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Abstract. Growing network complexity necessitates tools and methodologies to
automate network troubleshooting. In this paper, we follow a crowd-sourcing
trend, and argue for the need to deploy measurement probes at end-user devices
and gateways, which can be under the control of the users or the ISP.
Depending on the amount of information available to the probes (e.g., ISP topol-
ogy), we formalize the network troubleshooting task as either a clustering or a
classification problem, that we solve with an algorithm that (i) achieves perfect
classification under the assumption of a strategic selection of probes (e.g., assisted
by an ISP) and (ii) operates blindly with respect to the network performance met-
rics, of which we consider delay and bandwidth in this paper.
While previous work on network troubleshooting privileges a more theoretical
vs practical approaches, our workflow balances both aspects as (i) we conduct a
set of controlled experiments with a rigorous and reproducible methodology, (ii)
on an emulator that we thoroughly calibrate, (iii) contrasting experimental results
affected by real-world noise with expected results from a probabilistic model.

1 Introduction

Nowadays, broadband Internet access is vital. Many people rely on online applications
in their homes to watch TV, make VoIP calls, and interact with each other through social
media and emails. Unfortunately, dynamic network conditions such as device failures
and congested links can affect the network performance and cause disruptions (e.g.
frozen video, poor VoIP quality).

Currently, troubleshooting performance disruptions is complex and ad hoc due to
the presence of different applications, network protocols, and administrative domains.
Typically, troubleshooting starts with a user call to the ISP help desk. However, the
intervention of the ISP technician is useless if the root cause lies outside of the ISP net-
work, which possibly includes the home network of the very same user – hence, for the
ISP, it would be valuable to extend its reach beyond the home gateway by instrumenting
experiments directly from end-user devices. While (tech savvy) users can be assisted in
their troubleshooting efforts by software tools such as [4, 6, 17, 19] which automate a
number of useful measurements, these tools do not incorporate network tomography
techniques [9, 21] to identify the root causes of network disruptions (e.g., faulty links).
Additionally, these tools are generally ISP network-agnostic, hence, they would benefit
from cooperation with the ISP.



In this paper, we propose a practical methodology to automate the identification
of faulty links in the access network based on end-to-end measurements. Since the
devices participating in the troubleshooting task can be either under the control of the
end-user or the ISP, the knowledge of the ISP topology is not always available for the
measurement probes. Consequently, we formalize the troubleshooting task as either a
clustering or a classification problem – where respectively end-users are able to assess
the severity of the fault, or ISPs are able to identify the faulty link.

This paper makes several contributions. While our troubleshooting model (Sec. 3),
algorithm (Sec. 4) and software implementation (Sec. 5) are interesting per se, we be-
lieve our major contribution is the rigour of the evaluation methodology (Sec. 6), which
overcomes state of the art limits (Sec. 2). Indeed, on one hand, previous practical trou-
bleshooting efforts [4, 6, 16, 17, 19] are valuable in terms of domain knowledge and en-
gineering, but lack theoretical foundations and rigorous verification. On the other hand,
prior analytical efforts are cast on solid theoretic ground [9, 21], but their validation is
either simplistic (e.g. simulations) or lacks ground truth (e.g. PlanetLab).

In this work, we take the best of both worlds, as we (i) propose a practical method-
ology for network troubleshooting with an open source implementation; (ii) provide a
model of the expected fault detection probability that we contrast with experimental
results; (iii) use an experimental approach where we emulate controlled network con-
ditions with Mininet [13]; (iv) perform a calibration of the emulation setup, an often
neglected albeit mandatory task; (v) in spirit with Mininet and the TMA community,
we further make all our source code available for the scientific community at [1, 2].

2 Related work

Our work complements prior network troubleshooting efforts [3, 4, 6–8, 16–19, 23] that
we overview in this section. Without attempting at a full-blown taxonomy, we may
divide the above work as having a more practical [3, 4, 6, 16, 17, 19] or theoretic [7,
8, 18, 23] approach. While most work, including ours, uses active measurements [4, 6–
8, 17–19, 23], there are exceptions that use passive measurements [16] or logs [3]. In
terms of network segment, previous work focuses on home networks [17], enterprise
networks [3], and backbone networks [5, 9, 18]. Some studies do not target a network
segment in particular [7, 8, 23] and remain at a more abstract level. In this paper, we
focus on home and access networks.

