-set is a set of typed elements such that the number of elements
of each type is known. It is defined as a set of pairs $M = \{(k, n_k)\}$ where
k varies over the element types and n_k is the number of occurrences of type
k in the set.

3. Tree reduction

3.1. Definition

We consider here the principle of tree reduction as was defined by Godin
and Ferraro (2010). The aim of the reduction is to transform a rooted un-
ordered tree T into a directed acyclic graph noted $D = (V, E)$. Each vertex of
the D corresponds to an equivalence class of T subtrees. All subtrees belong-
ing to the same class are isomorphic. All DAG vertices (classes) connected
by edges are ordered by the ancestor partial order relation, noted \preceq, between
the subtrees which they represent. In other words, let A and B two DAG
vertices where $A \preceq B$, then the tree of class B is isomorphic to a subtree of
the tree of class A. Each DAG contains a single root vertex corresponding to
the class of the entire tree T and one terminal vertex representing the class
of all T leaves.

To obtain a graph equivalent to the tree T, additional information is
added in the DAG edges, as edges weights. For any edge (c_i, c_j), its weight
$n(c_i, c_j)$ is defined by the number of occurrences of the subtree of class c_j
in this of class c_i. The obtained graph is called the reduction graph of T,
and noted by $\mathcal{R}(T) = (V, E)$, where E is a multi-set whose elements have the
form $((c_i, c_j), n(c_i, c_j))$. The construction of the reduction graph of a tree can
be carried out in time $O(|T|^2 \text{deg}(T) \log \text{deg}(T))$ (Godin and Ferraro (2010)).

Fig.2.a shows an example of a tree and its reduction graph.

In the following sections we will consider DAGs corresponding to reduction graphs, i.e. DAGs whose edges are augmented by weights. \mathcal{D} denotes
the class of all DAGs.

3.2. Self-nested trees

Let us define the set of self-nested trees, as the trees in which all subtrees
with identical height are isomorphic. Godin and Ferraro (2010) showed that
self-nested-trees have the following characterizing properties:

- any two subtrees are either isomorphic or included one into another
 (one is a subtree of the other).
- their reduction $\mathcal{R}(T)$ is a linear DAG.

The reduction of the tree in Fig.2.b.i is the linear DAG depicted in Fig.2.b.ii.
By contrast, the tree of Fig.2.a.i is not self-nested as its reduction is a non
linear DAG (Fig.2.a.ii).
Based on these definitions, the degree of self-nestedness of any tree T can be quantified by computing the distance between T and the smallest self-nested tree (noted $NEST$) that embeds it. This distance is null if the tree is in the class of self-nested tree and augments as the tree contains increasingly self-nested structures. Godin and Ferraro (2010) showed that this distance and the corresponding $NEST$ of a tree T can be computed in polynomial time by a DAG linearization algorithm.

An important property of both the reduction graph and the $NEST$ of a tree is that they preserve the height of nodes in the original tree. This means that vertices in either the exact (the reduction graph) or the approximated ones (the $NEST$) corresponding to vertices in the original tree have exactly the same height. In Fig.2.b for example, the green node in the reduction graph has a height of 3 (Fig.2.b.ii), corresponding exactly to the height of the subtrees that it refers to in the original tree rooted also in green vertices (Fig.2.b.i). The same property is true for all the other colors. As a consequence, a tree of height N will necessarily have a compression with a number of vertices greater than N. In many cases, when N is of the same order of magnitude as the tree size $|T|$. This is clearly a limitation of the previous contraction procedures.

We are therefore lead to study how to compress trees in height as well as in width. For this, we need to relax the definition of isomorphism between trees to capture the notion of repetition of tree patterns independently of their height.

4. Quasi-periodic paths in a reduction graph

4.1. Intuitive idea of height reduction

Intuitively, a tree can be reduced in height if there are subtrees repeated in some way along some paths from the root to the leaves. But how to define exactly such repetitions?

Consider for instance tree of Fig.3.a. We see that the structure including the subtrees originating at vertex B are repeated at different heights of the original tree. The series of strictly nested subtrees $A(3) \subset A(2) \subset A(1) \subset A(0)$ are similar, but not exactly isomorphic. Actually, if we discard the right-hand side subtree of $A(i)$, $i = 0, \ldots, 3$ (illustrated in Fig.3.b), on the picture, we remark that the remaining trees are indeed isomorphic. We shall say that these trees are quasi-isomorphic, i.e. isomorphic for almost all of their immediate subtrees except one, and shall show that nested quasi-isomorphic
Figure 3: a. a height regular tree T, b. the repeated pattern of T, c. Intuitive elimination of T pattern repetitions, d. the DAG $R(T)$, e. the subDAG representing the regular repeated pattern, f. The intuitive height reduced DAG of $R(T)$.

sub-trees can be compressed by suppressing their repetition in the original tree and replacing them by loops over the repeated structure, as seen in the compressed tree of Fig.3.c. The objective is then to apply this principle of height compression directly to the associated DAG, as illustrated in graphs of Figs.3.d, 3.e and 3.f.

4.2. Vertex and edge signatures

Definition 1 (Vertices signature) Let $R(T) = (V, E)$ a reduction graph. We associate with V the matrix $\sigma \in \mathbb{N}^{|V| \times |V|}$ of vertex signature, where each element σ_{xy} is defined as:

$$\sigma_{xy} = \begin{cases} n(x,y) & \forall ((x,y), n(x,y)) \in E \\ 0 & \text{else where} \end{cases}$$

In the matrix σ, the line associated with vertex x defines the signature σ_x of x. It represents the links of x with all its children vertices, and then describes the subtree $T[x]$.

Example 1 Let $R(T_1) = (V, E)$ the reduction graph of Fig.2.b.ii, where:

$V = \{A, B, C, D, E\}$ and

$E = \{((A, B), 1), ((A, C), 2), ((A, D), 1), ((B, C), 1), ((B, E), 1), ((C, D), 1), ((C, E), 1), ((D, E), 1)\}$

The associated vertex signature matrix is given as follow:
\[
\begin{array}{cccc}
A & B & C & D & E \\
\sigma_A &=& [& 0 & 1 & 2 & 1 & 0] \\
\sigma_B &=& [& 0 & 0 & 1 & 0 & 1] \\
\sigma_C &=& [& 0 & 0 & 0 & 1 & 1] \\
\sigma_D &=& [& 0 & 0 & 0 & 0 & 1] \\
\sigma_E &=& [& 0 & 0 & 0 & 0 & 0] \\
\end{array}
\]

Property 1 \(\forall x, y \in V, \sigma_x \neq \sigma_y \).

