Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence

Abstract : We focus on the maximum regularization parameter for anisotropic total-variation denoising. It corresponds to the minimum value of the regularization parameter above which the solution remains constant. While this value is well know for the Lasso, such a critical value has not been investigated in details for the total-variation. Though, it is of importance when tuning the regularization parameter as it allows fixing an upper-bound on the grid for which the optimal parameter is sought. We establish a closed form expression for the one-dimensional case, as well as an upper-bound for the two-dimensional case, that appears reasonably tight in practice. This problem is directly linked to the computation of the pseudo-inverse of the divergence, which can be quickly obtained by performing convolutions in the Fourier domain.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01412059
Contributeur : Charles-Alban Deledalle <>
Soumis le : mercredi 7 décembre 2016 - 19:37:46
Dernière modification le : samedi 18 février 2017 - 01:17:33
Document(s) archivé(s) le : mardi 21 mars 2017 - 13:26:53

Fichiers

lambdamax.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01412059, version 1
  • ARXIV : 1612.03080

Citation

Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter. Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence. 2016. 〈hal-01412059〉

Partager

Métriques

Consultations de
la notice

317

Téléchargements du document

142