Our methodology is based solely on end-to-end measurements to localize the set
of links that are the most likely root cause of performance degradations. Closest to our
work is the large body of work in network tomography which exploits the similarity of
end-to-end network performance from a source to multiple receivers due to common
paths to infer properties of internal network links such as network outages [18], delays
[23], and packet losses [8]. However, these studies make simplifying assumptions that
do not hold in real deployments [9,15] such as the use of multicast [23]. In addition, the
proposed algorithms are computationally expensive for networks of reasonable scale
and their accuracy is affected by the scale and the topology of the network [9].

In this work, we instead present a practical, general framework to identify faulty
links that we instantiate on two specific metrics: delays as in [23] and bottleneck band-



width, which is notoriously more difficult to measure. When full topological informa-
tion is not available, our algorithm performs a clustering of measurement probes as in
binary network tomography [21], where the inference problem is simplified by separat-
ing links (in our case probes) into good vs failed, instead of estimating the values of the
link performance metrics.

Additionally, one major problem of the related literature is the realism of ground
truth data to evaluate the accuracy of the algorithms. Even in practical approaches,
ground truth in the form of user tickets [3] or user feedback [16] is extremely rare, so
that the absence of ground truth is commonplace [4, 6, 17, 19]. Theoretic work builds
ground truth with simulations [8], or using syslogs and SNMP data in operational net-
works [18]. On the one hand, although simulations simplify the control over failure lo-
cation and duration, they do not provide realistic settings. On the other hand, the ground
truth is either completely missing in real operational networks (such as PlanetLab [21])
or partially missing in testbeds [15, 18], where network events outside of the control of
researchers can happen. Our setup employs controlled emulation through Mininet [13]
which is (relatively) fast to implement, uses real code (including kernel stack and our
software), and allows testing on fairly large scale topologies. This setup allows full
control on the number, duration, and location of network problems. Additionally, by
running the full network stack, Mininet keeps the real world noise in the underlying
measurements, thus providing a more challenging validation environment with respect
to simulation. As a side effect of this choice, the NetProbes software that we release
as open source [2] has also undergone a significant amount of experimental validation.
Most importantly, any peer researcher is capable of repeating our experiments in order
to validate our results, compare their approach to ours, and extend this work.

3 Problem statement and model

Considering an ISP network, and focusing for the sake of simplicity on its access
tree, faults can occur at multiple levels in the access network hierarchy. The ability
to launch measurements between arbitrary pairs of devices in the same access network
would significantly enhance the diagnosis of network performance disruptions. In this
work we consider two use-cases: User-managed probes and ISP-managed probes. User-
managed probes run only on end-user devices and lack topology information. In con-
trast, ISP-managed probes can reside in home gateways, in special locations inside the
ISP network, and can also be available as “apps” on user devices (e.g., smartphones and
laptops). We address both use-cases with the same algorithm: clustering in the user-
scenario separates measurement probes into two sets (i.e., un/affected sets), whereas an
additional mapping in the ISP-scenario allows to pinpoint the root cause link.

We formalize the problem and introduce the notation used in this paper with the
help of Fig. 1, which depicts a binary access network tree. The troubleshooting probe
software runs in the leaf nodes of the tree. However, the ISP can strategically place
probes inside the network (e.g. probe 0 in the picture attached to the root). Our algo-
rithm runs continuously in the background to gather a baseline of network performance,
and troubleshooting is triggered by the user (e.g., upon experiencing a degradation of



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ISP probe

Fig. 1. Synoptic of the network scenario and model notation

network performance) or automatically by a change point detection procedure on some
relevant metrics (outside the scope of this work).