Definition 2 (Atomic path) We define an atomic path in a reduction graph as a path of length 1.

\(\langle x, y \rangle \) denotes the atomic path from a vertex \(x \) to a vertex \(y \).

Definition 3 Given a vertices signature matrix \(\sigma \), and given \(x, y \) two vertices where \(\sigma_{xy} \neq 0 \). We define the vector \(\sigma_{x,y} \) as the vector \(\sigma_x \) with \(\sigma_{xy} \) is set to 0.

The vector \(\sigma_{x,y} \) describes the constitution of the subtree associated with the vertex \(x \) up to the subtree structure of its child \(y \). This leads to the following property.

Property 2 \(\sigma_{x,y} = \sigma_{x',y'} \Leftrightarrow x \) is isomorphic to \(x' \) up to a child node \(y \) in \(x \) and a child node \(y' \) in \(x' \).

Property 2 sets up the basis of a new relation which we call quasi-isomorphism between \(T[x] \) and \(T[x'] \).

Example 2 Given two trees rooted in \(X \) and \(X' \), illustrated respectively in Fig.4.a and 4.c, and associated with the vertices \(x \) and \(x' \) in the corresponding reduction graphs of Fig.4.b and 4.d. Note that the subtrees rooted in \(Y \) and \(Y' \) are distinct. We obtain:

\[
\begin{align*}
\sigma_{a_1} &= \sigma_{a_2} \\
\sigma_{x_{a_1}} &= \sigma_{x'_{a_2}} = 1 \\
\sigma_{b_1} &= \sigma_{b_2} \\
\sigma_{x_{b_1}} &= \sigma_{x'_{b_2}} = 1 \\
\end{align*}
\]

Def. 3 \(\Leftrightarrow \sigma_{x,y} = \sigma_{x',y'} \)

Then \(X \) and \(X' \) are quasi-isomorphic sub-trees regarding their respective descendants \(Y \) and \(Y' \).
Figure 4: a. and c. quasi-isomorphic trees \(T[X] \) and \(T[X'] \), b. and d. the corresponding reduction graphs \(\mathcal{R}(T[X]) \) and \(\mathcal{R}(T[X']) \). Black vertices display their differences.

Definition 4 (Edge signature) The signature of an edge \((x, y)\), denoted by \(\sigma_{x|y} \), is the line \(\sigma_{x,y} \) augmented by the additional value of \(\sigma_{xy} \) on the right side.

Example 3 The edge signatures associated with the graph \(\mathcal{R}(T_1) \) of Example 1 are given as follow:

- \(\sigma_A = [0 1 2 1 0] \),
- \(\sigma_{A,B} = [0 0 2 1 0] \) and \(\sigma_{AB} = 1 \) then:
- \(\sigma_{A|C} = [0 1 0 1 0 2] \),
- \(\sigma_{A|D} = [0 1 2 0 0 1] \),
- \(\sigma_{B|C} = [0 0 0 0 1 1] \),
- \(\sigma_{B|E} = [0 0 1 0 0 1] \),
- \(\sigma_{C|D} = [0 0 0 0 1 1] \),
- \(\sigma_{C|E} = [0 0 0 1 0 1] \),
- \(\sigma_{D|E} = [0 0 0 0 0 1] \)

The edges signatures allow us to study the quasi-isomorphism relation in a detailed and formal way on the basis of tree reduction graphs.

4.3. Quasi-isomorphism of paths

4.3.1. Quasi-isomorphism of atomic paths

Definition 5 (Quasi-isomorphic atomic paths) In a reduction graph, given two distinct atomic paths \(\langle x, y \rangle, \langle x', y' \rangle \). We say that \(\langle x, y \rangle \) and \(\langle x', y' \rangle \) are quasi-isomorphic, noted \(\langle x, y \rangle \cong \langle x', y' \rangle \), if and only if \(\sigma_{x|y} = \sigma_{x'|y'} \).

Example 4 A. From Example 2:

\[
\begin{align*}
\sigma_{x,y} &= \sigma_{x',y'} \\
\sigma_{xy} &= \sigma_{x'y'} = 1 \\
\sigma_{x|y} &= \sigma_{x'|y'} \\
\langle x, y \rangle &\cong \langle x', y' \rangle
\end{align*}
\]
Given the set of edges signature computed in Example 3. There exist in this set, two equal edges signatures: $\sigma_{B|C} = \sigma_{C|D}$, which induce that $\langle B, C \rangle \cong \langle C, D \rangle$. This appears clearly in Fig. 2.b.i in which the subtree associated with B except its child C, and the subtree associated with C except its child D are isomorphic.

Property 3 (Fundamental property) Let e, f be two atomic paths starting from x and let e', f' be two atomic paths starting from x', then

\[(e \cong e') \land (f \cong f') \Rightarrow ((f = e) \land (f' = e'))\]

In other terms, at most one pair of quasi-isomorphic atomic paths can start from a pair of vertices x and x'.

4.3.2. Quasi-isomorphism of paths

Let’s consider two paths P and Q, where $P = \{e_1, \ldots, e_n\}$, and $Q = \{f_1, \ldots, f_m\}$.

Definition 6 (quasi-isomorphic paths) We say that P is quasi-isomorphic to Q (noted $P \cong Q$) if and only if $n = m$ and $e_i \cong f_i$ ($1 \leq i \leq n$).

In other words, two paths are quasi-isomorphic if and only if their atomic paths are quasi-isomorphic when compared piecewise in the paths order.

Example 5 A. In the DAG $R(T_1)$ (Fig. 2.b) they are two quasi-isomorphic paths: $P = \langle B, C \rangle$ and $P' = \langle C, D \rangle$ from $\sigma_{B|C} = \sigma_{C|D}$.

