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Abstract

This work focuses on the asymptotic behavior of the density in small time of a stochastic dif-

ferential equation driven by an α-stable process with index α ∈ (0, 2). We assume that the process

depends on a parameter β = (θ, σ)T and we study the sensitivity of the density with respect to

this parameter. This extends the results of [5] which was restricted to the index α ∈ (1, 2) and

considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus,

we obtain the representation of the density and its derivative as an expectation and a conditional

expectation. This permits to analyze the asymptotic behavior in small time of the density, using

the time rescaling property of the stable process.
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1 Introduction

We consider the following stochastic differential equation (SDE)

Xβ
t = x0 +

∫ t

0
b(Xβ

s , θ)ds+ σLt (1.1)

for t ∈ [0, 1], where (Lt)t∈[0,1] is a Lévy process whose Lévy measure is similar near zero to the one of

an α-stable process with exponent 0 < α < 2.

In the last decades, a large literature has been devoted to the existence and regularity of the

density to the solution (Xt)t, for t > 0, of a general stochastic equation driven by pure jump Lévy

processes. We can mention the works of Bichteler, Gravereaux and Jacod [2], Picard [13], Denis [8],

Ishikawa-Kunita [10], Fournier-Printems [9] and more recently the works of Debussche-Fournier [7]

and Kulik [12], under Hölder continuity assumptions on the coefficients of the equation and assuming

that the equation is driven by an α-stable process.

In this paper, our aim is to study the asymptotic behavior, in small time, of the density of (Xβ
t ), the

solution of (1.1), as well as its derivative with respect to the parameter β = (θ, σ)T . This problem plays

an important role in asymptotic Statistics based on high frequency observations. Indeed, considering

the estimation of β from the discrete time observations (Xβ
i/n)0≤i≤n, and denoting by pβ1/n(x, y) the

transition density of the discrete time process, the estimation rate of the parameter β strongly relies

on the asymptotic behavior of the derivative ∇βpβ1/n(x, y), as n goes to infinity. Based on the results

established in the present paper, we derive, in [6], an asymptotic expansion of the log-likelihood ratio

and we prove the LAMN property for the parameter β.

The main contributions of this paper are obtained by using the Malliavin calculus for jump pro-

cesses developed by Bichteler, Gravereaux and Jacod [2] and adapted to the particular case of equation

(1.1) by Clément-Gloter [5]. Although it requires some strong derivability assumptions on the coeffi-

cients of the equation, it leads to some explicit representation formulas for the density and its derivative

(see also Ivanenko - Kulik [11]). Let us mention that alternative representations for the density can be

obtained by other methods, for example the method proposed by Bouleau-Denis [3] based on Dirichlet

forms or the parametrix method used by Kulik [12].

This paper is made up of two parts. In the first part we establish some representation formulas

for the density and its derivative. This extends the results of Clément-Gloter [5] where only the

derivative with respect to the drift parameter θ was considered. These representation formulas involve

some Malliavin weights whose expressions are given explicitly. This permits to identify in the Malliavin

weights a main part and a negligible part in small time asymptotics.
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In the second part of the paper, we study the asymptotic behavior of the transition density of

Xβ
t and its derivative, in small time. This was done in [5] with the restriction α > 1 and for a

derivative with respect to parameter in the drift part of the SDE only. In Theorem 3.2 and Theorem

3.3, we obtain asymptotic results in small time for 0 < α < 2 and for the derivatives with respect to

parameters in the drift and the Lévy part of the SDE. In contrast to [5], the exposition now involves

the solution of the ordinary differential equation defined by the deterministic part of (1.1). Our results

are established through a careful study of each terms appearing in the Malliavin weights, which is

complicated by the non integrability of the α-stable process as α ≤ 1.

The present paper is organized as follows : in Section 2, we recall the Malliavin integration by

parts setting developed by [2] and used in [5], and give some representations of the transition density,

its derivative, as well as its logarithm derivative. The main contribution of this section is to explicit

the iterated Malliavin weights appearing in the expression of the derivative of the density. Section

3 studies their asymptotic behavior in small time by decomposing the Malliavin weights into a main

part and a negligible part, and contains the main results of the paper (Theorem 3.2 and Theorem

3.3). It is worth to note that the rate of convergence for the derivative of the density with respect to

θ and σ are different and that the derivative with respect to σ involves a more careful study. Finally,

Section 4 contains some more technical proof.

2 Representation of the transition density via Malliavin calculus

The main aim of this section is to represent the density of a pure jump Lévy process as well as its

derivative and its logarithm derivative as an expectation, using the Malliavin calculus for jump pro-

cesses developed by Bichteler, Gravereaux and Jacod [2] and used by Clément-Gloter [5]. Due to the

singularity of the Lévy measure of (Lt) at zero, we are not exactly in the context of [2], and we first

recall the appropriate integration by parts setting developed in [5] for the reader convenience.

We first introduce some notations which are used throughout this article. For a vector h ∈ Rk, hT

denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on R × R2

depending on both variables (x, β), here β = (θ, σ)T ∈ R× (0,+∞), we denote by f ′ the derivative of

f with respect to the variable x, by ∂θf the derivative of f with respect to the parameter θ, by ∂σf

the derivative of f with respect to the parameter σ, and ∇βf =

∂θf
∂σf

.
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2.1 Integration by parts setting

We consider a filtered probability space (Ω,G, (Gt)t∈[0,1],P) endowed with a Poisson random measure µ

on [0, 1]×E, where E is an open subset of R, with compensator υ on [0, 1]×E and with compensated

measure µ̃ = µ− υ. We now consider the process (Y β
t )t∈[0,1], the solution of

Y β
t = y0 +

∫ t

0
a(Y β

s , θ)ds+ cσ

∫ t

0

∫
E
zµ̃(ds, dz), (2.1)

where the parameter β = (θ, σ)T belongs to R× (0,∞), a is a function and c is a constant.

This is the framework of Clément-Gloter [5] and our aim is to give some explicit representation formulas

for the density of Y β
1 and its derivative with respect to β.

We assume that the following assumptions are fulfilled.

H: (a) The function a has bounded derivatives up to order five with respect to both variables.

(b) The compensator of the Poisson random measure µ is given by υ(dt, dz) = dt× g(z)dz with g ≥ 0

on E, C1 on E and such that

∀p ≥ 2,

∫
E
|z|pg(z)dz <∞.

Note that comparing to the assumptions of [5], we relax the boundedness assumption on a.

We now recall the Malliavin operators L and Γ and their basic properties (see Bichteler, Gravereaux,

Jacod [2], Chapter IV, Section 8-9-10). For a test function f : [0, 1] × E 7→ R ( f is measurable,

C2 with respect to the second variable, with bounded derivative, and f ∈ ∩p≥1L
p(ν)) we set µ(f) =∫ 1

0

∫
E f(t, z)µ(dt, dz). We introduce an auxiliary function ρ : E 7→ (0,∞) such that ρ admits a

derivative and ρ, ρ′ and ρg
′

g belong to ∩p≥1L
p(g(z)dz). With these notations, we define the Malliavin

operator L, on a simple functional µ(f), in the same way as in [5] by the following equations :

L(µ(f)) =
1

2
µ

(
ρ′f ′ + ρ

g′

g
f ′ + ρf ′′

)
,

where f ′ and f ′′ are the derivatives with respect to the second variable. For Φ = F (µ(f1), .., µ(fk)),

with F of class C2, we set

LΦ =
k∑
i=1

∂F

∂xi
(µ(f1), ..., µ(fk))L(µ(fi)) +

1

2

k∑
i,j=1

∂2F

∂xi∂xj
(µ(f1), ..., µ(fk))µ(ρf ′if

′
j).

These definitions permit to construct a linear operator L on a space D ⊂ ∩p≥1L
p with the same basic

properties as in [5, equations (i)-(iii), p.2322].

We associate to L, the symmetric bilinear operator Γ:

Γ(Φ,Ψ) = L(ΦΨ)− ΦLΨ−ΨLΦ.
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Moreover, if f and h are two test functions, we have:

Γ(µ(f), µ(h)) = µ(ρf ′h′).

These operators satisfy the following properties (see [2, equation (8-3)])

LF (Φ) = F ′(Φ)LΦ +
1

2
F ′′(Φ)Γ(Φ,Φ),

Γ(F (Φ),Ψ) = F ′(Φ)Γ(Φ,Ψ),

Γ(F (Φ1,Φ2),Ψ) = ∂Φ1F (Φ1,Φ2)Γ(Φ1,Ψ) + ∂Φ2F (Φ1,Φ2)Γ(Φ2,Ψ). (2.2)

The operator L and the operator Γ permit to establish the following integration by parts formula (see

[2, Propositions 8-10, p.103]).

Proposition 2.1. For Φ and Ψ in D, and f bounded with bounded derivatives up to order two, we

have

Ef ′(Φ)ΨΓ(Φ,Φ) = Ef(Φ)(−2ΨLΦ− Γ(Φ,Ψ)).

Morover, if Γ(Φ,Φ) is invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L
p, we have

Ef ′(Φ)Ψ = Ef(Φ)HΦ(Ψ), (2.3)

with

HΦ(Ψ) = −2ΨΓ−1(Φ,Φ)LΦ− Γ(Φ,ΨΓ−1(Φ,Φ)) (2.4)

= −2ΨΓ−1(Φ,Φ)LΦ− 1

Γ(Φ,Φ)
Γ(Φ,Ψ) +

Ψ

Γ(Φ,Φ)2
Γ(Φ,Ψ). (2.5)

2.2 Representation of the density of Y β
1 and its derivative

The integration by parts setting of the preceding section permits to derive the existence of the density

of Y β
1 given by (2.1), and gives a representation of this density as an expectation. From Bichteler,

Gravereaux, Jacod [2, Section 10, p.130], we know that ∀t > 0, the variable Y β
t , the solution of (2.1),

belongs to the domain of the operator L, and we can compute LY β
t and Γ(Y β

t , Y
β
t ) as in [5]. We recall

the representation formula for the density of Y β
1 (see [5]).

Theorem 2.1. [Clément-Gloter [5]]: Let us denote by qβ the density of Y β
1 . We assume that H holds

and that the auxiliary function ρ satisfies:

lim inf
u→∞

1

lnu

∫
E

1{ρ(z)≥1/u}g(z)dz = +∞. (2.6)
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Then,

qβ(u) = E(1{Y β1 ≥u}
H
Y β1

(1)),

with,

H
Y β1

(1) =
Γ(Y β

1 ,Γ(Y β
1 , Y

β
1 ))

Γ(Y β
1 , Y

β
1 )2

− 2
LY β

1

Γ(Y β
1 , Y

β
1 )

=
W β

1

(Uβ1 )2
− 2

LY β
1

Uβ1
, (2.7)

where the processes (LY β
t ) and (Uβt ) = Γ(Y β

t , Y
β
t ) are solutions of the linear equations:

LY β
t =

∫ t

0
a′(Y β

s , θ)LY
β
s ds+

1

2

∫ t

0
a′′(Y β

s , θ)U
β
s ds+

cσ

2

∫ t

0

∫
E

(
ρ′(z) + ρ(z)

g′(z)

g(z)

)
µ(ds, dz), (2.8)

Uβt = 2

∫ t

0
a′(Y β

s , θ)U
β
s ds+ c2σ2

∫ 1

0

∫
E
ρ(z)µ(ds, dz). (2.9)

The process (W β
t ) = Γ(Y β

t , U
β
t ) is the solution of the linear equation:

W β
t = 3

∫ t

0
a′(Y β

s , θ)W
β
s ds+ 2

∫ t

0
a′′(Y β

s , θ)(U
β
s )2ds+ c3σ3

∫ t

0

∫
E
ρ(z)ρ′(z)µ(ds, dz). (2.10)

In [5], the authors studied the derivative of qβ with respect to the drift parameter θ only. Here,

we intend to study the derivative of qβ with respect to both parameters θ and σ. We first remark that

(Y β
t )t admits derivatives with respect to θ and σ (see [2, Theorem 5.24 p.51 ]), denoted by (∂θY

β
t )t

and (∂σY
β
t )t respectively. Moreover, (∂θY

β
t )t, (∂σY

β
t )t are respectively the unique solutions of

∂θY
β
t =

∫ t

0
a′(Y β

s , θ)∂θY
β
s ds+

∫ t

0
∂θa(Y β

s , θ)ds, (2.11)

∂σY
β
t =

∫ t

0
a′(Y β

s , θ)∂σY
β
s ds+ c

∫ t

0

∫
E
zµ̃(ds, dz). (2.12)

By iterating the integration by parts formula, since Y β
1 admits derivatives with respect to θ and σ,

one can prove, under the assumption H, the existence and the continuity in β of ∇βqβ (see Theorem

4-21 in [2]), moreover, we will represent it as an expectation in Theorem 2.3. The next result extends

the result of Theorem 5 in [5], by giving an expression for the logarithm derivatives of the density

w.r.t. (θ, σ) in terms of a conditional expectation.