For the sake of clarity, let us assume that probe 1 launches a troubleshooting task.
In this context, we can safely assume that the root cause is located somewhere in the
path from the user device or gateway towards the Internet (links ℓ4, ℓ3, ℓ2, ℓ1 in bold in
Fig. 1). In order to identify which among ℓ4, .., ℓ1 is the root cause of the fault, probe 1
requires sending probing traffic to a number M of the overall available probes N . Let
us denote, for convenience, by D+ = logk(N) the maximum depth (i.e., height) of a
k-ary tree and by Di the set of probes Di =

(
kD

+−i, kD
+−i+1

]
. The set Di includes

probes whose shortest path from probe 1 passes through ℓi, but does not pass through
ℓi−1. In the access tree, whenever a link ℓf (located at depth f in the tree) is faulty, all
probes whose shortest path from the diagnostic probe (probe 1 in our example) passes
through ℓf will also experience the problem, unlike probes that are reachable through
ℓf+1: it follows that the troubleshooting algorithm requires probes from both sets Df

and Df+1 to infer with certainty that the fault is located at ℓf . For a k-ary tree, the
minimum number of probes that allows to identify the faulty link irrespectively of the
depth f of the fault is M = O(logk(N)) – i.e., one probe in each of the {Di}logk(N)

i=1

strata suffices to accurately pinpoint the root cause.
Such a strategic probe selection requires either topology knowledge or the assistance

of a cooperating server managed by the ISP (e.g., an IETF ALTO [24] server). However,
this strategy is not feasible with user-managed probes, in which probe selection is either
uniformly random or based on publicly available information such as IP addresses. It is
thus important to assess the detection probability of a naive random selection.

Let us denote by p−(f, α) the probability that a random selection includes a probe
that is useful to locate a fault at depth f ∈ [1, D+], with a probe budget α = M/N .
The deeper is the fault location, the smaller is the number of probes available to identify
the faulty link. As the size of Df exponentially decreases as f increases (card(Df ) =

kD
+−f ), we expect the random selection strategy to easily locate faults at small depths

(close to the root) and fail at large depths (close to the leaves) where a stratified selection



is necessary to sample probes in the smaller set Df . The probability that none of the
M vantage points falls into Df decreases exponentially fast with the size of Df , i.e.,
(1− α)card(Df ). Consequently, the probability to sample at least1 one probe in Df is:

p−(f, α) = 1− (1− α)k
(D+−f)

(1)

Expression (1) is a lower bound on the expected detection probability with random se-
lection. When a random subset of probes does not contain any probe in Df , it is still
possible to correctly guess the root cause link. Here, there will be ambiguity because
multiple links are equally likely to be root cause candidates. At any depth d, ambigu-
ity will be limited to the links located between the fault and the root of the tree (i.e.,
ℓd, .., ℓ1): since, at depth d, ambiguity involves d links, the probability of a correct guess
is 1/d. To compute the average probability of a correct guess E[pguess], we have to ac-
count for the relative frequency of the different ambiguity cases, which for depth d
happen proportionally to kd/klogk(N) = kd/N ,

E[pguess] =
logk(N)∑
d=1

1

d

kd

N
=

1

N

logk(N)∑
d=1

kd

d
(2)

We can then compute the expected discriminative power of a random selection, ex-
pressed in terms of the probability to correctly identify a fault at depth f as:

E[p] = p−(f, α) +
(
1− p−(f, α)

)
E[pguess] (3)

where the first term accounts for the proportion of random selection that is structurally
equivalent to a stratified selection (so that the root cause link can be found with prob-
ability 1), and the second term accounts for the proportion of random selection able to
pinpoint the faulty link by luck (thus with probability E[pguess]). By plugging (1) and
(2) into (3) we get:

E[p] = 1− (1− α)k
(D+−f)

+
[
1− (1− (1− α)k

(D+−f)

)
]( 1

N

logk(N)∑
d=1

kd

d

)
(4)

= 1− (1− α)k
(D+−f)

(
1− 1

N

logk(N)∑
d=1

kd

d

)
(5)

Notice that (5) has structurally the form 1− ploss. The term ploss can be interpreted as
the loss of discriminative power with respect to a perfect strategic selection that always
achieves correct detection. Clearly, this model is simplistic as it does not consider all
combinatorial aspects which could be used to obtain finer-grained expectations at each
depth of the tree. Yet, the main purpose of the model is to serve as a reality check for
our experimental results.

1 Note that this probability would be better expressed with the hypergeometric distribution, that
models sampling without replacement; however the formulation reported here differ by less
than 1% from the hypergeometric results, and further allows to express the loss of discrimina-
tive power due to random selection in a more intuitive way.