B. In the DAG $R(T_2)$ (Fig. 5.a) they are two quasi-isomorphic paths: $P \cong P'$ with $P = \{(B, E), (E, I)\}$, $P' = \{(C, F), (F, H)\}$ from $\sigma_{B|E} = \sigma_{C|F} = [000100000001]$, and $\sigma_{E|I} = \sigma_{F|H} = [000000100001]$.

Notation: A path $P = \{\langle x_1, x_2 \rangle, \ldots, \langle x_{n-1}, x_n \rangle\}$ can be denoted as: $P = x_1 P x_n$ or $P = x_1 P_i x_k P_2 x_n$ and so on. If $P = x_1 P_i x_i P_i x_{i+1} P_n x_n$ and $|P_i| = 1$ we can note $P = x_1 P_i x_i x_{i+1} P_n x_n$.

4.3.3. Quasi-periodic path

A quasi-periodic path is a path decomposable in strictly smaller sub-paths which are all quasi-isomorphic with each other, and which are not themselves strictly decomposable.
Definition 7 (quasi-periodic path QPP) Given two vertices \(x, y \) with \(x \prec y \). We say that \(xPy \) is a quasi-periodic path if there exist paths \(P_1, ..., P_n \) (\(P_i \neq \lambda \)) and (\(n \geq 2 \)) for which:

- \(P = P_1 \cup \ldots \cup P_n \)
- \(P_1 \cong \ldots \cong P_n \)
- \(\forall i \leq n, P_i \) is not a quasi-periodic path.

\(P \) is called \(QPP(x,y) \), and the sequence \(P_1, ..., P_n \) the normal decomposition of \(P \).

Property 4 The normal decomposition of \(P \) is unique.

Example 6 A. From the graph \(\mathcal{R}(T_1) \) of Fig.2.b, the path \(P = P_1 \cup P_2 \) with \(P_1 = \langle B, C \rangle, \ P_2 = \langle C, D \rangle \) is a QPP.

B. Moreover, in \(\mathcal{R}(T_2) \) of Fig.5.a.ii, although the paths \(P \) and \(P' \) are two quasi-isomorphic paths, they do not form a QPP since they are not consecutive.

By definition, each QPP is a set of path chunks which are:
• embedded in the same global path,
• all quasi-isomorphic with each other,
• pairwise connected.

Therefore a \(QPP \) can be considered as a periodic path made by the repetition of quasi-isomorphic paths forming its normal decomposition. This is illustrated in Fig.5.b that shows a \(QPP \) whose normal decomposition is made up two subsequences. One sequence is indicated by red, blue and yellow.

Let us consider quasi-periodic paths \(P \) and \(Q \) with identical extremities.

Property 5 Let \(xPy = QPP(x, y) \) and \(xQy = QPP(x, y) \) then \(P = Q \).

The property shows that these two paths coincide.

Property 6 Every subsequence of a normal decomposition of a \(QPP \) is a normal decomposition of a smaller \(QPP \).

Let \(P_1, ..., P_n \) be a normal decomposition of a \(QPP \) \(P \), the path corresponding to a subsequence \(P_i, ..., P_{i+k} \) \((i < n, 1 < k < n - i) \) of the normal decomposition of \(P \) is itself a \(QPP \).

4.3.4. Maximal Quasi-periodic path

Definition 8 (Maximal quasi-periodic path MQPP) A maximal quasi-periodic path (noted MQPP) is a \(QPP \) maximum for path inclusion.

Let \(P_1, ..., P_n \) be the normal decomposition of a \(MQPP \) \(P \), then there is no \(QPP \) \(Q \) \((P \subset Q) \) such that \(P_1, ..., P_n \) is a part of the normal decomposition of \(Q \).

Let us denote by \(MQPP(\mathcal{R}(T)) \) the set of all the MQPPs of a reduction graph \(\mathcal{R}(T) = (V, E) \).

Property 7 The set \(MQPP(\mathcal{R}(T)) \) can be computed in time \(O(|E|^2h(\mathcal{R}(T)) l(\mathcal{R}(T))) \).

4.3.5. Relative positions of maximal quasi-periodic paths in a reduction graph

Let us now study the relative positions of two MQPPs in a reduction graph. As for any two paths in a reduction graph, two MQPPs can either intersect or not, intersecting MQPPs can either be nested or not.
Example 7 A. In the reduction graph $R(T_3)$ of Fig.6.a, the paths
$P = \{\langle A, B \rangle, \langle B, G \rangle, \langle G, E \rangle\}$ and $P' = \{\langle G, C \rangle, \langle C, D \rangle\}$ are intersecting MQPPs. They have a common vertex G.

B. In the reduction graph $R(T_4)$ of Fig.6.b, the paths $P = \{\langle B, D \rangle, \langle D, E \rangle\}$ and $P' = \{\langle C, G \rangle, \langle G, H \rangle, \langle H, I \rangle\}$ are two disjoint MQPPs.

C. In the reduction graph $R(T_5)$ of Fig.6.c:

$P_1 = \{\langle A, B \rangle, \langle B, C \rangle, \langle C, D \rangle\} \cup \{\langle D, E \rangle, \langle E, F \rangle, \langle F, I \rangle\}$

$P_2 = \{\langle A, B \rangle, \langle B, C \rangle\}$

$P_3 = \{\langle D, E \rangle, \langle E, F \rangle\}$

3 MQPPs with the nesting relations: $P_2 \subset P_1$, $P_3 \subset P_1$.

Let us describe the general structure of a nested MQPP P^1. Let us call $P^1_1, ..., P^1_N$ the normal decomposition of P^1. The motifs P^1_n are all quasi-isomorphic with each other and their union entirely covers P^1. Therefore, to study the structure of P^1 one only needs to study the structure of one of them, say P^1_i. Now let us consider the list of MQPPs included in P^1_i. This list may be empty if P^1 is not nested and the MQPP is said to be simple. Otherwise, P^1_i contains itself a list of MQPPs denoted $P^1_{i,j}$ for $j = 1..J$. If one of the $P^1_{i,j}$ is nested this decomposition recursively continues and $P^1_{i,j}$
can be decomposed into a list of quasi-isomorphic motifs denoted $P_{l,m}^{j,k}$ for $m = 1..M$, and so on (see Fig.7). These series of decomposition forms a tree structure called the MQPP tree of P_1. Interestingly, this tree contains many identical subtrees as indicated by the following property.

