Towards Linked Data Extraction From Tweets

Abstract : Millions of Twitter users post messages every day to communicate with other users in real time information about events that occur in their environment. Most of the studies on the content of tweets have focused on the detection of emerging topics. However, to the best of our knowledge, no approach has been proposed to create a knowledge base and enrich it automatically with information coming from tweets. The solution that we propose is composed of four main phases: topic identification, tweets classification, automatic summariza-tion and creation of an RDF triplestore. The proposed approach is implemented in a system covering the entire sequence of processing steps from the collection of tweets written in English language (based on both trusted and crowd sources) to the creation of an RDF dataset anchored in DBpedia's namespace.
Type de document :
Communication dans un congrès
Extraction et Gestion des Connaissances (EGC), Jan 2015, Luxembourg, Luxembourg
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01411403
Contributeur : Manel Achichi <>
Soumis le : mercredi 7 décembre 2016 - 14:28:02
Dernière modification le : jeudi 24 mai 2018 - 15:59:25
Document(s) archivé(s) le : jeudi 23 mars 2017 - 01:10:23

Fichier

Towards Linked Data Extraction...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01411403, version 1

Citation

Manel Achichi, Zohra Bellahsene, Dino Ienco, Konstantin Todorov. Towards Linked Data Extraction From Tweets. Extraction et Gestion des Connaissances (EGC), Jan 2015, Luxembourg, Luxembourg. 〈hal-01411403〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

305