4 Troubleshooting algorithm

We treat both clustering and classification problems with a single algorithm, whose
pseudocode is reported in Algorithm 1. Assuming the algorithm runs at a source node
s, for any performance metric Q (e.g., delay, bandwidth), s collects baseline statis-
tics Q0(p) with low-rate active measurements towards other peers p. When the trou-
bleshooting is triggered, s iteratively selects up to R batches of B of probes, so that
R · B represents a tuneable probing budget. Selection is made according to a selection
policy Sp, based on a probe score S(p). The probe selection is iterative because S(p)
can vary, and thus the next batch is selected based on the results of the previous batch.

At each step, upon doing B measurements, we compute, for each probe p, Q(p) −
Q0(p) and add it to the set P : K-means clustering partitions P into P+ and P−. Two
points are worth stressing: first, the algorithm does not associate any semantic to clus-
ters: e.g., a node in P+ can be affected by large delay, whereas a node in P− can be
affected by a bottleneck bandwidth. Second, in case of a single failure, it can be ex-
pected that probes in one of the two clusters exhibit Q(p)−Q0(p) ≈ 0, so P+ and P−

should be interpreted as a syntactical difference. Once the probe budget is exhausted (or
once other stop criteria, that we don’t mention for the sake of simplicity, are met), the
algorithm either returns P+ and P− (user-managed case, line 12), or continues with
the mapping. When no clear partition can be established, only one set is returned.

To map probes in P+ and P− to links, the algorithm requires the knowledge of the
links ℓ in the shortest path SP (s, p). The score S(ℓ) of ℓ ∈ SP (s, p) is incremented
by +1 for p ∈ P+ and decremented by -1 for p ∈ P−. As a consequence of metric-
agnosis, the algorithm needs to know if links with the largest (smallest) S(ℓ) scores are
to be pinpointed, which is done according to a link selection policy Sℓ.

We experiment with Sp ∈ {random, |IP (s) − IP (p)|, balance} and combinations
of the above. Random selection is useful as a baseline and to compare with the model.
We additionally consider probe selection policies that are more complex to model such
as the absolute distance in the IP space, as well as a policy that attempts at equating the
size of P+ and P−, by selecting an IP that is close to IPs in the small cluster, and far
from IPs in the large cluster (exact definition omitted due to lack of space). Moreover,
we consider Sℓ ∈ {random, proportional, argmax}. The naïve random method makes
an informed guess by selecting one of the D+ links in the path ℓD+, . . . , ℓ1 to the root
(success probability 1/D+ , much larger than the 1/2(kD

+ − 1) = 1/2(N − 1) in
case of a random guess over all links). We also select links proportionally to their score
(proportional policy), or only the link with the largest (smallest) score (argmax policy).

5 Calibration of the emulation environment

Before running a full-fledged measurement campaign, it is mandatory to perform a rig-
orous calibration phase, yet this phase is often neglected [22]. In this work, we follow
an experimental approach using emulation in Mininet, to control the duration and the
location of the faults. However, it is unclear how well state-of-the-art delay and band-
width measurement techniques perform in Mininet. In order to disambiguate inconsis-
tencies due to Mininet from measurement errors intrinsic to measurements techniques,



Algorithm 1 Detection algorithm at s
1: Get a baseline Q0(p) for metric Q(p), ∀p ▷ Initialization, over long timescale
2: for round ∈ [1..R] do ▷ When triggered upon user/ISP demand
3: select a batch of B probes according to a probe selection policy Sp, based on score S(p)
4: for p ∈ B do
5: perform active measurements with p to get Q(p)−Q0(p)
6: add probe p to probed set P
7: partition P into P+ and P−, by K-means clustering on Q(p)−Q0(p)
8: end for
9: update probe scores S(p), ∀p

10: end for
11: if topology is not available then ▷ Clustering results
12: return P+ and P−

13: else ▷ Classification results
14: for probe p ∈ P do
15: for link ℓ ∈ shortest path SP (s, p) do
16: S(ℓ)← S(ℓ) + 1(p ∈ P+)− 1(p ∈ P−)
17: end for
18: end for
19: return link ℓ according to a link selection strategy Sℓ based on scores S(ℓ)
20: end if

we perform calibration experiments for a set of delay (expectedly easy) and bandwidth
(notoriously difficult) measurement tools and assess their accuracy in Mininet. In this
section, we first briefly describe Mininet and NetProbes, the diagnosis software we de-
velop for this work (Sec. 5.1), then present the calibration results (Sec. 5.2).