Property 8 $\forall m \neq m', P_{l,m}^{1,j,k} \cong P_{l,m'}^{1,j,k}$.

Definition 9 (Maximally Nested MQPP) A maximally nested MQPP is a MQPP that is not strictly contained within a strictly greater MQPP.

Definition 10 (Normal decomposition of a DAG) The normal decomposition of a DAG D is the set N' of all its maximally nested MQPPs.

Therefore, the normal decomposition of a DAG contains only top level nested MQPPs which are either simple or decomposable in to finer MQPPs.

In general, the relative position of two MQPPs must respect constraints as indicated by the following property.

Let $P = \{e_1, ..., e_n\}$ be a path. If $e_n = (x, y)$ we say that P terminates through x.

Property 9 Let P and P' be two intersecting MQPPs:

1. If P and P' starts from the same vertex then $P \subset P'$ or $P' \subset P$.
2. If P and P' are not nested then either:
 a. at least one of the MQPPs terminates through the intersection point,
Figure 8: a. Patterns of relative positions of two intersecting MQPPs, b. Patterns of impossible situations of two intersecting MQPPs. See text for detail explanation.

(b) the intersection corresponds to a postfix of one of the two paths,
(c) or both MQPPs belong to the same path.

Example 8 Let us illustrate the different situations of two non nested intersecting MQPPs cited in Property 9. Fig.8.a shows some possible situations of two non nested intersecting MQPPs, and Fig.8.b some impossible ones, so in:

- Figs.8.a.i, 8.a.ii, 8.a.iii and 8.a.iv at least one of the MQPPs terminates through the intersection point,
- Fig.8.a.v the intersection corresponds to a postfix of one of the two paths,
- Fig.8.a.vi both MQPPs belong to the same path,
- Figs.8.b.i, 8.b.ii and 8.b.iii there is no MQPP which terminates through the intersection point.
Figure 9: a.i. A height repeated branch, ii. the corresponding $MQPP = P_1 \cup \ldots \cup P_n$ in the associated DAG, iii. the equivalent height reduced DAG including a return edge and a returns number $(n-1)$, b.i. a DAG, ii. the original DAG augmented with return edges (dashed edges), the result is a DAG with return edges

5. Height compression of a reduction graph

Each $MQPP$ can be decomposed in a unique manner as a sequence of quasi-isomorphic paths (normal decomposition) P_1, \ldots, P_n (as in Fig.9.a.ii). We will make use of this repeated pattern to compress these $MQPP$s. This will be made by allowing introduction of loops in the original DAGs, as in Fig.9.a.iii. Let us introduce the notion of DAG with return edges.

5.1. DAGs with Return Edges

A DAG with return edges is constructed from a DAG by adding to it edges that induce oriented cycles, Fig.9.b.

Definition 11 (DAG with return edges) Let $D = (V, E)$ be a DAG. We consider a set E' of edges in $V \times V$ such that:

- $\forall (x, y) \in E'$, $y < x$ in D.

18
As for any edge of D, we associate a weight $n(x,y)$ with each edge $(x,y) \in E'$.

In addition we associate with each edge $(x,y) \in E'$ one of the children z of x if any, such that $n(x,y) = n(x,z)$, z is called the exit vertex of the cycle induced by the return edge (x,y) and denoted $ex(x,y)$.

The triplet $D' = (V,E,E')$ verifying these conditions is called DAG with return edges, where E' is the set of return edges of $D'. \mathcal{D}_{\uparrow}$ denotes the class of all DAGs with return edges.

Property 10 Let $B = (e_1,\ldots,e_n)$ an elementary cycle in a DAG with return edges $D = (V,E,E')$. There is a unique return edge $e_k \in E'$ in B denoted $re(B)$. We called the path $\{e_{k+1},\ldots,e_n,e_1,\ldots,e_{k-1}\}$ the principal path of B denoted $pp(B)$, and the vertex $ex(e_k) = z$ the exit vertex of the cycle B, denoted $ex(B)$.

Furthermore, we say that $x \in pp(B)$, for each vertex x in $pp(B)$. In the DAG with return edges of Fig.10.e, for the elementary cycle $B_2 = ((x,y), (y,z), (z,w), (w,x))$: $re(B) = (w,x)$, $pp(B) = \{(x,y), (y,z), (z,w)\}$ and $ex(B) = e$.

The MQPPs correspond to maximally repeated patterns on the paths of a DAG. It is thus possible to compress the DAG in height by compressing these repeated motifs. This will lead to construct DAGs with return edges representing the compressed trees. As we will show, the loop in these graphs can only be either nested or disjoint. This leads to introduce a special kind of DAGs with return edges, namely DAGs with nested returns.

5.2. DAG with nested returns

Definition 12 (DAG with nested returns) We define a DAG with nested returns as a DAG with return edges in which any two elementary cycles B_1 and B_2 (with respective vertex sets V_1 and V_2) are either nested ($V_1 \cap V_2 = V_1$ or $V_1 \cap V_2 = V_2$) or disjoint ($V_1 \cap V_2 = \emptyset$).

We denote the class of all DAGs with nested returns by \mathcal{D}_{\parallel}. Note that $\mathcal{D}_{\uparrow} \subset \mathcal{D}_{\parallel}$.

Example 9 Fig.11.a shows examples of patterns of vertices of DAGs $\in \mathcal{D}_{\parallel}$ and in Fig.11.b DAGs $\notin \mathcal{D}_{\parallel}$.
Figure 10: a. Cycle B_1 in a pattern of a DAG with returns D, b. The multiplicities of the set of entering edges in B_1 (Edges in bold), c. Cycle B_2 in the same graph D, d. The multiplicities of the set of entering edges in B_2, e. the DAG D with the nested cycles B_1 and B_2, f. the merged sets of multiplicities of entering edges in cycles B_1 and B_2

Figure 11: a. Patterns of valid DAGs in $D_{||}$, b. Patterns of DAGs not in $D_{||}$. (Dashed edges represent return edges)
Let \(B(D) \) denote the set of all cycles in a given \(D \in D{}^{\uparrow} \). If \(B_1, B_2 \in B(D) \), the inclusion relation is denoted by \(B_1 \subset B_2 \).