Theorem 2.2. Under the assumptions of Theorem 2.1,

∇βqβ

qβ
(u) =

 ∂θq
β

qβ
(u)

∂σqβ

qβ
(u)

 = E(H
Y β1

(∇βY β
1 )|Y β

1 = u), (2.13)

where

H
Y β1

(∇βY β
1 ) :=

HY β1 (∂θY
β

1 )

H
Y β1

(∂σY
β

1 )

 = −2

∂θY β
1

∂σY
β

1

 LY β
1

Uβ1
+

∂θY β
1

∂σY
β

1

 W β
1

(Uβ1 )2
− 1

Uβ1

Γ(Y β
1 , ∂θY

β
1 )

Γ(Y β
1 , ∂σY

β
1 )

 ,

(2.14)
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LY β
1 , Uβ1 and W β

1 are given in Theorem 2.1, the process (V θ
t ) = Γ(Y β

t , ∂θY
β
t ) is the solution of

V θ
t = 2

∫ t

0
a′(Y β

s , θ)V
θ
s ds+

∫ t

0
Uβs

[
(∂θa)′(Y β

s , θ) + a′′(Y β
s , θ)∂θY

β
s

]
ds, (2.15)

and the process (V σ
t ) = Γ(Y β

t , ∂σY
β
t ) is the solution of

V σ
t = 2

∫ t

0
a′(Y β

s , θ)V
σ
s ds+

∫ t

0
a′′(Y β

s , θ)∂σY
β
s U

β
s ds+ c2σ

∫ t

0

∫
E
ρ(z)µ(ds, dz). (2.16)

Proof. Theorem 2.2 is an extension of Theorem 5 in [5] where the main novelty is the expression

for ∂σqβ

qβ
. For the computation of the new term H

Y β1
(∂σY

β
1 ), we apply Theorem 10-3 in [2] to the

stochastic differential equation satisfied by the vector (Y β
t , U

β
t , ∂σY

β
t )T , this gives the above expression

for (V σ
t ).

We end this subsection with an explicit representation of ∇βqβ(u) which gives a computation of

the iterated Malliavin weight H
Y β1

(H
Y β1

(∇βY β
1 )).

Theorem 2.3. Under the assumptions of Theorem 2.1,

∇βqβ(u) =

∂θqβ(u)

∂σq
β(u)

 = E
[
1{Y β1 ≥u}

H
Y β1

(H
Y β1

(∇βY β
1 ))
]
, (2.17)

where

H
Y β1

(H
Y β1

(∇βY β
1 )) = −2H

Y β1
(∇βY β

1 )
LY β

1

Uβ1
+H

Y β1
(∇βY β

1 )
W β

1

(Uβ1 )2
−

Γ(Y β
1 ,HY β1 (∂θY

β
1 ))

Γ(Y β
1 ,HY β1 (∂σY

β
1 ))

 1

Uβ1
,

(2.18)

where ∂θY
β

1 , ∂σY
β

1 are respectively given by equations (2.11), (2.12) and Uβ1 ,W
β
1 are computed in

Theorem 2.1, H
Y β1

(∇βY β
1 ) is given in Theorem 2.2.

Proof. Let f be a smooth functions with compact support. Then,

∇βE
[
f(Y β

1 )
]

=

∫
R
du∇βqβ(u)f(u).

On the other hand, using the integration by parts formula of the Malliavin calculus, we have

∇βE
[
f(Y β

1 )
]

= E
[
f ′(Y β

1 )∇βY β
1

]
= E

[
f(Y β

1 )H
Y β1

(∇βY β
1 )
]

= E
[
F (Y β

1 )H
Y β1

(
H
Y β1

(∇βY β
1 )
)]

where F denotes a primitive function of f . If f converges to Dirac mass at some point u, from the

estimates above, we can deduce (2.17). Moreover, from (2.5) we also get (2.18).
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To complete the result of Theorem 2.3, we give the expressions for Γ(Y β
1 ,HY β1 (∂θY

β
1 )) and Γ(Y β

1 ,HY β1 (∂σY
β

1 )).

Lemma 2.1. Under the assumptions of Theorem 2.1,Γ(Y β
1 ,HY β1 (∂θY

β
1 ))

Γ(Y β
1 ,HY β1 (∂σY

β
1 ))

 =

V θ
1

V σ
1

H
Y β1

(1)−

∂θY β
1

∂σY
β

1

 2Dβ
1

Uβ1
−

∂θY β
1

∂σY
β

1

 HY β1 (1)W β
1

Uβ1
+

∂θY β
1

∂σY
β

1

 Qβ1

(Uβ1 )2
−

−

T θ1
T σ1

 1

Uβ1
+

V θ
1

V σ
1

 W β
1

(Uβ1 )2
, (2.19)

where ∂θY
β

1 , ∂σY
β

1 are respectively given in (2.11), (2.12), Uβ1 ,W
β
1 are computed in Theorem 2.1,

V θ
1 , V

σ
1 are computed in Theorem 2.2, H

Y β1
(1) is given in (2.7) and Dβ

1 = Γ(Y β
1 , LY

β
1 ), Qβ1 =

Γ(Y β
1 ,W

β
1 ), T θ1 = Γ(Y β

1 , V
θ

1 ) and T σ1 = Γ(Y β
1 , V

σ
1 ).

Proof. From the basic properties of the operators L and Γ (linearity and the chain rule property)

stated in Section 2.1, we get that

Γ(Y β
1 ,HY β1 (∂θY

β
1 )) = Γ

[
Y β

1 ,−2∂θY
β

1

LY β
1

Uβ1

]
+ Γ

[
Y β

1 , ∂θY
β

1

W β
1

(Uβ1 )2

]
+ Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂θY
β

1 )

Uβ1

]
,

Γ(Y β
1 ,HY β1 (∂σY

β
1 )) = Γ

[
Y β

1 ,−2∂σY
β

1

LY β
1

Uβ1

]
+ Γ

[
Y β

1 , ∂σY
β

1

W β
1

(Uβ1 )2

]
+ Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂σY
β

1 )

Uβ1

]
,

where

Γ

[
Y β

1 ,−2∂θY
β

1

LY β
1

Uβ1

]
= −2

LY β
1

Uβ1
Γ(Y β

1 , ∂θY
β

1 )− 2
∂θY

β
1

Uβ1
Γ(Y β

1 , LY
β

1 ) + 2∂θY
β

1

LY β
1

(Uβ1 )2
Γ(Y β

1 , U
β
1 )

= −2
LY β

1

Uβ1
V θ

1 − 2
∂θY

β
1

Uβ1
Dβ

1 + 2∂θY
β

1

LY β
1

(Uβ1 )2
W β

1 .

Γ

[
Y β

1 , ∂θY
β

1

W β
1

(Uβ1 )2

]
=

W β
1

(Uβ1 )2
Γ(Y β

1 , ∂θY
β

1 ) +
∂θY

β
1

(Uβ1 )2
Γ(Y β

1 ,W
β
1 )− 2∂θY

β
1 W

β
1

(Uβ1 )3
Γ(Y β

1 , U
β
1 )

=
W β

1

(Uβ1 )2
V θ

1 +
∂θY

β
1

(Uβ1 )2
Qβ1 −

2∂θY
β

1 W
β
1

(Uβ1 )3
W β

1 .

Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂θY
β

1 )

Uβ1

]
= −Γ(Y β

1 ,Γ(Y β
1 , ∂θY

β
1 ))

Uβ1
+

Γ(Y β
1 , ∂θY

β
1 )

(Uβ1 )2
Γ(Y β

1 , U
β
1 ) = − T

θ
1

Uβ1
+

V θ
1

(Uβ1 )2
W β

1 .

Similarly, we have

Γ

[
Y β

1 ,−2∂σY
β

1

LY β
1

Uβ1

]
= −2

LY β
1

Uβ1
V σ

1 − 2
∂σY

β
1

Uβ1
Dβ

1 + 2∂σY
β

1

LY β
1

(Uβ1 )2
W β

1 .
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Γ

[
Y β

1 , ∂σY
β

1

W β
1

(Uβ1 )2

]
=

W β
1

(Uβ1 )2
V σ

1 +
∂σY

β
1

(Uβ1 )2
Qβ1 −

2∂σY
β

1 W
β
1

(Uβ1 )3
W β

1 .

Γ

[
Y β

1 ,−
Γ(Y β

1 , ∂σY
β

1 )

Uβ1

]
= −T

σ
1

Uβ1
+

V σ
1

(Uβ1 )2
W β

1 .

Then, from (2.7) and the above estimates, we get the formula (2.19), after some calculus and the proof

is complete.

Lemma 2.2. Under the assumptions of Theorem 2.1, there are versions of the processes (Dβ
t ) =

(Γ(Y β
t , LY

β
t ))t, (Qβt ) = Γ(Y β

t ,W
β
t )t, (T θt )t = (Γ(Y β

t , V
θ
t ))t and (T σt )t = (Γ(Y β

t , V
σ
t ))t that are solutions

of the linear equations:

Dβ
t = 2

∫ t

0
a′(Y β

s , θ)D
β
s ds+

∫ t

0
a′′(Y β

s , θ)LY
β
s U

β
s ds+

1

2

∫ t

0
a′′(Y β

s , θ)W
β
s ds+

1

2

∫ t

0
a′′′(Y β

s , θ)(U
β
s )2ds

+
c2σ2

2

∫ t

0

∫
E
ρ(z)

(
ρ′(z) + ρ(z)

g′(z)

g(z)

)′
µ(ds, dz),

(2.20)

Qβt = 4

∫ t

0
a′(Y β

s , θ)Q
β
s ds+ 7

∫ t

0
a′′(Y β

s , θ)W
β
s U

β
s ds+ 2

∫ t

0
a′′′(Y β

s , θ)(U
β
s )3ds

+ c4σ4

∫ t

0

∫
E
ρ(z)

[
(ρ(z)′)2 + ρ(z)ρ(z)′′

]
µ(ds, dz),

(2.21)

T θt = 3

∫ t

0
a′(Y β

s , θ)T
θ
s ds+ 3

∫ t

0
a′′(Y β

s , θ)V
θ
s U

β
s ds+

∫ t

0
(∂θa)′(Y β

s , θ)W
β
s ds+

∫ t

0
a′′(Y β

s , θ)∂θY
β
s W

β
s ds

+

∫ t

0
(∂θa)′′(Y β

s , θ)(U
β
s )2 +

∫ t

0
a′′′(Y β

s , θ)∂θY
β
s (Uβs )2ds,

(2.22)

T σt = 3

∫ t

0
a′(Y β

s , θ)T
β
s ds+ 3

∫ t

0
a′′(Y β

s , θ)V
σ
s U

β
s ds+

∫ t

0
a′′(Y β

s , θ)∂σY
β
s W

β
s ds

+

∫ t

0
a′′′(Y β

s , θ)∂σY
β
s (Uβs )2ds+ c3σ2

∫ t

0

∫
E
ρ(z)ρ(z)′µ(ds, dz).