5.1 Software Tools

Mininet [13] Mininet is an open source emulator which creates a virtual network of
end-hosts, links, and OpenFlow virtual switches in a single Linux kernel and supports
experiments with almost arbitrary network topologies. Mininet hosts execute code in
real-time, exchange real network traffic, and behave similarly to deployed hardware.
All the software developed for a virtual Mininet network can run in hardware networks
and be shared with others to reproduce the experiments. Mininet provides the functional
and timing realism of testbeds in addition to the flexibility and full control of simulators.
Experimenters configure packet forwarding at the switches with OpenFlow and link
network characteristics (e.g., delay and bandwidth) with the Linux Traffic Control (tc).
Reproducing experiments from tier-1 conference papers 2 indicates that results from
Mininet and from testbeds are in agreement.

NetProbes [2] We design NetProbes, a distributed software written in Python 3.x that
runs on end-hosts and executes a set of user-defined active measurement tests. Net-
Probes agents deployed at end-user devices and gateways form an overlay. They per-
form a set of periodic measurements to monitor the paths in the overlay and collect a

2 Stanford’s CS224 blog: http://reproducingnetworkresearch.wordpress.com



baseline network performance. When the user experiences network performance issues,
the NetProbes agent running at the user device launches a troubleshooting task to as-
sess the severity of the performance issue and the location of the faulty link. It is worth
pointing out that the set of measurement tasks that can be performed by NetProbes
agents (e.g., HTTP or DNS requests, multicast UDP tests, etc.) is far larger than what
we consider within the scope of this paper, and that the software is available at [2].

5.2 Delay and bandwidth calibration

Setup We build a Mininet virtual network with the topology depicted in Fig. 1 on a
server with four cores and 24 GB of RAM. We run the selected tools on probes 1 and 2.
In our delay experiments, we impose five different delay values (0 ms, 20 ms, 100 ms,
200 ms, 1000 ms) on ℓ3 located at depth d = 3 in the tree. At each delay level, probes 1
and 2 perform 50 measurements of round trip delays to probes 7 and 6 respectively (250
measurements in total for each pair of probes). We use Mininet processes through the
Python API to issue ping and traceroute to measure RTTs (we test traceroute
with UDP, UDP Lite, TCP, and ICMP).

Similarly, in the bandwidth experiments, we vary the link capacity of ℓ3 (100 Mbps,
10 Mbps, 1 Mbps) under three different traffic shapers, namely the hierarchical token
bucket (HTB), the token bucket filter (TBF), and the hierarchical fair service curve
(HFSC) and we make 20 measurements of the available bandwidth between probes
1 and 7 and probes 2 and 6 (120 in total for each value of the link capacity). There
is a plethora of measurement tools designed by the research community to estimate
the available bandwidth [11]. In this work we limitedly report the calibration of three
popular tools (Abing [20], ASSOLO [10], and IGI [14]) which are characterised by low
intrusiveness: Abing and IGI infer the available bandwidth based on the dispersion of
packet pairs measured at the receiver. ASSOLO sends a variable bit-rate stream with
exponentially spaced packets and calculates the available bandwidth from the delays at
the receiver side. We compare the performance of the three bandwidth estimation tools
in the absence of cross traffic and under the three traffic shapers mentioned earlier.

Delay We expect delay measurements to be flawless. Yet we observe that the first
packet sent between any two hosts exhibits a large delay variance: this is due to the fact
that the corresponding entry for the flow is missing in the virtual switch and thus re-
quires data exchange between the OpenFlow controller and the virtual switch, whereas
the forwarding entry is ready for subsequent packets. We thus do the baseline Q0(p)
over multiple packets (50 for delay) to mitigate this phenomenon, so that the impact of
the first packet delay is factored out in the warmup phase. Doing a baseline and sub-
tracting it from each delay measurement enables an accurate study of the effect of the
imposed delay value on the accuracy of the measurement technique. Further results are
shown in Fig. 2. All techniques exhibit a time evolution similar to ICMP ping whose
experiment is depicted in Fig. 2(a). We report the PDF of the measurement error (i.e.,
the difference between the measured and the enforced RTT) in Fig. 2(b). Results for
traceroute with various protocols are similar: we observe that, for all the delay
measurement techniques, the bulk of the error distribution is less than 1 ms (with out-
liers not shown up to 10ms). Moreover, we note that using ICMP brings the absolute
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Fig. 2. Calibration of delay measurements

error to less than 0.1 ms for both traceroute and ping. From this calibration phase,
we select ICMP ping to measure delay: as the measurement noise is insignificant, er-
rors in the classification outcome should be solely attributed to our troubleshooting
algorithm.