Definition 13 (Entering edges in a cycle) Given \(D = (V,E,E') \) in \(D{}^{\uparrow} \). Let \(B \) a cycle in \(B(D) \). The set of entering edges in \(B \), denoted \(\mathcal{E}(B) \), is the set of all edges \((x,y) \in E \) such that \(y \in \text{pp}(B) \) and \(x \notin \text{pp}(B) \).

Definition 14 (Multiplicity of a cycle for an edge) Given \(D \in D{}^{\uparrow} \) and let \(B \in B(D) \). With each edge \(e \) in \(\mathcal{E}(B) \) we associate an integer \(\mu_B \) called the multiplicity of \(B \) for \(e \).

From Fig.10.b, \(\mu_{B_1} \) for \((a,x) \) is 4, while it is 6 for edge \((b,y) \).

The intuitive idea is to define on each edge entering a loop the number of times this loop must be scanned, and these is the multiplicity of the loop for this edge, Figs.10.b and 10.d. However, Fig.10.e shows a DAG with nested returns composed by the fusion of DAGs with return edges of Figs.10.a and 10.c, where \(B_1 \subset B_2 \). Thus, the set of entering edges in \(B_1 \) is a subset of entering edges in \(B_2 \), Figs.10.b and 10.d. So the multiplicity of each entering edge in simultaneously \(B_1 \) and \(B_2 \) correspond to the list of the multiplicities of \(B_1 \) and \(B_2 \) ordered according to the nesting order of the loops starting from the inner one, Fig.10.f. More details are given in Fig.12.a.

Property 11 Given \(D = (V,E,E') \) in \(D{}^{\uparrow} \), \(\forall x \in V \) there is at most an ordered list of elementary nested cycles containing \(x \), noted \(\mathcal{B}(x) \) where \(\mathcal{B}(x) = \{ B_1, ..., B_{b(x)} \} \), \(b(x) = |\mathcal{B}(x)| \) and \(B_1 \subset ... \subset B_{b(x)} \).

In the DAG with nested returns of Fig.10.e there is two elementary cycles
\[B_1 = \{(x,y),(y,x)\} \text{ and } B_2 = \{(x,y),(y,z),(z,w),(w,x)\} \text{ with } B_1 \subset B_2. \]

Then \(\mathcal{B}(x) = \mathcal{B}(y) = \{ B_1, B_2 \} \), \(\mathcal{B}(z) = \mathcal{B}(w) = \{ B_2 \} \) and \(\mathcal{B}(e) = \emptyset \).

Our aim is to show that DAGs with nested returns are in general compressed versions of DAGs, where the cycles can be unfolded to construct DAGs. Expanding a cycle in a DAG with nested returns corresponds to unfolding the return edge by successive repetitions of the principal path of the cycle. Let us illustrate this process on the graph of Fig.12.b from which, at first, the loop \(B_1 \) is expanded. Let \(\mu_{\text{max}} = 2 \) be the maximal multiplicity of all entering edges in \(B_1 \). Expanding \(B_1 \) consists of:

- unfolding its return edge by the repetition of the principal path of \(B_1 \) \(\mu_{\text{max}} \) times. Let \(P_1, ..., P_{\mu_{\text{max}}+1} \) be the obtained repeated patterns with \(P_1 = \text{pp}(B_1) \).
Figure 12: a. A general pattern of a formal detailed DAG with nested returns, b. A pattern of a labeled DAG with nested returns D, c. expansion of the inner cycle of D, d. completely expanded DAG. Vertices from which start thick edges of the same color have a common set of descendant vertices

- redirect each entering edge in B_1, of multiplicity μ_{max}, into the equivalent entering edge in the new expanded path, i.e. edge of the same pattern in $P_{\mu_{\text{max}}-\mu+1}$.

Fig.12.c shows the resulting DAG with nested returns. The expansion of the remaining loop B_2 is performed in the same manner, Fig.12.d.

Property 12 Given $D = (V, E, E')$ in \mathcal{D}_\parallel, it is possible to unfold D into a DAG in time of $O(U |V| |E'| \deg_{\parallel}(\mathcal{D}_\parallel))$.

U is the maximal multiplicity of all cycles of \mathcal{D}_\parallel.

In the resulting DAG of Fig.12.d, we observe that the obtained expanded path forms a MQPP.

5.3. Compression of a DAG as a DAG with nested returns

We have just seen that DAGs with nested returns can be unfolded into DAGs by expending the cycles. We now consider the reciprocal question of compressing a DAG as a DAG with nested returns. To this end we will first
analyze how MQPPs can be folded and then apply the resulting algorithm to a maximal set of MQPPs in the original DAG.

5.3.1. Compression of a MQPP

Let P be a MQPP in a DAG D and $P_1, ..., P_n$ be its normal decomposition. The idea is to replace the sequence $P_1, ..., P_n$ by a loop over P_1 repeated n times. In practice the original DAG must be edited in the following way.

General compression algorithm of a MQPP: Let $D = (V, E, E')$ be a DAG of D_{\parallel}, and let $P = P_1 \cup ... \cup P_n$ the MQPP($x, y)$ with $P_i = x_{1,1}P_ix_{i,m}$ $(1 \leq i \leq n, m \geq 2)$, $x = x_{1,1}$ and $y = x_{n,m}$, as represented in Fig.13.a. We denote by B_p the cycle obtained from the compression of P, and the resulting DAG with nested returns by D/P. Then D/P is computed in the following steps:

1. Creation of a return edge, Fig.13.b:
 - add a return edge to E' from $x_{1,m-1}$ to x,
 - this edge has a weight $\omega = n(x_{i,m-1}, x_{i,m})$,
 - this edge is also augmented with the information that when the loop ends, scanning should resume on the exit vertex y of $x_{n,m-1}$, labeled by χ.