(2.23)

Proof. The proof of Lemma 2.2 is a direct consequence of Theorem 10-3 in [2]. Indeed, considering the

stochastic differential equation satisfied by the vector
(
Y β
t , LY

β
t , U

β
t ,W

β
t , V

θ
t , V

σ
t , ∂θY

β
t , ∂σY

β
t

)T
and

using Theorem 10-3 in [2], we prove that the processes (Dβ
t ) = (Γ(Y β

t , LY
β
t ))t, (Qβt ) = Γ(Y β

t ,W
β
t )t,

(T θt )t = (Γ(Y β
t , V

θ
t ))t and (T σt )t = (Γ(Y β

t , V
σ
t ))t are solutions of linear equations, respectively, given

by (2.20)-(2.23).
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3 Application to the asymptotic behavior of the transition density

and its derivative in small time

We will study the density in small time of the process

Xβ
t = x0 +

∫ t

0
b(Xβ

s , θ)ds+ σLt t ∈ [0, 1],

where (Lt)t∈[0,1] is a pure jump Lévy process and we assume that the following assumptions are

fulfilled.

H1: (a) The function b has bounded derivatives up to order five with respect to both variables.

(bi) The Lévy process (Lt)t∈[0,1] is given by Lt =
∫ t

0

∫
[−1,1] z{µ(ds, dz)−υ(ds, dz)}+

∫ t
0

∫
[−1,1]c zµ(ds, dz)

where µ is a Poisson random measure, with compensator υ(dt, dz) = dt×F (z)dz where F (z) is given

on R∗ by F (z) = 1
|z|α+1 τ(z), α ∈ (0, 2). Moreover, we assume that τ is a non negative smooth

function equal to 1 on [-1,1], vanishing on [−2, 2]c such that 0 ≤ τ ≤ 1.

(bii) We assume that ∀p ≥ 1,
∫
R

∣∣∣ τ ′(u)
τ(u)

∣∣∣p τ(u)du <∞,
∫
R

∣∣∣ τ ′′(u)
τ(u)

∣∣∣p τ(u)du <∞.

Remark 3.1. The introduction of the truncation function τ in the density of the Lévy measure is a

technical tool to ensure the integrability of |Lt|p, ∀p ≥ 1. These assumptions will guarantee that (1.1)

has an unique solution belonging to Lp,∀p ≥ 1 and ensure that our variables are in the domain of the

Malliavin operators which are introduced in the previous section. Moreover, under these assumptions,

Xβ
t admits a smooth density, for t > 0.

3.1 Rescaled process

We can observe that the process (n1/αLt/n) equals in law to a centered Lévy process with Lévy measure

Fn(z) =
1

|z|1+α
τ(

z

n1/α
). (3.1)

This clearly suggests that when n grows, the process (n1/αLt/n) converges to an α-stable process. In

the sequel, it will be convenient to construct a family of Lévy processes (Lnt )n≥1 with the same law

as (n1/αLt/n), on a common probability space where the limiting α-stable process exists as well, and

where the convergence holds true in a path-wise sense, as done in [5].

Let us consider µe(dt, dz, du) a Poisson measure on [0,∞) × R∗ × [0, 1] with compensating measure

υe(dt, dz, du) = dt dz
|z|1+αdu and we denote by µ̃e(dt, dz, du) = µe(dt, dz, du) − υe(dt, dz, du) the com-

pensated Poisson random measure. This measure corresponds to the jump measure of an α-stable
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process, where each jump is marked with a uniform variable on [0,1] .

We define the Poisson measures µ(n), for all n ≥ 1, and µ by setting :

∀A ⊂ [0,∞)× R, µ(n)(A) =

∫
[0,∞)

∫
R

∫
[0,1]

1A(t, z)1{u≤τ( z

n1/α
)}µ

e(dt, dz, du),

∀A ⊂ [0,∞)× R, µ(A) =

∫
[0,∞)

∫
R

∫
[0,1]

1A(t, z)µe(dt, dz, du).

By simple computation, one can check that the compensator of the measure µ(n)(dt, dz) is υ(n)(dt, dz) =

dt×τ( z
n1/α ) dz

|z|1+α = dt×Fn(z)dz and the compensator of µ(dt, dz) is υ(dt, dz) = dt× dz
|z|1+α . Moreover,

we note µ̃(n)(dt, dz) = µ(n)(dt, dz)− υ(n)(dt, dz) and µ̃(dt, dz) = µ(dt, dz)− υ(dt, dz) the compensated

Poisson random measures. Remark that since τ(z) = 1 for |z| ≤ 1, the measures µ(n)(dt, dz) and

µ(dt, dz) coincide on the set {(t, z)|t ∈ [0, 1], |z| ≤ n1/α}.

Now we define the stochastic processes associated to these random measures,

Lαt =

∫ t

0

∫
[−1,1]

zµ̃(ds, dz) +

∫ t

0

∫
[−1,1]c

zµ(ds, dz). (3.2)

Lnt =

∫ t

0

∫
[−n1/α,n1/α]

zµ̃(n)(ds, dz) +

∫ t

0

∫
[−n1/α,n1/α]

c
zµ(n)(ds, dz). (3.3)

By construction, the process (Lαt ) is a centered α-stable process, and the process (Lnt ) is equal in law

to the process (n1/αLt/n)t∈[0,1], since they are based on random measures with the same compensator.

Remark that the jumps of Lnt with size smaller than n1/α exactly coincide with the jumps of Lα with

size smaller than n1/α. On the other hand, the process Ln has no jump with a size greater than 2n1/α.

Using that the measures µ and µ(n) coincide on the subsets of {(t, z); |z| ≤ n1/α}, and the function

τ( z
n1/α ) 1

|z|1+α = 1
|z|1+α is symmetric on |z| ≤ n1/α, we can rewrite:

Lnt =

∫ t

0

∫
[−1,1]

z{µ(ds, dz)− υ(ds, dz)}+

∫ t

0

∫
1<|z|<n1/α

zµ(ds, dz) +

∫ t

0

∫
n1/α≤|z|≤2n1/α

zµ(n)(ds, dz).

(3.4)

The following simple lemma gives a connection between Ln and the stable process Lα.

Lemma 3.1. On the event An =
{
µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n1/α}) = 0

}
, we have

µ(n) = µ, Lnt = Lαt , (3.5)

and,

P (An) = 1 +O(1/n). (3.6)
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Furthermore, let (fn)n∈N and f be measurable functions from Ω× [0, 1]×R to R such that there exists

C with P(C) = 1 and ∀ω ∈ C, ∀s ∈ [0, 1], ∀|z| > 1 fn(ω, s, z)
n→∞−−−→ f(ω, s, z). Then∫ 1

0

∫
|z|>1

fn(ω, s, z)µ(n)(ds, dz)
n→∞−−−→
a.s.

∫ 1

0

∫
|z|>1

f(ω, s, z)µ(ds, dz). (3.7)

Moreover, we have Ln1
n→∞−−−→
a.s

Lα1 .

Proof. We know that the measure µ(n)(ds, dz) and µ(ds, dz) coincide on the set {(s, z)|s ∈ [0, 1], |z| ≤

n1/α}, and by comparison of the representations (3.2) and (3.4), it is clear that equation (3.5) holds

true on the event that the supports of the random measure µ and µ(n) do not intersect {(t, z)|0 ≤ t ≤

1, |z| ≥ n1/α}. On the other hand, the support of µ(n) is included in the support of µ, and thus (3.5)

is true on the event µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n1/α}) = 0. The probability of the latter event is e−2/αn

which converges to 1 at rate 1/n as stated. Then we also get (3.6).

Let A = ∪∞n=1An, we get that P (A) = 1 since An ⊆ An+1 for each n ∈ N and (3.6) holds. Thus, for

all ω ∈ A ∩ C,∃n0(ω) ≥ 1, ∀n ≥ n0(ω), µ(n) = µ and fn(ω, s, z) → f(ω, s, z)∀s ∈ [0, 1], ∀|z| > 1. And

then we deduce that∫ 1

0

∫
|z|>1

fn(ω, s, z)µ(n)(ds, dz)
n→∞−−−→
a.s.

∫ 1

0

∫
|z|>1

f(ω, s, z)µ(ds, dz).

As a consequence, it is easy to see that Ln1 converges almost surely to Lα1 .

3.2 Representation of the density in small time and first approximation

Our main aim is to study the asymptotic behavior of the transition density of the random variable

Xβ
1
n

. In that follows, we denote by pβ1
n

(x, y) the transition density of the homogeneous Markov chain

(Xβ
i
n

)i=0,...,n. We observe that (Xβ
t
n

)t∈[0,1] equals in law (Y
n,β,x0
t )t∈[0,1] where the process (Y

n,β,x0
t )t∈[0,1]

is given by

Y
n,β,x0
t = x0 +

1

n

∫ t

0
b(Y

n,β,x0
s , θ)ds+

σ

n1/α
Lnt t ∈ [0, 1], (3.8)

where (Lnt ) is defined by (3.4) and is such that 1
n1/α (Lnt ) equals in law to (Lt/n).

Let qn,β,x0 be the density of Y
n,β,x0
1 then the connection between the densities of Xβ

1
n

and Y
n,β,x0
1 is

given by

pβ1/n(x0, x) = qn,β,x0(x). (3.9)
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We are in the framework of Sections 2.1 and 2.2, with g(z) := Fn(z) = 1
|z|1+α τ( z

n1/α ).

We choose the auxiliary function ρn as

ρn(z) =


z4 if |z| < 1

ζ(z) if 1 ≤ |z| ≤ 2

z2τ( z
2n1/α ) if |z| > 2,

(3.10)

where τ is defined in the assumption H1(bi), and ζ is a non negative function belonging to C∞ such that

the function ρn belongs to C∞. Note that ζ is defined such that ρn(z) satisfies all conditions of Section

2.1. From the assumptions of τ , we can easily deduce that z2τ( z
2n1/α ) =


z2 if 2 ≤ |z| ≤ 2n1/α

0 if |z| > 4n1/α.

Moreover, we can see that ρn(z)
n→∞−−−→ ρ(z) where

ρ(z) =


z4 if |z| < 1

ζ(z) if 1 ≤ |z| ≤ 2,

z2 if |z| > 2.

(3.11)

Note that from the definition of ρn and ρ, we can easily see that ρn(z) = ρ(z) if |z| ≤ 2n1/α.

Remark 3.2. The choice of the auxiliary function ρn for |z| < 1 ensures that the non-degeneracy

condition (2.6) is satisfied. It will appear later that the choice of the auxiliary function ρn for |z| > 2

permits to obtain Malliavin weights sufficiently integrable to compensate the lack of integrability of Lα1

[ see remark 3.5 below ].

From now on, the function a and the constant c appearing in Section 2.1 will be given explicitly

as

a(x, θ) =
1

n
b(x, θ), c =

1

n1/α
.

Using the results in Section 2.2, we get a representation of the density of Xβ
1
n

. Moreover, we obtain a

first approximation for the weight H
Y
n,β,x0
1

(1). This leads to the decomposition of the density into a

main part and a remainder part.

Theorem 3.1. Under the assumption H1, we have

pβ1
n

(x0, u) = qn,β,x0(u) = E(1{Y n,β,x01 ≥u}HY n,β,x01

(1)), (3.12)
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with

H
Y
n,β,x0
1

(1) =
1

σ
n1/α

[
Ĥn1,β(1) + Ĥn2,β(1)

]
+Rn1,β(1) +Rn2,β(1) +Rn3,β(1). (3.13)

The main terms Ĥn1,β(1), Ĥn2,β(1) are given by

Ĥn1,β(1) =

∫ 1
0

∫
R(εns )−3ρn(z)(ρn)′(z)µ(n)(ds, dz)

εn1

[∫ 1
0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

]2

 , (3.14)

Ĥn2,β(1) =

[
−
∫ 1

0

∫
R(εns )−1

[
(ρn)′(z)− 1+α

z ρn(z)
]
µ(n)(ds, dz)

εn1
∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

]
, (3.15)

where

εns = exp

(
1

n

∫ s

0
b′(Y

n,β,x0
u , θ)du

)
. (3.16)

The remainder terms satisfy

∀p ≥ 2, E
∣∣Rn1,β(1)

∣∣p ≤ C

n
, |Rn2,β(1)| ≤ C

n
, |Rn3,β(1)| ≤ C

n
, (3.17)

where C is some deterministic constant.