Capacity Fig. 3 reports the evolution of the estimated available bandwidth as a function
of three link capacity values for the cross product of {Abing, ASSOLO, IGI} × {HTB,
TBF, HFSC}. We stress that while comparison of bandwidth estimation tools under the
same experimental conditions has already been studied, we are not aware of any study
jointly considering bandwidth estimation and bandwidth shaping, especially since many
bandwidth measurement tools rely on effects of cross-trafic to estimate available band-
width. As before, we use a warmup phase to factor out the extra delay incurred by
the first packet. We can see that Abing systematically fails in estimating the available
bandwidth under HTB and TBF shaping, while the estimation is correct with HFSC.
Similarly, ASSOLO fails in estimating 1 Mbps available bandwidth under all shapers,
and additionally fails the estimation of 10Mbps under TBF. In contrast, IGI succeeds
in accurately tracking changes of available bandwidth at ℓ3, although outliers are still
possible (see IGI+TBF). A downside of IGI is that the measurements last longer than
measurements with Abing or ASSOLO. These results and tradeoffs are interesting and
require future attention. However, this is beyond the scope of this work. The most im-
portant takeaway is that measurement errors of such magnitude would invalidate all ex-
periments, showing once more the importance of this calibration phase. We additionally
gather that the IGI+HFSC combination offers the most accurate estimates of available
bandwidth. As accurate input is a necessary condition for trobuleshooting success, we
use this combination in the remainder of this paper.
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6 Experimental results

We now evaluate the quality of our clustering and classification for various probe bud-
gets (namely 10, 20 and 50 probes) for faults (e.g., doubling delay or halving band-
width) at controlled depths of the tree. All the scripts to reproduce the experiments
are available at [1]. We first compare experimental results in a calibrated Mininet en-
vironment (including real-world noise), with those expected by a probabilistic model
(neglecting noise) (Sec. 6.1). We next perform a sensitivity analysis by varying topo-
logical properties, probe selection policies Sp, and link selection policies Sℓ (Sec. 6.2).

6.1 Performance at a glance

We perform experiments over a binary tree scenario (k = 2) with depth D+ = 9 and
N = 512 leaf nodes. In this case, a strategic probe selection would need M/N = 9/512
probes (α = 1.75%) to ensure perfect classification, but we consider larger budget
M = {10, 20, 50} in our experiments. Unless otherwise stated, we use a random probe
selection Sp and an argmax link selection Sℓ policies. We first evaluate the clustering
methodology by comparing the two sets of affected and unaffected probes obtained
from the algorithm with our ground truth, using the well-known rand index [12], which
takes value in [0, 1] ⊂ R, with 1 indicating that the data clusters are exactly the same.
Since we have full control over the location of the fault, we build our ground truth by
assigning the label “affected” to all the available probes (under a given budget con-
straint) for which the path to the diagnostic probe passes through the faulty link. The
remaining probes constitute the unaffected set. Fig. 4-(a) shows that, provided measure-
ments are accurate, the clustering methodology successfully identifies the set of probes
whose paths from the diagnostic software experience significant network performance
disruptions (and as a consequence accurately identifies nodes in the complementary set
of unaffected probes). For budgets of 10, 20 and 50 probes, the rand index shows perfect
match between the ground truth and the clustering output in the case of delay measure-
ment. Results degrade significantly instead for bandwidth measurement: we point out
that the loss of accuracy is not tied to our algorithm, but rather to measurements that
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Fig. 4. Experimental results at a glance: (a) Clustering and (b) Classification

are input to it, which was partly expected and confirms that calibration is a necessary,
but unfortunately not sufficient, step.