2. Redirection of entering edges of the MQPP, Fig.13.c:
 - Replace each entering edge $(z, x_{i,j})$ of the MQPP by the equivalent entering edge in the cycle B_p, i.e. edge $(z, x_{1,j})$,
 - this edge has a weight $n(z, x_{1,j})$,
 - its multiplicity list corresponds to the multiplicity list of the edge $(z, x_{i,j})$ augmented by the multiplicity of the loop B_p for this edge, that is $n - i$.

3. Suppression of the MQPP repeated patterns, Fig.13.d:
 - Remove edges which belong to the paths $P_2, ..., P_n$,
 - the last edge of P_1 $(x_{1,m-1}, x_{1,m})$ is redirected on the exit vertex χ. It is thus replaced by the edge $(x_{1,m-1}, \chi)$ whose weight is also ω,
 - Edit the sets V, E and E'.
Figure 13: a. Formal pattern of a MQPP $P = P_1 \cup \ldots \cup P_n$, b. creation of the return edge of P, c. redirection of an entering edge of P into its pattern in P_1, d. Suppression of the repeated patterns P_2, \ldots, P_n.
Property 13 The algorithm can be applied on the MQPP in time $O(|E|)$.

Example 10 Let us compress the MQPP $P = P_1 \cup P_2$ with $P_1 = \langle B, C \rangle$ and $P_2 = \langle C, D \rangle$ of Fig.2.b. The compressed graph $R(T_1)/P$ of Fig.14.c is computed by the following steps:

1. create the return edge (Fig.14.a):

 $re(B_P) = (B, B)$ of weight 1 and exit vertex D,

2. redirect all entering edges of P into their patterns in B_{P_1} (Fig.14.b):

 edge $((A, B), 1, \{\})$ is replaced by $((A, B), 1, \{1\})$,

3. suppression of C and all its incident edges, and redirection of edge (B, C) on the exit vertex D (Fig.14.c).

Note on this example that due to the MQPP compression several edges can appear between two vertices.

5.3.2. Gain of MQPP compression

Let us consider a MQPP P in $D \in \mathcal{D}|$, with $P = P_1 \cup \ldots \cup P_n$, and $P_i = x_{i,1}P_ix_{i,m}$ ($1 \leq i \leq n, m \geq 2$). Let us denote $|V_P|$ and $|E_P|$ the number of vertices and respectively the number of edges removed from P compression. Formally

$$|V_P| = |V_P| - |V_{P_1}|, |E_P| = \left(\sum_{i=2}^{n} \left(\sum_{j=1}^{m-1} \deg^+(x_{i,j}) \right) \right) - 1.$$
Let α be the size of the computational representation of a vertex in V, and let β be the size of the computational representation of an edge in E.

Definition 15 (compression gain of a MQPP) We define the P compression gain, noted $g(P)$, by $g(P) = \alpha|\overline{V_P}| + \beta|\overline{E_P}|$.

Property 14 (compression gain of two MQPPs) Given two paths $P, P' \in MQPP(D)$. If P and P' are either disjoint or nested, then the gain

$$g\{P, P'\} = g(P) + g(P').$$

Let P and P' two MQPPs in a DAG D. $D_{/P/P'}$ denotes the DAG with nested returns obtained by successive compressions of P and P', and the gain

$$g(D_{/P/P'}) = g\{P, P'\}.$$

5.3.3. Selection of a maximal set of non intersecting MQPPs with maximal compression gain

If two MQPPs are intersecting but no nested then the compression of one of them may impair or prevent the compression of the other. Therefore as the compression of the two MQPPs is mutually exclusive, the compression of the DAG will depend on the choice of the compression of either of them.

We say that the DAG compression is ambiguous.

Given a DAG D, let M be a subset of $MQPP(D)$.

Definition 16 M is unambiguous for compression if $\forall P, P' \in M$, P and P' are either nested or disjoint.

In other terms, M is unambiguous for compression if all its MQPPs can be compressed independently. Therefore, if M is ambiguous for compression one needs to make choices to eliminate ambiguity in compression while maximizing the compression gain.

For this, consider the equivalence relation \wedge on M such that:

$$P \wedge P' \iff P \text{ and } P' \text{ are neither disjoint or nested.}$$

Let $\{M_i\}_i$ be the set of equivalence classes of \wedge (of Fig.15.a). In a class M_i MQPP's are pairwise intersecting with MQPP's of the same class. Note that classes themselves are disjoint.

Our problem is thus to select a subset of MQPPs in M_i such that this subset is unambiguous for compression, and the total gain of these MQPP's is maximal, Fig 15.b.
To solve this problem, let us model the intersection map in class M_i as a graph: $G_{M_i} = (V_{M_i}, E_{M_i})$ such that each vertex of V_{M_i} represents a MQPP of M_i, and there is an edge between two vertices P and P' of V_{M_i} if P and P' are either disjoint or nested. With this graph definition we can characterize sets of MQPPs unambiguous for compression:

Property 15 M_i is unambiguous for compression if and only if G_{M_i} is a complete graph.

Therefore, our problem is reduced to finding in the graph G_{M_i} a clique G_{M_i}' (i.e. a complete subgraph of G_{M_i}) with maximal gain. This optimization problem is known to be NP-complete (Feige et al. (1991)), and several approaches have been developed to solve it (Battiti and Protasi (2001); Bomze et al. (1999); Feige (2004)). Here we use the TABU algorithm (Gendreau et al. (1993)), as described in section 15 of the Online supplementary material. Given a class M_i the algorithm returns a maximal subset M_i' unambiguous for compression with maximal gain.

For a DAG D, let $M = \forall_i M_i$ and $M' = \forall_i M_i'$, and let us denote by $\overline{MQPP}(D)$ the maximal set of MQPPs of D unambiguous for compression, with:

$$\overline{MQPP}(D) = MQPP(D) \setminus (M \setminus M')$$

where \setminus denotes the sets difference.
Let $\mathcal{N}(D)$ be the normal decomposition of a DAG D, $\mathcal{MQPP}(D)$ allows us to eliminate the compression ambiguity on the full DAG D.