Proof. Under the assumptions H1, we can apply the results of Theorem 2.1 to Y
n,β,x0
1 . The non

degeneracy assumption is verified by the choice of ρn(z) near zero [see (3.10)]. Let us denote by

Un,βt = Γ[Y
n,β,x0
t , Y

n,β,x0
t ], and Wn,β

t = Γ[Y
n,β,x0
t , Un,βt ], then we obtain:

pβ1
n

(x0, u) = qn,β,x0(u) = E(1{Y n,β,x01 ≥u}HY n,β,x01

(1));

with

H
Y
n,β,x0
1

(1) =
Wn,β

1

(Un,β1 )
2 − 2

LY
n,β,x0
1

Un,β1

. (3.18)

Applying the results of Theorem 2.1 and solving the linear equations (2.8)-(2.10) we get,

Un,β1 =
(εn1 )2σ2

n2/α

∫ 1

0

∫
R

(εns )−2ρn(z)µ(n)(ds, dz), (3.19)

L(Y
n,β,x0
1 ) =

εn1
2n

∫ 1

0
b′′(Y

n,β,x0
s , θ)(Un,βs )(εns )−1ds

+
σεn1

2n1/α

∫ 1

0

∫
R

(εns )−1[(ρn)′(z) +
F ′n(z)

Fn(z)
ρn(z)]µ(n)(ds, dz), (3.20)

Wn,β
1 =

σ3(εn1 )3

n3/α

∫ 1

0

∫
R

(εns )−3(ρn)′(z)ρn(z)µ(n)(ds, dz) +
2(εn1 )3

n

∫ 1

0
b′′(Y

n,β,x0
s , θ)(Un,βs )

2
(εns )−3ds.

(3.21)
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Recalling that Fn(z) = 1
|z|1+α τ( z

n1/α ) [see Eq.(3.1) in Section 3.2], then F ′n(z)
Fn(z) = −1+α

z + τ ′(z/n1/α)

τ(z/n1/α)
1

n1/α if

|z| ≤ 2n1/α. Based on these expressions and (3.18) we deduce, after some calculus, the decomposition

(3.13), where the remainder terms are given by,

Rn1,β(1) = −

∫ 1
0

∫
R(εns )−1ρn(z) τ

′(z/n1/α)

τ(z/n1/α)
µ(n)(ds, dz)

σεn1
∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

, (3.22)

Rn2,β(1) =
2(εn1 )3 ∫ 1

0 b
′′(Y

n,β,x0
s , θ)(Un,βs )

2
(εns )−3ds

n(Un,β1 )2
, (3.23)

Rn3,β(1) = −
(εn1 )

∫ 1
0 b
′′(Y

n,β,x0
s , θ)(Un,βs )(εns )−1ds

2n(Un,β1 )
. (3.24)

We now consider the properties of the remainder terms.

For Rn1,β(1), since (εns ) is bounded by above and below (recall (3.16)), and since τ ′(z) = 0 on [−1, 1]

then for M a positive constant we have

∣∣Rn1,β(1)
∣∣ ≤M

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)

σ
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

 . (3.25)

Assume that there exists a jump of the Lévy process Ln1 in [−2n1/α,−n1/α) ∪ (n1/α, 2n1/α], then we

get
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz) > n2/α. Thus,

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)

σ
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
≤ 1

σ

∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz). (3.26)

Assume that there are no jumps in [−2n1/α,−n1/α) ∪ (n1/α, 2n1/α], since τ(z/n1/α) = 1 if |z| ≤ n1/α,

then τ ′(z/n1/α) = 0 and as a consequence, the right-hand side of (3.25) equals zero in this case.

In both cases, for any p ≥ 1

E

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)

σ
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

2p

≤ E

(
1

σ

∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

)2p

.

(3.27)

Now from µ(n)(ds, dz) = µ̃(n)(ds, dz)+υ(n)(ds, dz), by convexity inequality, we have for C(p) a positive
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constant

E

[
1

σ

∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

]2p

≤ C(p)

σ2p
E

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ µ̃(n)(ds, dz)

]2p

+
C(p)

σ2p

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ υ(n)(ds, dz)

]2p

.

(3.28)

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]), there exists a constant D(2p) > 0 such that

E

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ µ̃(n)(ds, dz)

]2p

≤ D(2p)

∫ 1

0

∫
|z|>2

( z

n1/α

)4
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
2

υ(n)(ds, dz)

p

+D(2p)

∫ 1

0

∫
|z|>2

( z

n1/α

)4p
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
2p

υ(n)(ds, dz)


= D(2p)

∫ 1

0

∫
|z|>2

( z

n1/α

)4
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
2

1

|z|1+α
τ(z/n1/α)dzds

p

+D(2p)

∫ 1

0

∫
|z|>2

( z

n1/α

)4p
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
2p

1

|z|1+α
τ(z/n1/α)dzds


=
D(2p)

np

[∫ 1

0

∫ 2

1

(
1

uα−3

∣∣∣∣τ ′(u)

τ(u)

∣∣∣∣2 τ(u)

)
duds

]p
+

[
D(2p)

n

∫ 1

0

∫ 2

1

(
1

uα+1−4p

∣∣∣∣τ ′(u)

τ(u)

∣∣∣∣2p τ(u)

)
duds

]
.

where at the last line we have used the change of the variable u = z
n1/α .

Moreover, we have[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ υ(n)(ds, dz)

]2p

=

[∫ 1

0

∫
|z|>2

( z

n1/α

)2
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣ 1

|z|1+α
τ(z/n1/α)dzds

]2p

=

[
1

n

∫ 1

0

∫ 2

1

1

uα−1

∣∣∣∣τ ′(u)

τ(u)

∣∣∣∣ τ(u)duds

]2p

. (3.29)

Under the assumption H1(bii), we can deduce the bound for E
∣∣∣Rn1,β(1)

∣∣∣p ,∀p ≥ 2 .

Finally, using that b has bounded derivatives and that sup0≤s≤1
Un,βs

Un,β1

is bounded, the remainder terms

Rn2,β(1), Rn3,β(1) satisfy the upper bound

|Rn2,β(1)| ≤ C

n
, |Rn3,β(1)| ≤ C

n
,

where C is some deterministic constant.
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3.3 Asymptotic behavior of the transition density and its derivative

In this section, we study the asymptotic behavior of pβ1
n

(x0, u) (the density of Xβ
1
n

) and its derivative

with respect to the parameter β. From the connection (3.9), instead of working directly with the

density pβ1
n

, we consider the asymptotic behavior of qn,β,x0 , the density of Y
n,β,x0
1 given by (3.8).

Considering the equation (3.8), one can prove that if α > 1 then n1/α
(
Y
n,β,x0
1 − x0

)
is close to a

stable Lévy process [see [5]]. If α ≤ 1, this is no longer the case and we have to introduce the solution

of the ordinary differential equation

ςn,β,x0t = x0 +
1

n

∫ t

0
b(ςn,β,x0s , θ)ds t ∈ [0, 1]. (3.30)

We prove that n1/α(Y
n,β,x0
1 − ςn,β,x01 ) is close to a stable Lévy process in Lemma 3.2 below.

Lemma 3.2. Let (ςn,β,x0t ) be the solution of the ordinary differential equation (3.30), then

n1/α(Y
n,β,x0
1 − ςn,β,x01 )

n→∞−−−→
a.s.

σLα1 , (3.31)

and this convergence is uniform with respect to x0.

Proof. We have∣∣∣n1/α
(
Y
n,β,x0
1 − ςn,β,x01

)
− σLα1

∣∣∣ =

∣∣∣∣ 1n
∫ 1

0
n1/α

[
b(Y

n,β,x0
s , θ)− b(ςn,β,x0s , θ)

]
ds+ σ [Ln1 − Lα1 ]

∣∣∣∣
≤ 1

n

∫ 1

0
||b′||∞

[∣∣∣n1/α
(
Y
n,β,x0
s − ςn,β,x0s

)
− σLαs

∣∣∣] ds+
σ||b′||∞

n

∫ 1

0
|Lαs | ds+ σ |Ln1 − Lα1 | ,

where ||b′||∞ = supx∈R |b′(x, θ)|. Applying the Gronwall’s lemma and using the boundedness of b′, we

get

sup
x0

∣∣∣n1/α
(
Y
n,β,x0
1 − ςn,β,x01

)
− σLα1

∣∣∣ ≤ C [σ
n

∫ 1

0
|Lαs |ds+ σ|Ln1 − Lα1 |

]
, (3.32)

where C is a positive constant. From Lemma 3.1, we have Ln1
a.s.−−→ Lα1 , and from the construction of

the α-stable process Lαt (recall (3.2)), we get
∫ 1

0 |L
α
s |ds <∞ a.s. Then σ

n

∫ 1
0 |L

α
s |ds

a.s.−−→ 0 and we get

the result of Lemma 3.2.

Remark 3.3. If we assume that the function b is of class C1+k with respect to x (k > 0) and setting
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A(f) = bf ′ such that f(ςn,β,x0t , θ) = f(ςn,β,x00 , θ) +
∫ t

0 (Af)(ςn,β,x0s , θ)ds. Then we obtain

ςn,β,x0t = x0 +
tb(x0, θ)

n
+

1

n

∫ t

0

∫ t1

0

(Ab)

n
(ςn,β,x0t2

, θ)dt2dt1

= x0 +
tb(x0, θ)

n
+
t2(Ab)(x0, θ)

2n2
+

1

n3

∫ t

0

∫ t1

0

∫ t2

0
(A(Ab)) (ςn,β,x0t3

, θ)dt3dt2dt1

= x0 +
tb(x0, θ)

n
+
t2(Ab)(x0, θ)

2n2
+ ...+

tk(Akb)(x0, θ)

k!nk
+

1

nk+1

∫ t

0

∫ t1

0
...

∫ tk

0
(Ak+1b)(ςn,β,x0tk

, θ)dtkdtk−1...dtt1

= ς
(k),n,β,x0
t +

1

nk+1

∫ t

0

∫ t1

0
...

∫ tk

0
(Ak+1b)(ςn,β,x0tk

, θ)dtkdtk−1...dtt1

with ς
(k),n,β,x0
t = x0 + tb(x0,θ)

n + t2(Ab)(x0,θ)
2n2 + ...+ tk(Akb)(x0,θ)

k!nk
.

Under the assumption that the function b is of class C1+k with respect to x (k > 0), we deduce that∣∣∣ςn,β,x0t − ς(k),n,β,x0
t

∣∣∣ ≤ C
nk+1 . Combining this with Lemma 3.2, we get

n1/α(Y
n,β,x0
1 − ς(k),n,β,x0

1 )
n→∞−−−→
a.s.

σLα1 , as soon as
1

α
< k + 1. (3.33)

Hence we can replace in Lemma 3.2 the solution of the ordinary differential equation by its explicit

short time approximation ς
(k),n,β,x0
1 as soon as k is large enough.

We will now state the main result of this section about the asymptotic behavior of the transition

density and its derivative with respect to the parameter β. In order to apply these results in statistics,

we need some uniformity with respect to the parameter β and consequently we study the asymptotic

behavior of pβn1
n

where (βn)n≥1 is a sequence such that βn
n→∞−−−→ β.

Theorem 3.2. Let (ςn,β,x0t ) be the solution of the ordinary differential equation (3.30) and let (βn)n≥1

be a sequence such that βn
n→∞−−−→ β. For all (x0, u) ∈ R2,

1. σn
n1/α p

βn
1
n

(x0,
uσn
n1/α + ςn,βn,x01 )

n→∞−−−→ ϕα(u),

2. supu∈R supn
σn
n1/α p

βn
1
n

(x0,
uσn
n1/α + ςn,βn,x01 ) <∞,

where ϕα is the density of Lα1 .

