Toward variational data assimilation for coupled models: first experiments on a diffusion problem
Rémi Pellerej, Arthur Vidard, Florian Lemarié

To cite this version:
Rémi Pellerej, Arthur Vidard, Florian Lemarié. Toward variational data assimilation for coupled models: first experiments on a diffusion problem. ISDA 2016, Jul 2016, Reading, United Kingdom. 2016. hal-01412165

HAL Id: hal-01412165
https://hal.archives-ouvertes.fr/hal-01412165
Submitted on 8 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
3. Toward a coupled variational data assimilation

If the DA process is done separately on each subdomain, the initial condition $x_0 = \{x^{(1)}_0, x^{(2)}_0\}_\Omega$ obtained on Ω does not satisfy the interface conditions. The interface imbalance in the initial condition can severely damage the forecast skills of coupled models (Mauliand et al. 2015).

Objective: properly take into account the coupling in the assimilation process

Full Iterative Method (FIM)
- $x_0 = x^{(i)}_0, i \in \Omega$
- We iterate the models till convergence of the Schwarz algorithm ($\alpha^{(k)}$ iterations)
- The first guess $x^{(1)}_0$ in (1) is updated after each minimization iteration

\[J_{\text{FIM}}(x_k) = J^{(1)}(x_0) + \int_\Omega \left(y - \mathcal{H}(x^{(1)}_k) \right)^2 d\Omega \]

Truncated Iterative Method (TIM)
- $x_0 = \{x^{(1)}_0, x^{(2)}_0\}_\Omega$
- The Schwarz iterations are truncated at k_{max} iterations
- Extended cost function (mismatch in the interface conditions) (Gagdol and Monnier 2007)

\[J_{\text{TIM}}(x_k) = J^{(1)}(x_0) + \int_\Omega \left(y - \mathcal{H}(x^{(1)}_k) \right)^2 d\Omega + J^{\text{int}}(x_k) \]

Coupled Assimilation Method with Uncoupled models (CAMU)
- $x_0 = \{x^{(1)}_0, x^{(2)}_0\}_\Omega$ with $x^{(1)}_0 = \{x^{(1)}_0\}_\Omega$
- We suppress the coupling between both models

The cost function for the CAMU is

\[J_{\text{CAMU}}(x_k) = \frac{1}{2} \left(J^{(1)}(x_k) + J^{(2)}(x_k) \right) + J^{\text{int}}(x_k) \]

The originality of these algorithms is the use of a Schwarz algorithm to couple our models jointly to the DA process with an extended cost function.

4. Application to a 1D diffusion problem

3. Toward a coupled variational data assimilation

If the DA process is done separately on each subdomain, the initial condition $x_0 = \{x^{(1)}_0, x^{(2)}_0\}_\Omega$ obtained on Ω does not satisfy the interface conditions. The interface imbalance in the initial condition can severely damage the forecast skills of coupled models (Mauliand et al. 2015).

Objective: properly take into account the coupling in the assimilation process

Full Iterative Method (FIM)
- $x_0 = x^{(i)}_0, i \in \Omega$
- We iterate the models till convergence of the Schwarz algorithm ($\alpha^{(k)}$ iterations)
- The first guess $x^{(1)}_0$ in (1) is updated after each minimization iteration

\[J_{\text{FIM}}(x_k) = J^{(1)}(x_0) + \int_\Omega \left(y - \mathcal{H}(x^{(1)}_k) \right)^2 d\Omega \]

Truncated Iterative Method (TIM)
- $x_0 = \{x^{(1)}_0, x^{(2)}_0\}_\Omega$
- The Schwarz iterations are truncated at k_{max} iterations
- Extended cost function (mismatch in the interface conditions) (Gagdol and Monnier 2007)

\[J_{\text{TIM}}(x_k) = J^{(1)}(x_0) + \int_\Omega \left(y - \mathcal{H}(x^{(1)}_k) \right)^2 d\Omega + J^{\text{int}}(x_k) \]

Coupled Assimilation Method with Uncoupled models (CAMU)
- $x_0 = \{x^{(1)}_0, x^{(2)}_0\}_\Omega$ with $x^{(1)}_0 = \{x^{(1)}_0\}_\Omega$
- We suppress the coupling between both models

The cost function for the CAMU is

\[J_{\text{CAMU}}(x_k) = \frac{1}{2} \left(J^{(1)}(x_k) + J^{(2)}(x_k) \right) + J^{\text{int}}(x_k) \]

The originality of these algorithms is the use of a Schwarz algorithm to couple our models jointly to the DA process with an extended cost function.

4. Application to a 1D diffusion problem

Previous algorithms are applied on a 1D linear diffusion problem. We consider:
- $L_j = \alpha_j \frac{\partial^2}{\partial x^2} + \beta_j \frac{\partial}{\partial x} + \gamma_j$ for $j \in \{1, 2\}$
- f_j is the diffusion coefficients in each subdomain
- $F_j = \{f_j, \beta_j, \gamma_j\}$ and I_j is the interface operators on Γ (Dirichlet-Neumann)
- $x_j(t), f = \{a + \cos(\omega t)\}$ on $\Omega_j \times T_p$, the analytical solution

Single column observation experiment:
- Observations are available in $(\Omega_j \setminus I_j)$ at the end of the time-window (i.e. at $t = T$)
- We define the interface imbalance indicator, equal to J^{int} with $\alpha^{(1)} = 0.01$ and $\alpha^{(2)} = 0.001$

Acknowledgments

This work was supported by the European project HYCOMS (Hydrological Cycle Observations and Models for Seasonal and Interannual Predictions).