Definition 17 (Unambiguous normal decomposition of a DAG)
The unambiguous normal decomposition of D, \mathcal{N}^*, is the set of all its maximally nested MQPPs unambiguous for compression, i.e. the set

$$\mathcal{N}^* = \mathcal{N}(D) \cap \mathcal{MQPP}(D).$$

Section 16 of the Online supplementary material provides examples of compressed graphs obtained from graphs of Fig.6.

5.3.4. DAG compression evaluation:
Given a DAG $D = (V, E)$. Let R be the corresponding DAG with nested returns with gain $g(R)$.

Definition 18 (Compression factor of a DAG with nested returns)
The compression factor of a DAG with nested returns R is defined as:

$$f(R) = \frac{g(R)}{\alpha|V| + \beta|E|},$$

where α, β are the size of the computational representations of respectively a vertex in V and of an edge in E. This measure represents the relative gain in size of the compressed graph compared to the original DAG.

5.4. Algorithm for the height compression of a finite tree
Based on the definition of MQPPs and on their compressibility property, it is possible to design an optimization algorithm to maximally compress a DAG in height.

Property 16 Let $D = (V, E)$ be a DAG, the compression in height, denoted $\mathcal{H}(D)$, can be computed in time $O(|E|^2 h(D) l(D))$.

The main steps of the computation of $\mathcal{H}(D)$ are described as follows:

1. Compute the set of vertex signatures and then the set of edge signatures of D (see section 4.2).
2. Given the set of edge signatures compute the set $\mathcal{MQPP}(D)$ (see section 4.3).
3. From \(MQPP(D) \) determine the sets \(M \) then \(M' \), and deduce \(MQPP(D) \) (see section 5.3.3).

4. Iterative computation of \(\mathcal{H}(D) \):

 (a) Initialization: Let \(\mathcal{H} = (V, E, E') \) be the DAG with nested returns for which the vertex and the edge set are equal to the vertex and the edge set of \(D \), and the set of return edges is an empty set.

 (b) Repeat

 i. compute \(N^*(\mathcal{H}) = \{P_1, ..., P_n\} \) the unambiguous normal decomposition of \(\mathcal{H} \)

 ii. \(\mathcal{H} = \mathcal{H}/P_1/.../P_n \)

 until \(N^*(\mathcal{H}) = \emptyset \),

5. Return the DAG with nested returns \(\mathcal{H}(D) = \mathcal{H} \) of compression factor

\[
 f(\mathcal{H}(D)) = \frac{g(\mathcal{H}(D))}{|V| + |E|}.
\]

Finally, if \(\mathcal{R}(T) \) denotes the reduction of the tree \(T \) in width, if \(\mathcal{H}(D) \) denotes the compression of a DAG \(D \) in height then the compression \(\mathcal{R}^*(T) \) of the tree \(T \) in \textit{width and height} can be computed in time \(O(|T|^2 \deg(T) h(T)) \) such as:

\[
 \mathcal{R}^*(T) = \mathcal{H} \circ \mathcal{R}(T).
\]

6. Application to the compression of plant structures

Most plants have a modular branching structure made up of the repetition of basic modules such as leaves, stem portion between two nodes, shoots, etc. (Bell (1991), Godin and Caraglio (1998)). These highly repetitive structures are therefore well suited to assess our compression schemes. In this section, we will investigate how different types of plant structures can give rise to different types of compression in height.

6.1. Dichotomic Structures

Plants may build up dichotomic branching structures due to either the subdivision of their apices or to sympodial branching (the main apex stop to grow and two lateral apices resume the growth). Many plants show such a type of organization including one of the initial form of the earth’s plant life, that is the \textit{Cooksonia Caledonica} plant (Boyce (2008)) (Fig.16.a.i), and the \textit{Horneophyton lignieri} (Eggert (1974)) (Fig.16.a.ii).
Formally, the general pattern of a dichotomic structure may be represented by a binary tree graph T (Fig.16.b.i). If n denotes the height of T then the DAG $D = R(T)$ represents its width reduction (Fig.16.b.ii). Using our algorithm (see Property 16) this DAG can be further reduced in height in time $O(n^2)$ leading to a DAG with nested returns $H(D)$ (Fig.16.b.iii) with a reduction factor of

$$f(H(D)) = 1 - \frac{2\alpha' + 2\beta'}{\alpha n + \beta(n-1)}$$

where α, β are the size of the computational representations of respectively a vertex and of an edge in a DAG D, and α', β' are the size of the computational representations of respectively a vertex and of an edge in $H(D)$. These notations will be used all through this section.

6.2. Structures with multi-scale periodicity

Fish bone-like structures present a typical example of structure of multi-scale periodicity. They can be noticed, for example, in axial trees whose growth is monopodial (i.e. trees having a growing main stem that keeps on growing while producing lateral branches). Such a structure is thus composed of a principal axis on which several elements are repeated (branches, leaves, fruits,...). The Date Palm illustrates the wide variety of plants or plant parts showing a fish bone-like structure (Fig.17.a.i). It can be abstracted as the graph T represented in Fig.17.a.ii, where the main axis represents the trunk of the palm tree and the lateral branches represents the composed leaves. This structure can be compressed in width leading to the graph D of Fig.17.a.iii that can itself be further compressed in height as $H(D)$ (Fig.17.a.iv) with height compression factor of
Figure 17: a.i. A model of the date palm (*Phoenix Dactylifera*) (Rhouma (1994)) and its lateral leaf modeled using the L-studio/Vlab (Prusinkiewicz et al. (2000); Abelson and DiSessa (1981)), ii. graphical representation T of the date palm. iii. the corresponding DAG D, iv. its height reduced graph $\mathcal{H}(D)$, b.i. Pattern of a fish bone-like structure T, ii. its width reduction DAG D, iii. its height reduced DAG $\mathcal{H}(D)$

$$f(\mathcal{H}(D)) = 1 - \frac{6\alpha' + 9\beta'}{\alpha(n+m+2) + \beta(2(n+m)-1)}$$

where $2n$ is the number of leaves on each lateral branch, and m the number of all lateral branches.