Proof. From (3.9) and Theorem 3.1, we have

σn

n1/α
pβn1
n

(x0,
uσn

n1/α
+ςn,βn,x01 ) =

σn

n1/α
qn,β,x0(

uσn

n1/α
+ςn,βn,x01 ) = E

(
1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,βn,x0
1 }

σn

n1/α
H
Y
n,βn,x0
1

(1)

)
,

(3.34)

where σn
n1/αHY n,βn,x01

(1) = Ĥn1,βn(1) + Ĥn2,βn(1) + σn
n1/αRn1,βn(1) + σn

n1/αRn2,βn(1) + σn
n1/αRn3,βn(1), with

Ĥn1,βn(1), Ĥn2,βn(1) given by (3.14), (3.15) and Rn1,βn(1), Rn2,βn(1), Rn3,βn(1) satisfy the bounds (3.17).
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Then from (3.16), the boundedness of b′, and Lemma 3.1, it is immediate that

Ĥn1,βn(1)
n→∞−−−→
a.s.

H1,Lα(1), (3.35)

Ĥn2,βn(1)
n→∞−−−→
a.s.

H2,Lα(1). (3.36)

where H1,Lα(1),H2,Lα(1) are given by

H1,Lα(1) =

∫ 1
0

∫
R ρ(z)ρ′(z)µ(ds, dz)[∫ 1

0

∫
R ρ(z)µ(ds, dz)

]2 , (3.37)

H2,Lα(1) = −
∫ 1

0

∫
R
[
ρ′(z)− 1+α

z ρ(z)
]
µ(ds, dz)∫ 1

0

∫
R ρ(z)µ(ds, dz)

. (3.38)

Moreover, using again the boundedness of b′ and the fact that ρn(z) is a non negative function, we

deduce the upper bounds

∣∣∣Ĥn1,βn(1)
∣∣∣ ≤ C∗

∫ 1
0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2

 , (3.39)

∣∣∣Ĥn2,βn(1)
∣∣∣ ≤ C∗

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

 , (3.40)

for some constant C∗ > 0.

We now show that supn

∣∣∣Ĥn1,βn(1)
∣∣∣p and supn

∣∣∣Ĥn2,βn(1)
∣∣∣p are integrable ∀p ≥ 1. The proof will be

divided into the two following steps:

Step 1.1: We show that the right-hand side of (3.39) is bounded by a random variable independent

of n and belonging to ∩p≥1L
p. In fact, since the measures µ(n)(ds, dz) and µ(ds, dz) coincide on the

set {(s, z)|s ∈ [0, 1], |z| ≤ n1/α}, and ρn(z) = ρ(z) on the support of the Poisson measure µ(n), we have

∫ 1
0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 ≤

∫ 1
0

∫
|z|≤2 |ρ

′(z)| ρ(z)µ(ds, dz)(∫ 1
0

∫
|z|≤2 ρ(z)µ(ds, dz)

)2 +

∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2

 .

(3.41)

We now consider in the right-hand side of (3.41). Using that ρ, ρ′ belongs to ∩p≥1L
p(1|z|≤2|z|−1−αdz),

we get

E

[(∫ 1

0

∫
|z|≤2

|ρ′(z)|ρ(z)µ(ds, dz)

)p]
<∞, ∀p ≥ 1. (3.42)

On the other hand, since ρ satisfies the non degeneracy assumption (2.6), [
∫ 1

0

∫
|z|≤2 ρ(z)µ(ds, dz)]−1

belongs to ∩p≥1L
p [see [5, Theorem 4 p.2323]], we deduce that the first term of (3.41) belongs to
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∩p≥1L
p, moreover, it does not depend on n .

We now consider the second term of the right-hand side of (3.41). From the fact that v(n)({(t, z)|0 ≤

t ≤ 1, |z| > 2}) <∞, we can construct the integral with respect to the random measure µ(n) as follows

[see Chapter VI in [4]] ∫ 1

0

∫
|z|>2

2|z|3µ(n)(ds, dz) =

N1∑
i=1

2|Zi|3 a.s.,

∫ 1

0

∫
|z|>2

z2µ(n)(ds, dz) =

N1∑
i=1

Z2
i a.s.,

(3.43)

where N = (Nt)1≥t≥0 is a Poisson process with intensity λn =
∫
|z|>2 Fn(z)dz < ∞, and (Zi)i≥0 are

i.i.d. random variable independent of N with probability measure
Fn(z)1|z|>2dz

λn
. Thus,∫ 1

0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2 =

∑N1
i=1 2|Zi|3(∑N1
i=1 Z

2
i

)2 ≤
∑N1

i=1 2|Zi|3∑N1
i=1 Z

4
i

≤ 1.

where we used the fact that Z2
i ≥ 0, and |Zi| > 2. We deduce supn

∣∣∣Ĥn1,βn(1)
∣∣∣p is integrable ∀p ≥ 1.

Step 1.2: We show that supn

∣∣∣Ĥn2,βn(1)
∣∣∣p is integrable.

Using the definitions of ρn (recall (3.10)), ρ (recall (3.11)) and ρn = ρ on the support of the Poisson

measure µ(n) [see Section 3.2], we have∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

≤

∫ 1
0

∫
|z|≤2

(
|ρ(z)′|+ ρ(z)1+α

|z|

)
µ(ds, dz)∫ 1

0

∫
|z|≤2 ρ(z)µ(ds, dz)

+

∫ 1
0

∫
|z|>2(3 + α)|z|µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
(3.44)

where we used the fact that
∫ 1

0

∫
|z|≤2 ρ(z)µ(ds, dz) ≥ 0,

∫ 1
0

∫
|z|>2 ρ

n(z)µ(n)(ds, dz) ≥ 0, and the mea-

sures µ(n)(ds, dz) and µ(ds, dz) coincide on the set {(s, z)|s ∈ [0, 1], |z| ≤ n1/α}.

Proceeding as for the first term in the right-hand side of (3.41), we also get that the first term of

(3.44) belongs to ∩p≥1L
p.

On the other hand, for the second term of (3.44) we have:∫ 1
0

∫
|z|>2(3 + α)|z|µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
≤

∫ 1
0

∫
|z|>2(3 + α)z2µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
= 3 + α.

And this completes the proof of Step 1.2.

We finally deduce that supn

∣∣∣Ĥn1,βn(1)
∣∣∣p and supn

∣∣∣Ĥn2,βn(1)
∣∣∣p are integrable for all p ≥ 1. Applying

the dominated convergence theorem, we get

Ĥn1,βn(1)
n→∞−−−→
Lp

H1,Lα(1), ∀p ≥ 1. (3.45)
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Ĥn2,βn(1)
n→∞−−−→
Lp

H2,Lα(1), ∀p ≥ 1. (3.46)

On the other hand, Lemma 3.2 implies that n1/α(Y
n,βn,x0
1 − ςn,β,x01 ) converges almost surely to

σLα1 . Then, an easy computation, using that P (Lα1 = u) = 0, shows the almost sure convergence

1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,βn,x0
1 } = 1[u,∞)

(
n1/α(Y

n,βn,x0
1 − ςn,βn,x01 )

σn

)
a.s.−−−→
n→∞

1[u,∞)(L
α
1 ). (3.47)

Moreover from the boundedness property of the variables, applying the dominated convergence theo-

rem, we get the latter convergence in Lp, ∀p ≥ 1. We finally get that :

σn

n1/α
qn,βn,x0(

uσn

n1/α
+ ςn,βn,x01 )

n→∞−−−→ E[1[u,∞)(L
α
1 )HLα(1)]. (3.48)

where HLα(1) = H1,Lα(1) +H2,Lα(1) and H1,Lα(1),H2,Lα(1) are given by (3.37), (3.38), respectively.

Remark that, we easily get from (3.12), (3.13), (3.17) and (3.45), (3.46) that

sup
u∈R

sup
n

σn

n1/α
qn,βn,x0(

uσn

n1/α
+ ςn,βn,x01 ) <∞. (3.49)

To finish the proof of the convergence, it remains to show that the right-hand side of (3.48) is a

representation for ϕα(u), the density of Lα1 . Let us denote by ϕn(u) the density of the variable Ln1 .

We consider the situation where the drift function b ≡ 0 and x0 = 0 for which n1/αY
n,β,x0
1 = σLn1 .

Then (3.48), (3.49) yield

ϕn (u)
n→∞−−−→ E[1[u,∞)(L

α
1 )HLα(1)] := ψ(u), (3.50)

sup
u∈R

sup
n
ϕn (u) <∞. (3.51)

Assume by contradiction that, for some u, we have ψ(u) 6= ϕα(u). From the fact that P (Lα1 = u) = 0,

it can be seen that ψ is continuous at the point u. Hence, one can find a continuous, compactly

supported, function f such that ∫
f(x)ψ(x)dx 6=

∫
f(x)ϕα(x)dx. (3.52)

On the one hand we have, E[f(Ln1 )] =
∫
f(x)ϕn(x)dx

n→∞−−−→
∫
f(x)ψ(x)dx where we have used the

dominated convergence theorem with (3.50)-(3.51). On the other hand, we can write

E[f(Ln1 )] = E[f(Ln1 )1{Ln1 =Lα1 }] + E[f(Ln1 )1{Ln1 6=Lα1 }]. (3.53)

By Lemma 3.1, we have P(Ln1 = Lα1 )
n→∞−−−→ 1. We deduce that,

E[f(Ln1 )]
n→∞−−−→ E[f(Lα1 )] =

∫
f(x)ϕα(x)dx. (3.54)

This last convergence result clearly contradicts (3.52). And consequently we get that E[1[u,∞)(L
α
1 )HLα(1)] =

ϕα(u). Combining the preceding results with (3.48), we can easily get the results of Theorem 3.2.

21



Remark 3.4. i) From the convergence (3.33), proceeding as in the proof of Theorem 3.2, we can state

that
σn

n1/α
pβn1
n

(x0,
uσn

n1/α
+ ς

(k),n,βn,x0
1 )

n→∞−−−→ ϕα(u), if k >
1

α
− 1.

ii) The results of Theorem 3.2 have been obtained by Kulik [12], using the parametrix method.

In the next theorem, we study the asymptotic behavior of the derivatives of the density with

respect to the parameters θ and σ. Such results are crucial in asymptotic statistics.

Theorem 3.3. Let (βn)n≥1 be a sequence such that βn
n→∞−−−→ β. For all (x0, u) ∈ R2,

i) σ2
n

n
2
α−1

∂θp
βn
1
n

(x0,
uσn
n1/α + ςn,βn,x01 )

n→∞−−−→ −∂θb(x0, θ)× ϕ′α(u),

σ2
n

n1/α∂σp
βn
1
n

(x0,
uσn
n1/α + ςn,βn,x01 )

n→∞−−−→ −ϕα(u)− uϕ′α(u),

ii) supu∈R supn

∣∣∣∣ σ2
n

n
2
α−1

∂θp
βn
1
n

(x0,
uσn
n1/α + ςn,βn,x01 )

∣∣∣∣ <∞,
supu∈R supn

∣∣∣∣ σ2
n

n1/α∂σp
βn
1
n

(x0,
uσn
n1/α + ςn,βn,x01 )

∣∣∣∣ <∞.
The proof of this theorem is postponed to Section 3.4.2 below. Let us first remark that from (3.9)

and Theorem 2.3, we have

∇βpβn1
n

(x0,
uσn

n1/α
+ ςn,βn,x01 ) = ∇βqn,βn,x0(

uσn

n1/α
+ ςn,βn,x01 )

= E
[
1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,βn,x0
1 }HY n,βn,x01

(H
Y
n,βn,x0
1

(∇βY
n,βn,x0
1 ))

]
. (3.55)

Moreover, from (2.7), (2.14) and (2.18), (2.19), by some simple calculus, we get the explicit formula

for the iterated Malliavin weight

H
Y
n,β,x0
1

(H
Y
n,β,x0
1

(∇βY
n,β,x0
1 ))

=

∂θY n,β,x0
1

∂σY
n,β,x0
1

H
Y
n,β,x0
1

(1)2 −

V n,θ
1

V n,σ
1

 2H
Y
n,β,x0
1

(1)

Un,β1

+

∂θY n,β,x0
1

∂σY
n,β,x0
1

 HY n,β,x01

(1)Wn,β
1

(Un,β1 )2
+

∂θY n,β,x0
1

∂σY
n,β,x0
1

 (Wn,β
1 )2

(Un,β1 )4

−

V n,θ
1

V n,σ
1

 Wn,β
1

(Un,β1 )3
+

∂θY n,β,x0
1

∂σY
n,β,x0
1

 2Dn,β
1

(Un,β1 )2
−

∂θY n,β,x0
1

∂σY
n,β,x0
1

 Qn,β1

(Un,β1 )3
+

Tn,θ1

Tn,σ1

 1

(Un,β1 )2
.