Abstracting from limits in the measurement techniques, these result indicates that
in practice our clustering methodology works well in assessing the impact of a faulty
link without requiring knowledge of the network topology. Yet, root cause link identi-
fication is a clearly more challenging and important objective, which we analyze in the
following by restricting our attention to delay experiments: as the classification step is
a deterministic mapping from the clusters, as long as the measurement error remains
small, the results of the classification task are not affected by the specific metric under
investigation. We expect classification results to apply at large, as opposite to merely
illustrating the algorithm performance under delay measurement (although they are not
representative of bottleneck localization as per Fig. 4-(a)).

We next show that the experimental and modelling results are in agreement, with
a random probe selection policy and a budget of M = 50 probes, which corresponds
to α = 9.75%. For each fault depth f , we perform 10 experiments by randomizing
the set of destination probes. Results, as reported in Fig. 4-(b), depict the correct clas-
sification probability of the model vs the experiments. Recall that equation (1) gives
a lower bound p−(f, α) to the experimental results, while (3) models the average ex-
pected detection probability E[p]. We consider α = 9.75%, to directly compare with
experimental results, as well as α = 1.75%, to assess the loss of discriminative power
from a strategic selection, that could achieve perfect classification in this setting, to a
random selection (denoted with ploss in the figure).
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6.2 Sensitivity analysis

Impact of topology We study the impact of the network topology on the classification
performance. We use two trees with 512 probes (i.e. leaves) each. The first tree has a
depth d = 3 and a fanout k = 8 while the second tree has a depth d = 9 and a fanout
k = 2. Fig. 5 reports the correct detection probability of the faulty link as a function
of the depth of the injected fault in the tree, using variance bars. As expected, results
indicate that the correct detection probability decreases as the fault depth increases3.
Thus, when the root cause link is located close to the leaves of the tree, it is harder
to randomly sample another probe which is also affected by the fault: we thus need a
smarter probe selection strategy to improve the link classification performance.

Impact of the probe selection policy Sp We consider policies based on IP-distance
(IP), cluster-size (balance), and a linear combination of both. We average the results
over all the depths of the binary tree and contrast them with a random selection policy.
Unfortunately, our attempts are so far unsuccessful as shown in Fig. 6(a), where the
discriminative power is roughly the same over all probe selection policies. This is due
to the fact that the current set of metrics we consider to select probes do not encode
useful information to bias the selection. The absence of a notion of net masks and
hierarchy with IP-distance for example makes it hard to extract information about how
topologically close/far probes are from each other. An obvious improvement would be
to consider the IP-TTL field. However, since Mininet uses virtual switches to construct
the network, the IP-TTL field remains unchanged. As a consequence, we could not
conduct experiments with this field and we leave it as future work.

Impact of the link selection policy Sℓ Finally, we use three different policies to se-
lect the faulty links: Sℓ ∈ {random, proportional, argmax}. Results, averaged over all
depths of the binary tree, are reported in Fig. 6. The plot is futher annotated with the
gain factor over the random selection: while proportional selection brings a constant

3 We use variance, instead of stdev, to reduce visual noise: thus the increase for k=8 at depth
d = 3 is only apparent, as the corresponding standard deviation bars are large.
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improvement of about 40%, the argmax policy brings considerable gains (in excess of
a factor 4) which grow with the probe budget.

7 Conclusions and future work

In this work, we present a troubleshooting algorithm to diagnose network performance
disruptions in the home and access networks. We apply a clustering methodology to
evaluate the severity of the performance issue and leverage the knowledge of the access
network topology to identify the root cause link with a correct classification probability
of 70% using 10% of the available probes. We follow an experimental approach and
use an emulated environment based on Mininet to validate our algorithm. Our choice
of Mininet is guided by our requirements to have flexibility in designing the experi-
ments, full control over the injected faults, and realistic network settings. We contrast
the experimental results with an analytical model that computes the expected correct
classification probability under a random probe selection policy. We also evaluate the
impact of topology, probe and link selection policies on the algorithm.

Our proposed solution is a first step towards the goal of having reproducible network
troubleshooting algorithms – for which we make all our code publicly available. Our
future work will focus on extending the algorithm to different network topologies and
to diversify the set of network performance metrics, to verify its generality. Also, while
simplicity was one of the goals of this paper, and allowed to compare analytical vs
experimental results, our future work will address more practical issues, such as how
our design can be integrated and complement troubleshooting systems already deployed
by ISPs.
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