More generally, a fish bone-like structure can be compressed in height both on the lateral branches ($j_1, ..., j_m$) and on the main axis ($i_1, ..., i_n$), Fig.17.b.i. The width reduction of T produces the DAG D (Fig.17.b.ii). Then the height reduction $\mathcal{H}(D)$ of D (Fig.17.b.iii) is computed in time $O((n + m)^3)$ with a height compression factor

$$f(\mathcal{H}(D)) = 1 - \frac{5\alpha' + 7\beta'}{\alpha(n+m+1) + \beta(2n+m-1)}.$$

Note the two cycles of $\mathcal{H}(D)$ express respectively the repetition of motifs on lateral branches and the repetition of motifs on the main axis.

6.3. Structures with nested periodicity

The structures introduced above correspond to structures with a multi-scale periodicity, which is characterized by two levels of repeated patterns. In more complex multi-scale structures there may be several types of repeated
patterns (leaves, flowers, twigs,...) that may alternate leading to nested periodicity. The structure of the \textit{Callistemon} branch (Stead and Butler (1983)) (Fig.18.a.i), in which groups of n lateral branches alternate with groups of m fruits (k times), illustrates such a phenomenon. The DAG corresponding to this structure can be represented in Fig.18.a.ii where the vertex in green represents the class of tree leaves, and the pink vertex the class of the fruits. The height reduction of the Callistemon branch $\mathcal{H}(D)$ (Fig.18.a.iii) is computed in time $O(k^3(n + m)^3)$ with a height reduction factor

$$f(\mathcal{H}(D)) = 1 - \frac{7\alpha' + 11\beta'}{\alpha(k(n+m)+3)+2\beta(k(n+m)+2)}.$$

Note that the nested returns in $\mathcal{H}(D)$ express the nested periodicity, where the outer loop corresponds to the repeated sequence (leaves, fruits), and the inner loops represent respectively the leaves and the fruits repetitions.
6.4. Self-similar structures

Self-similarity is a conspicuous feature of many plants (Prusinkiewicz (2004)), that can be exploited to compress the plant structures. *Fern* provides a typical example of such a self-similar structure (Fig.18.b.i). A model of this fern can be constructed in L-system (Prusinkiewicz et al. (1995)) - using a unique production rule (see section 17 of the Online supplementary material)- as represented in Fig.18.b.ii. The width reduction of a fern model of height \(n\) produces the DAG of Fig.18.b.iii, and the height reduction of \(D\) produces \(H(D)\) (Fig.18.b.iv) in time \(O(n^3)\), with a height reduction factor

\[
f(H(D)) = 1 - \frac{3\alpha' + 3\beta'}{\alpha(n+1)+\beta'n}.
\]

For \(n = 30\) the reduction factor is close to 93% showing the remarkable height compressibility of self-similar structures.

A general model of self-similar branching structures has been proposed by Godin and Ferraro (2010), called self-nested trees. To study and assess the quality of width compression algorithm the authors defined a database of self-nested branching structures made up by four families of purely self-nested trees (Fig.19.a and .b) together with versions of this trees altered with different levels of noise, Fig.19.c. In each family \(M_i\) (\(i = 0..3\)), starting from a self-nested template plant \(T_i\), several noisy versions were created by varying the lateral branching probability (Fig.19.c).

Width and height compression were then applied on each tree \(T_i\) and all there noisy versions. Fig.20.a illustrates the width reduction graphs of some specimens of the \(M_3\) family, and for which the height compression provides the graphs of Fig.20.b. For the four families, the obtained height compression factors depending on the branching probability (for \(\alpha\) and \(\beta\) fixed to one unit) is shown in Fig.21.

One can notice that the *monopodial* template plants \((T_0, T_1\) and \(T_2)\) are weakly height compressible structures, whereas the *sympodial* tree \(T_3\) is remarkably height compressible. However as soon as noise is introduced in this tree, its height compressibility becomes weaker.

Overall, the height compressibility of the four families is low for small noise factor (probability \(\geq 0.6\)). Nevertheless for increasing noise (probability \(< 0.6\) height compressibility increases as the tree tends to become a linear structure.
Figure 19: a. (i) The differentiation graph of a non-branching plant structure. (ii) The resulting axis structure, where component colors correspond to the differentiation graph states in which these components were created. The numbers attached to each loop indicate the number of steps a meristem stays in the corresponding state. (iii) Differentiation graphs used for the definition of the theoretical plants T_i ($i = 0..3$). Solid arrows correspond to possible transitions of the apical meristem states. Dashed arrows correspond to possible transitions from the apical meristem state to the axillary meristem states. b. the self-nested template plants T_i ($i = 0..3$), c. the noisy versions of the template plant T_1 with probability 0.8, 0.6, 0.4 and 0.0
Figure 20: a. The width reduction graphs of the template plant T_3 and its noisy versions $T_{3,8}$, $T_{3,6}$, $T_{3,4}$ and $T_{3,2}$ ($T_{3,i}$ is the noisy tree of branching probability 0, i). b. the corresponding height reduced graphs

Figure 21: Height compression factor $f(H(R(T_i)))$ depending on the branching probability
7. Conclusion

This paper has considered the problem of height reduction from tree structures. This study was designed to complement the work previously done in the context of lossless compression of unordered trees (Godin and Ferraro (2010)), where the trees were compressed in width and not in height. Using the property that some tree structures exhibit height regularities, we proposed to represent differently these special structures, characterized by a height repeated pattern. These repetitions are associated with quasi-isomorphic sub-trees which are regularly organized along one main branch.

Starting from a reduction graph of a given tree, the height reduction consists of searching of all collections of regularly height repeated patterns. Each repeated pattern is replaced by a unique instance of this pattern augmented with a loop in the compressed tree which is called a Reduction Graph with Nested Returns. The efficiency of the compression algorithm is quantified by a compression factor reflecting the ratio between the size of the DAG with nested returns and the size of the initial DAG.

The method was then illustrated on different type of plant structures and showed that in many cases height compression can add a significant compression factor to the width compression, in particular on self-similar plants.

Acknowledgments

The authors are grateful to the University Djillali Liabes of Sidi-Bel-Abbes (Algeria) and to the INRIA-CIRAD-INRA Virtual Plants project-team of Montpellier (France) who funded this research.

Bibliography