(3.56)

where Hn
Y
n,β,x0
1

(1), Un,β1 ,Wn,β
1 are given by (3.13), (3.19), (3.21), respectively.

The expression of ∂θY
n,β,x0
t is given by solving

∂θY
n,β,x0
t =

1

n

∫ t

0
b′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s ds+

1

n

∫ t

0
∂θb(Y

n,β,x0
s , θ)ds, (3.57)

22



we get

∂θY
n,β,x0
1 =

1

n
εn1

∫ 1

0
(εns )−1∂θb(Y

n,β,x0
s , θ)ds.

(3.58)

The expression of ∂σY
n,β,x0
t is given by solving ∂σY

n,β,x0
t = 1

n

∫ t
0 b
′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s ds+

Lnt
n1/α , and

we get that

∂σY
n,β,x0
1 =

1

n1/α
εn1

∫ 1

0
(εns )−1dLns . (3.59)

For the computations of V n,θ
1 = Γ(Y

n,β,x0
1 , ∂θY

n,β,x0
1 ) and V n,σ

1 = Γ(Y
n,β,x0
1 , ∂σY

n,β,x0
1 ), using (2.15),

(2.16) we have

V n,θ
1 =

1

n
(εn1 )2

∫ 1

0
(εns )−2

(
Un,βs

[
(∂θb)

′(Y
n,β,x0
s , θ) + b′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s

])
ds, (3.60)

V n,σ
1 =

1

n
(εn1 )2

∫ 1

0
(εns )−2

(
b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Un,βs

)
ds+

σ

n2/α
(εn1 )2

∫ t

0

∫
R

(εns )−2ρn(z)µ(n)(ds, dz).

(3.61)

Finally from Eq.((2.20) - (2.23)) we compute explicitlyDn,β
1 = Γ(Y

n,β,x0
1 , LY

n,β,x0
1 ), Qn,β1 = Γ(Y

n,β,x0
1 ,Wn,β

1 ),

Tn,θ1 = Γ(Y
n,β,x0
1 , V n,θ

1 ) Tn,σ1 = Γ(Y
n,β,x0
1 , V n,σ

1 ) we get:

Dn,β
1 =

(εn1 )2

n

∫ 1

0
(εns )−2b′′(Y

n,β,x0
s , θ)LY

n,β,x0
s Un,βs ds+

(εn1 )2

2n

∫ 1

0
(εns )−2b′′(Y

n,β,x0
s , θ)Wn,β

s ds

+
(εn1 )2

2n

∫ 1

0
(εns )−2b′′′(Y

n,β,x0
s , θ)(Un,βs )2ds+

σ2(εn1 )2

2n2/α

∫ 1

0

∫
R

(εns )−2ρn(z)

(
(ρn)′(z) + ρn(z)

F ′n(z)

Fn(z)

)′
µ(n)(ds, dz),

(3.62)

Qn,β1 =
7(εn1 )4

n

∫ 1

0
(εn1 )−4b′′(Y

n,β,x0
s , θ)Wn,β

s Un,βs ds+
2(εn1 )4

n

∫ 1

0
(εn1 )−4b′′′(Y

n,β,x0
s , θ)(Un,βs )3ds

+
σ4(εn1 )4

n4/α

∫ 1

0

∫
R

(εn1 )−4ρn(z)
[(

(ρn)′(z)
)2

+ ρn(z)(ρn)′′(z)
]
µ(n)(ds, dz),

(3.63)

Tn,θ1 =
3(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)V n,θ

s Un,βs ds+
(εn1 )3

n

∫ 1

0
(εn1 )−3(∂θb)

′(Y
n,β,x0
s , θ)Wn,β

s ds

+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s Wn,β

s ds+
(εn1 )3

n

∫ 1

0
(εn1 )−3(∂θb)

′′(Y
n,β,x0
s , θ)(Un,βs )2ds

+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s (Un,βs )2ds,

(3.64)

Tn,σ1 =
3(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)V n,σ

s Un,βs ds+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Wn,β

s ds

+
(εn1 )3

n

∫ 1

0
(εn1 )−3b′′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s (Un,βs )2ds+

σ2(εn1 )3

n3/α

∫ 1

0

∫
R

(εn1 )−3ρn(z)(ρn)′(z)µ(n)(ds, dz).

(3.65)
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From the above calculus and combining with (3.55) and (3.56) we have a representation for the

derivative of the density with respect to parameter β as an expectation and this permits to analyze

its asymptotic behavior in small time. To obtain the results of Theorem 3.3, we have to consider the

convergence of the iterated Malliavin weights and this is based on the preceding explicit expressions.

In the sequel, we prove that all the terms involving the derivatives of b with respect to x are remainder

terms.

3.4 Asymptotic behavior of the iterated Malliavin weight and the proof of Theo-

rem 3.3

3.4.1 Preliminary lemmas

In this section, we study the convergence of the iterated Malliavin weightH
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∇βY
n,βn,x0
1 ))

which is the cornerstone of the proof for the convergence of ∇βpβn1
n

later. Firstly, we state some tech-

nical lemmas useful for our aim. The proofs of these lemmas are postponed at the end of the paper.

Lemma 3.3. We have

i) |∂θY
n,β,x0
1 | ≤ C

n , where C is some deterministic constant.

ii) sups∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣ n→∞−−−→
L2p

0, ∀p ≥ 1.

Lemma 3.4. The following decompositions and estimates hold

i) 1
n1/α

Dn,β1(
Un,β1

)2 = n1/α

2σ2 Ĥn3,β(1) +Rn4,β(1) +Rn5,β(1) +Rn6,β(1).

ii) 1
n1/α

Qn,β1(
Un,β1

)3 = n1/α

σ2 Ĥn4,β(1) +Rn7,β(1) +Rn8,β(1).

iii) 1
n1/α+1

sups∈[0,1] |∂σY
n,β,x0
s Wn,β

s |(
Un,β1

)2

n→∞−−−→
L2p

0, ∀p ≥ 1.

The main terms Ĥn3,β(1), Ĥn4,β(1) are given by

Ĥn3,β(1) =

∫ 1
0

∫
R(εns )−2ρn(z)

[
(ρn)′′(z)− (ρn)′(z) (1+α)

z + ρn(z) (1+α)
z2

]
µ(n)(ds, dz)

(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 , (3.66)

Ĥn4,β(1) =

∫ 1
0

∫
R(εn1 )−4ρn(z)

[
((ρn)′(z))2 + ρn(z)(ρn)′′(z)

]
µ(n)(ds, dz)

(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)3 . (3.67)
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where (εns )s∈[0,1] is given by (3.16), and the main and remainder terms satisfy for p ≥ 1, C is some

deterministic constant

Ĥn3,β(1)
n→∞−−−→
Lp

H3,Lα(1), Ĥn4,β(1)
n→∞−−−→
Lp

H4,Lα(1), (3.68)

Rn4,β(1)
n→∞−−−→
L2p

0, Rn5,β(1)
n→∞−−−→
Lp

0, |Rn6,β(1)| ≤ C

2n1+1/α
, (3.69)

Rn7,β(1)
n→∞−−−→
Lp

0, |Rn8,β(1)| ≤ C

n1+1/α
, (3.70)

with

H3,Lα(1) =

∫ 1
0

∫
R

(
ρ(z)ρ′′(z)− ρ(z)ρ′(z) (1+α)

z + (ρ(z))2 (1+α)
z2

)
µ(ds, dz)(∫ 1

0

∫
R ρ(z)µ(ds, dz)

)2 , (3.71)

H4,Lα(1) =

∫ 1
0

∫
R ρ(z)

[
(ρ′(z))2 + ρ(z)ρ′′(z)

]
µ(ds, dz)(∫ 1

0

∫
R ρ(z)µ(ds, dz)

)3 . (3.72)

Lemma 3.5. The following estimates hold:

i)

∣∣∣∣V n,θ1

Un,β1

∣∣∣∣ ≤ C
n ,

ii) 1
n2/α−1

Tn,θ1(
Un,β1

)2

n→∞−−−→
Lp

0, ∀p ≥ 1,

iii)
V n,σ1

Un,β1

= 1
σ +Rn9,β(1),

iv) 1
n1/α

Tn,σ1(
Un,β1

)2 = 1
σ2 Ĥn5,β(1) +Rn10,β(1) +Rn11,β(1) +Rn12,β(1),

where C is some deterministic constant. The main term Ĥn5,β(1) is given by

Ĥn5,β(1) =

∫ 1
0

∫
R(εn1 )−3ρn(z)(ρn)′(z)µ(n)(ds, dz)

εn1

(∫ 1
0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 (3.73)

with (εns ) is given by (3.16). Moreover, the remainder terms (Rni,β(1))9≤i≤12 converge to zero as n→∞

in Lp,∀p ≥ 2 and Ĥn5,β(1)
n→∞−−−−−→

Lp,∀p≥1
H5,Lα(1), with

H5,Lα(1) =

∫ 1
0

∫
R ρ(z)ρ′(z)µ(ds, dz)(∫ 1

0

∫
R ρ(z)µ(ds, dz)

)2 . (3.74)

Lemma 3.6. For all p ≥ 1, the following convergences hold uniformly with respect to x0:

n∂θY
n,β,x0
1

(
Ĥnβ(1)

)2 n→∞−−−→
Lp

∂θb(x0, θ) (HLα(1))2 , (3.75)
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n∂θY
n,β,x0
1 Ĥnβ(1)Ĥn1,β(1)

n→∞−−−→
Lp

∂θb(x0, θ)HLα(1)H1,Lα(1), (3.76)

n1/α∂σY
n,β,x0
1

(
Ĥnβ(1)

)2 n→∞−−−→
Lp

Lα1 (HLα(1))2 , (3.77)

n1/α∂σY
n,β,x0
1 Ĥnβ(1)Ĥn1,β(1)

n→∞−−−→
Lp

Lα1HLα(1)H1,Lα(1), (3.78)

where Ĥnβ(1) = Ĥn1,β(1) + Ĥn2,β(1) with Ĥn1,β(1), Ĥn2,β(1) given by (3.14), (3.15); HLα(1) = H1,Lα(1) +

H2,Lα(1) where H1,Lα(1),H2,Lα(1) are defined by (3.37), (3.38), ∂θY
n,β,x0
1 is given by (3.58) and

∂σY
n,β,x0
1 is given by (3.59).

Lemma 3.7. For all p ≥ 1 then the following convergences hold uniformly with respect to x0:

i) n∂θY
n,β,x0
1 Ĥn3,β(1)

n→∞−−−→
Lp

∂θb(x0, θ)H3,Lα(1),

ii) n∂θY
n,β,x0
1 Ĥn4,β(1)

n→∞−−−→
Lp

∂θb(x0, θ)H4,Lα(1),

iii) n1/α∂σY
n,β,x0
1 Ĥn3,β(1)

n→∞−−−→
Lp

Lα1H3,Lα(1),

iv) n1/α∂σY
n,β,x0
1 Ĥn4,β(1)

n→∞−−−→
Lp

Lα1H4,Lα(1),

where Ĥn3,β(1), Ĥn4,β(1) are given by (3.66), (3.67), and H3,Lα(1),H4,Lα(1), are defined by (3.71),

(3.72).

Remark 3.5. We observe that although Lα1 does not belong to Lp, the choice of the auxiliary function

ρ permits to prove that Lα1 (HLα(1))2, Lα1H3,Lα(1) and Lα1H4,Lα(1) belong to Lp,∀p ≥ 1.

Based on the preceding lemmas, we can prove the following convergence result.

Proposition 3.1. Let (βn)n≥1 be a sequence such that βn
n→∞−−−→ β then for all p ≥ 2

σ2
n

n1/α
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂σY
n,βn,x0
1 ))

n→∞−−−→
Lp

H(2), (3.79)

σ2
n

n2/α−1
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂θY
n,βn,x0
1 ))

n→∞−−−→
Lp

∂θb(x0, θ)H(2)
1 , (3.80)

where H(2) and H(2)
1 are some random variables whose expressions do not depend on β and b.
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Proof. From the equation (3.56), we have σ2
n

n2/α−1HY n,βn,x01

(H
Y
n,βn,x0
1

(∂θY
n,βn,x0
1 ))

σ2
n

n1/αHY n,βn,x01

(H
Y
n,βn,x0
1

(∂σY
n,βn,x0
1 ))

 =

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

H
Y
n,β,x0
1

(1)2 +

 σ2
n

n2/α−1V
n,θn

1

σ2
n

n1/αV
n,σn

1

 −2H
Y
n,βn,x0
1

(1)

(Un,βn1 )

+

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 HY n,βn,x01

(1)Wn,βn
1

(Un,βn1 )2
+

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 (Wn,βn
1 )2

(Un,βn1 )4
−

 σ2
n

n2/α−1V
n,θn

1

σ2
n

n1/αV
n,σn

1

 Wn,βn
1

(Un,βn1 )3

+

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 2Dn,βn
1

(Un,βn1 )2
−

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 Qn,βn1

(Un,βn1 )3
+

 σ2
n

n2/α−1T
n,θn
1

σ2
n

n1/αT
n,σn
1

 1

(Un,βn1 )2
.

(3.81)

We will prove the convergence of each term in the right-hand side of (3.81)

Term 1: Recall (3.13) and set Ĥnβn(1) = Ĥn1,βn(1) + Ĥn2,βn(1), Rnβn(1) = Rn2,βn(1) + Rn3,βn(1).

Remark that by (3.17), we have
∣∣∣Rnβn(1)

∣∣∣ ≤ C
n where C is some deterministic constant. Moreover, we

can rewrite the first term as σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

[H
Y
n,βn,x0
1

(1)
]2

=

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

[n1/α

σn

[
Ĥn1,βn(1) + Ĥn2,βn(1)

]
+Rn1,βn(1) +Rn2,βn(1) +Rn3,βn(1)

]2

=

 n∂θY
n,βn,x0
1

n1/α∂σY
n,βn,x0
1

 Ĥnβn(1)
2

+

 2σn
n1/α−1∂θY

n,βn,x0
1

2σn∂σY
n,βn,x0
1

 Ĥnβn(1)Rnβn(1) +

 2σn
n1/α−1∂θY

n,βn,x0
1

2σn∂σY
n,βn,x0
1

 Ĥnβn(1)Rn1,βn(1)

+

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

Rn1,βn(1)2 +

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

(Rnβn(1)
)2

+

 2σ2
n

n2/α−1∂θY
n,βn,x0
1

2σ2
n

n1/α∂σY
n,βn,x0
1

Rn1,βn(1)Rnβn(1).

(3.82)

where Rn1,βn(1) is given by (3.22). We can deduce from (3.17), (3.45), (3.46), Lemma 3.6 and Lemma

3.3 that  σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

(H
Y
n,β,x0
1

(1)
)2 n→∞−−−−−→

Lp,∀p≥2

∂θb(x0, θ)

Lα1

 (HLα(1))2 .

27



Term 2: From (3.13) and Lemma 3.5 part i) and part iii), we can estimate the second term as σ2
n

n2/α−1V
n,θn

1

σ2
n

n1/αV
n,σn

1

 −2Hn
Y
n,βn,x0
1

(1)

(Un,βn1 )
=

 O( 1
n2/α )

−2σ2
n

n1/α

[
Rn9,βn(1) + 1

σn

]
[ 1

σn
n1/αĤnβn(1) +Rn1,βn(1) +Rnβn(1)

]

=

 O( 1
n1/α )Ĥnβn(1) +O( 1

n2/α )Rn1,βn(1) +O( 1
n2/α )Rnβn(1)

−2Ĥnβn(1)− 2σnRn1,βn (1)

n1/α − 2σnRnβn (1)

n1/α − 2σnRn9,βn(1)Ĥnβn(1)− 2σ2
nRn1,βn (1)Rn9,βn (1)

n1/α − 2σ2
nRnβn (1)Rn9,βn (1)

n1/α


where C is some deterministic constant and O( 1

n2/α ) is a random variable bounded by C
n2/α . From

(3.17), (3.45), (3.46) and Lemma 3.5, we also conclude that σ2
n

n2/α−1V
n,θn

1

σ2
n

n1/αV
n,σn

1

 −2H
Y
n,βn,x0
1

(1)

(Un,βn1 )

n→∞−−−−−→
Lp,∀p≥2

 0

−2HLα(1)


Term 3: From (3.13) and

Wn,βn
1

(Un,βn1 )2
= n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1) where Ĥn1,βn(1) and Rn2,βn(1) are given

by (3.14) and (3.23), we have σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 HY n,βn,x01

(1)Wn,βn
1

(Un,βn1 )2

=

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

[n1/αĤnβn(1)

σn
+Rn1,βn(1) +Rnβn(1)

][
n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1)

]

=

 n∂θY
n,βn,x0
1

n1/α∂σY
n,βn,x0
1

 Ĥnβn(1)Ĥn1,βn(1) +

 σn
n1/α−1∂θY

n,βn,x0
1

σn∂σY
n,βn,x0
1

 Ĥnβn(1)Rn2,βn(1)

+

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

Rn1,βn(1)Rn2,βn(1) +

 σn
n1/α−1∂θY

n,βn,x0
1

σn∂σY
n,βn,x0
1

Rn1,βn(1)Ĥn1,βn(1)

+

 σn
n1/α−1∂θY

n,βn,x0
1

σn∂σY
n,βn,x0
1

Rnβn(1)Ĥn1,βn(1) +

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

Rnβn(1)Rn2,βn(1).

From (3.17), (3.45), (3.46), Lemma 3.3 and Lemma 3.6, we also conclude that σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 HY n,βn,x01

(1)Wn,βn
1

(Un,βn1 )2

n→∞−−−−−→
Lp,∀p≥2

∂θb(x0, θ)H1,Lα(1)HLα(1)

Lα1H1,Lα(1)HLα(1).


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Term 4: Using
Wn,βn

1

(Un,βn1 )2
= n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1) again, we can rewrite

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 (Wn,βn
1 )2

(Un,βn1 )4
=

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

[n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1)

]2

=

 n∂θY
n,βn,x0
1

n1/α∂σY
n,βn,x0
1

 (Ĥn1,βn(1))2 +

 σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 (Rn2,βn(1))2 +

 2σn
n1/α−1∂θY

n,βn,x0
1

2σn∂σY
n,βn,x0
1

Rn2,βn(1)Ĥn1,βn(1).

From (3.17), (3.45), (3.46), Lemma 3.6 and Lemma 3.3, we also conclude that σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 (Wn,βn
1 )2

(Un,βn1 )4

n→∞−−−−−→
Lp,∀p≥2

∂θb(x0, θ) (H1,Lα(1))2

Lα1 (H1,Lα(1))2


Term 5: From Lemma 3.5 we can estimate the fifth term as σ2

n

n2/α−1V
n,θn

1

σ2
n

n1/αV
n,σn

1

 Wn,βn
1

(Un,βn1 )3
=

 O( 1
n2/α )

σ2
n

n1/α

(
Rn9,βn(1) + 1

σn

)
(n1/α

σn
Ĥn1,βn(1) +Rn2,βn(1)

)

=

 O( 1
n1/α )Ĥn1,βn(1) +O( 1

n2/α )Rn2,βn(1)

σnRn9,βn(1)Ĥn1,βn(1) + σ2
n

n1/αRn9,βn(1)Rn2,βn(1) + Ĥn1,βn(1) + σn
n1/αRn2,βn(1)


where C is some deterministic constant. From (3.17), (3.45), Lemma 3.5, we also conclude that σ2

n

n2/α−1V
n,θn

1

σ2
n

n1/αV
n,σn

1

 Wn,βn
1

(Un,βn1 )3

n→∞−−−−−→
Lp,∀p≥2

 0

H1,Lα(1)


Term 6: Using Lemma 3.4 we write the sixth term as σ2

n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 Dn,βn
1

(Un,βn1 )2

=

 n
2∂θY

n,βn,x0
1

n1/α

2 ∂σY
n,βn,x0
1

 Ĥn3,βn(1) +

 σ2
n

n1/α−1∂θY
n,βn,x0
1

σ2
n∂σY

n,βn,x0
1

(Rn4,βn(1) +Rn5,βn(1) +Rn6,βn(1)
)
.

Applying Lemma 3.4, Lemma 3.7 and Lemma 3.3 we obtain that σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 2Dn,βn
1

(Un,βn1 )2

n→∞−−−−−→
Lp,∀p≥2

∂θb(x0, θ)H3,Lα(1)

Lα1H3,Lα(1)


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where H3,Lα(1) is defined in Lemma 3.4.

Term 7: From Lemma 3.4, we can rewrite the seventh term as σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 Qn,βn1

(Un,βn1 )3

=

 n∂θY
n,βn,x0
1

n1/α∂σY
n,βn,x0
1

 Ĥn4,βn(1) +

 σ2
n

n1/α−1∂θY
n,βn,x0
1

σ2
n∂σY

n,βn,x0
1

(Rn7,βn(1) +Rn8,βn(1)
)
.

Applying Lemma 3.4, Lemma 3.7 and Lemma 3.3 we obtain that σ2
n

n2/α−1∂θY
n,βn,x0
1

σ2
n

n1/α∂σY
n,βn,x0
1

 Qn,βn1

(Un,βn1 )3

n→∞−−−−−→
Lp,∀p≥2

∂θb(x0, θ)H4,Lα(1)

Lα1H4,Lα(1)


where H4,Lα(1) is defined in Lemma 3.4.

Term 8: From Lemma 3.5, we have σ2
n

n2/α−1T
n,θn
1

σ2
n

n1/αT
n,σn
1

 1

(Un,βn1 )2
=

 σ2
n

n2/α−1

Tn,θn1

(Un,βn1 )2

Ĥn5,βn(1) + σ2
nRn10,βn

(1) + σ2
nRn11,βn

(1) + σ2
nRn12,βn

(1)


Using the results of Lemma 3.5, we easily deduce that σ2

n

n2/α−1T
n,θn
1

σ2
n

n1/αT
n,σn
1

 1

(Un,βn1 )2

n→∞−−−−−→
Lp,∀p≥2

 0

H5,Lα(1)


where H5,Lα(1) is defined in Lemma 3.5.

Finally from the above convergences, we can deduce the result of Proposition 3.1.

3.4.2 Proof of Theorem 3.3

We will first prove part ii) and then give a proof for part i).

ii) Remark that from (3.79), (3.80)

sup
u∈R

sup
n

E
∣∣∣∣1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,βn,x0
1 }

σ2
n

n2/α−1
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂θY
n,βn,x0
1 ))

∣∣∣∣ <∞,
and,

sup
u∈R

sup
n

E
∣∣∣∣1{Y n,βn,x01 ≥ uσn

n1/α
+ς

n,βn,x0
1 }

σ2
n

n1/α
H
Y
n,βn,x0
1

(H
Y
n,βn,x0
1

(∂σY
n,βn,x0
1 ))

∣∣∣∣ <∞,
by representation (3.55) this leads to
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sup
u∈R

sup
n

∣∣∣∣ σ2
n

n
2
α
−1
∂θp

βn
1
n

(x0,
uσn

n1/α
+ ςn,βn,x01 )

∣∣∣∣ <∞,
and

sup
u∈R

sup
n

∣∣∣∣ σ2
n

n1/α
∂σp

βn
1
n

(x0,
uσn

n1/α
+ ςn,βn,x01 )

∣∣∣∣ <∞.
i) From (3.55), (3.47) and Proposition 3.1, we easily deduce that

σ2
n

n1/α
∂σp

βn
1
n

(x0,
uσn

n1/α
+ ςn,βn,x01 ) =

σ2
n

n1/α
∂σq

n,βn,x0(
uσn

n1/α
+ ςn,βn,x01 )

n→∞−−−→ E[1[u,∞)(L
α
1 )H(2)], (3.83)

σ2
n

n
2
α
−1
∂θp

βn
1
n

(x0,
uσn

n1/α
+ςn,βn,x01 ) =

σ2
n

n
2
α
−1
∂θq

n,βn,x0(
uσn

n1/α
+ςn,βn,x01 )

n→∞−−−→ ∂θb(x0, θ)×E[1[u,∞)(L
α
1 )H(2)

1 ],

(3.84)

where H(2) and H(2)
1 are defined in Proposition 3.1.

To finish the proof of Theorem 3.3, it remains to show that E[1[u,∞)(L
α
1 )H(2)

1 ] = −ϕ′α(u) and E[1[u,∞)(L
α
1 )H(2)] =

− [ϕα(u) + uϕα
′(u)]. This is done in Lemma 3.8 below.

Lemma 3.8. We have

ϕ′α(u) = −E[1[u,∞)(L
α
1 )H(2)

1 ],

−
[
ϕα(u) + uϕα

′(u)
]

= E[1[u,∞)(L
α
1 )H(2)],

where ϕα is the density of Lα1 and H(2) and H(2)
1 are defined in Proposition 3.1.

Proof. Let us consider the situation where b(x, θ) = θ and x0 = 0. In that case, we have Y1
n,β,x0 =

θ
n + σ

n1/αL
n
1 and thus the density of Y1

n,β,x0 is related to the density of Ln1 by the relation,

qn,β,x0(u) =
n1/α

σ
ϕn

(
n1/α

σ

(
u− θ

n

))
.

Then,

∂θq
n,β,x0(u) = −n

2/α−1

σ2
(ϕn)′

(
n1/α

σ

(
u− θ

n

))
,

∂σq
n,β,x0(u) = −n

1/α

σ2
ϕn

(
n1/α

σ

(
u− θ

n

))
− (n1/α)2

σ3

(
u− θ

n

)
(ϕn)′

(
n1/α

σ

(
u− θ

n

))
,

By a change of variables, we get

∂θq
n,β,x0

(
uσ

n1/α
+
θ

n

)
= −n

2/α−1

σ2
(ϕn)′ (u)

∂σq
n,β,x0(

uσ

n1/α
+
θ

n
) = −n

1/α

σ2

[
ϕn(u) + u(ϕn)′(u)

]
.
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Hence, we can apply the results of part ii) of Theorem 3.3 and (3.83), (3.84) in this specific setting.

This yields

∀u, (ϕn)′(u)
n→∞−−−→ −E[1[u,∞)(L

α
1 )H(2)

1 ], (3.85)

∀u,
[
ϕn(u) + u(ϕn)′(u)

] n→∞−−−→ −E[1[u,∞)(L
α
1 )H(2)], (3.86)

sup
u,n
|(ϕn)′(u)| <∞, (3.87)

sup
u,n

∣∣ϕn(u) + u(ϕn)′(u)
∣∣ <∞. (3.88)

Let us denote X (u) = −E[1[u,∞)(L
α
1 )H(2)

1 ] and assume by contradiction that X 6= ϕ′α. Using the conti-

nuity of u 7→ X (u), there exists a smooth, compactly supported function f , such that
∫
X (u)f(u)du 6=∫

ϕ′α(u)f(u)du. Now, on the one hand we have∫
(ϕn)′(u)f(u)du

n→∞−−−→
∫
X (u)f(u)du, (3.89)

where we have used the dominated convergence theorem, together with (3.85), (3.87).

On the other hand, we can write,∫
(ϕn)′(u)f(u)du = −

∫
ϕn(u)f ′(u)du

= −E[f ′(Ln1 )]
n→∞−−−→ −E[f ′(Lα1 )] (3.90)

= −
∫
ϕα(u)f ′(u)du =

∫
ϕ′α(u)f(u)du (3.91)

where the convergence (3.90) is obtained in the same way as (3.54). Clearly (3.91) contradicts (3.89),

and we get E[1[u,∞)(L
α
1 )H(2)

1 ] = −ϕ′α(u).

By the same method, let us denote X1(u) = −E[1[u,∞)(L
α
1 )H(2)] and assume by contradiction that

u 7→ X1(u) is different from u 7→
[
ϕα(u) + u(ϕα)′(u)

]
. Using the continuity of u 7→ X1(u), there exists

a smooth, compactly supported function f , such that
∫
X1(u)f(u)du 6=

∫ [
ϕα(u) + u(ϕα)′(u)

]
f(u)du.

Now, we have ∫ [
ϕn(u) + u(ϕn)′(u)

]
f(u)du

n→∞−−−→
∫
X1(u)f(u)du, (3.92)

where we have used the dominated convergence theorem, together with (3.86), (3.88).

On the other hand, letting g(u) = uf(u) and using the integration by parts formula, we can write,∫ [
ϕn(u) + u(ϕn)′(u)

]
f(u)du =

∫
ϕn(u)f(u)du+

∫
(ϕn)′(u)g(u)du

= E[f(Ln1 )]−
∫
ϕn(u)g′(u)du = E[f(Ln1 )]− E[g′(Ln1 )]

n→∞−−−→ E[f(Lα1 )]− E[g′(Lα1 )] (3.93)
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=

∫
ϕα(u)f(u)du−

∫
ϕα(u)g′(u)du =

∫
ϕα(u)f(u)du+

∫
ϕ′α(u)g(u)du (3.94)

where the convergence (3.93) is obtained in the same way as (3.54). Clearly (3.94) contradicts (3.92),

and the lemma is proved.

4 Appendix

In this appendix, we give the proofs of Lemmas 3.3 - 3.7 of Section 3.4.1.

Proof of Lemma 3.3: i): Using the fact that b has bounded derivatives, the boundedness of (εnt )t∈[0,1],

((εnt ))−1)t∈[0,1] and from (3.58) we obtain that |∂θY
n,β,x0
1 | ≤ C

n .

ii): From (3.59) and the boundedness of ((εnt )r)t∈[0,1]∀r ∈ Z, we have

sup
s∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣ =
1

n1/α
sup
s∈[0,1]

∣∣∣∣εns ∫ s

0
(εnu)−1dLnu

∣∣∣∣
≤ C

n1/α
sup
s∈[0,1]

∣∣∣∣∣
∫ s

0

∫
|z|≤1

(εnu)−1zµ̃(du, dz)

∣∣∣∣∣+
C

n1/α
sup
s∈[0,1]

∣∣∣∣∣
∫ s

0

∫
|z|>1

(εnu)−1zµ(n)(du, dz)

∣∣∣∣∣ (4.1)

We now consider the first term of (4.1).

Using Doob’s martingale inequality, we have

1

n2p/α
E

 sup
s∈[0,1]

(∣∣∣∣∣
∫ s

0

∫
|z|≤1

(εnu)−1zµ̃(du, dz)

∣∣∣∣∣
)2p

 ≤ D(p)

n2p/α
E

∣∣∣∣∣
∫ 1

0

∫
|z|≤1

(εnu)−1zµ̃(du, dz)

∣∣∣∣∣
2p


where D(p) =
(

2p
2p−1

)2p
. And then using Kunita’s first inequality (see Theorem 4.4.23 in [1]), there

exists a constant M(2p) > 0 such that

D(p)

n2p/α
E

∣∣∣∣∣
∫ 1

0

∫
|z|≤1

(εnu)−1zµ̃(du, dz)

∣∣∣∣∣
2p


≤ D(p)M(2p)

n2p/α

[∫ 1

0

∫
|z|≤1

(εnu)−2z2 1

|z|1+α
τ(z/n1/α)dzdu

]p

+
D(p)M(2p)

n2p/α

[∫ 1

0

∫
|z|≤1

(εnu)−2pz2p 1

|z|1+α
τ(z/n1/α)dzdu

]

≤ C1D(p)M(2p)

n2p/α

 (∫ 1

0

∫
|z|≤1

1

|z|α−1
dzdu

)p
+

∫ 1

0

∫
|z|≤1

1

|z|1+α−2p
dzdu

 n→∞−−−→ 0.

where C1 is some deterministic constant. Thus, we can deduce that the first term of (4.1) converges

to zero in L2p,∀p ≥ 1.
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We now consider the second term of (4.1).

From the fact that µ(n)(du, dz) is a positive measure, and the boundedness of (εnt )t∈[0,1], we get that

for C∗ a positive constant

1

n1/α
sup
s∈[0,1]

∣∣∣∣∣εns
∫ s

0

∫
|z|>1

(εnu)−1zµ(n)(du, dz)

∣∣∣∣∣ ≤ C∗

n1/α

∫ 1

0

∫
|z|>1

|z|µ(n)(du, dz). (4.2)

Then,

1

n2p/α
E

(
sup
s∈[0,1]

∣∣∣∣∣εns
∫ s

0

∫
|z|>1

(εnu)−1zµ(n)(du, dz)

∣∣∣∣∣
)2p

≤ C∗

n2p/α
E

(∫ 1

0

∫
|z|>1

|z|µ(n)(du, dz)

)2p

.

Moreover, from µ(n)(ds, dz) = µ̃(n)(ds, dz) + υ(n)(ds, dz) then for C2(p) a positive constant, we have

1

n2p/α
E

(∫ 1

0

∫
|z|>1

|z|µ(n)(du, dz)

)2p

≤ C2(p)

n2p/α

E(∫ 1

0

∫
|z|>1

|z|µ̃(n)(du, dz)

)2p

+ E

(∫ 1

0

∫
|z|>1

|z|υ(n)(du, dz)

)2p
 .

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]), there exists a positive constant C3(2p) such

that

1

n2p/α
E

[∣∣∣∣∣
∫ 1

0

∫
|z|>1

|z|µ̃(n)(ds, dz)

∣∣∣∣∣
]2p

≤ C3(2p)

n2p/α

[(∫ 1

0

∫
|z|>1

z2υ(n)(ds, dz)

)p
+

(∫ 1

0

∫
|z|>1

z2pυ(n)(ds, dz)

)]

=
C3(2p)

n2p/α

(∫ 1

0

∫
|z|>1

z2 1

|z|1+α
τ(z/n1/α)dzds

)p
+
C3(2p)

n2p/α

[∫ 1

0

∫
|z|>1

z2p 1

|z|1+α
τ(z/n1/α)dzds

]

≤ 2C3(2p)

n2p/α

[∫ 1

0

∫ 2n1/α

1

1

zα−1
dzds

]p
+

[
2C3(2p)

n2p/α

∫ 1

0

∫ 2n1/α

1

1

zα+1−2p
dzds

]
n→∞−−−→ 0.

(4.3)

where we used the fact that τ is a non negative function equal to 1 on [-1,1], vanishing on [−2, 2]c and

satisfying 0 ≤ τ ≤ 1 and M is some deterministic constant. Hence, we get that the second term of

(4.1) also converges to zero in L2p,∀p ≥ 1. And this finishes the proof of the part ii).

Proof of Lemma 3.4: Recall that Dn,β
1 and Un,β1 are given by (3.62) and (3.19). The part i) of

this lemma is proved by decomposing
Dn,β1

(Un,β1 )
2 , then we obtain that the main term is (3.66) and the
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remainder terms are

Rn4,β(1) =

∫ 1
0

∫
|z|>2(εns )−2ρn(z)ρn′(z) τ

′(z/n1/α)

τ(z/n1/α)
µ(n)(ds, dz)

2σ2n1/α(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 +

+

∫ 1
0

∫
|z|>2(εns )−2 (ρn(z))2

[
τ ′′(z/n1/α)

τ(z/n1/α)
−
(
τ ′(z/n1/α)

τ(z/n1/α)

)2
]
µ(n)(ds, dz)

2σ2n1/α(εn1 )2
(∫ 1

0

∫
R(εns )−2ρn(z)µ(n)(ds, dz)

)2 ,

Rn5,β(1) =
(εn1 )2

∫ 1
0 (εns )−2b′′(Y

n,β,x0
s , θ)

(
2LY

n,β,x0
s Un,βs +Wn,β

s

)
ds

2n1+1/α
(
Un,β1

)2 ,

Rn6,β(1) =
(εn1 )2

∫ 1
0 (εns )−2b′′′(Y

n,β,x0
s , θ)(Un,βs )2ds

2n1+1/α
(
Un,β1

)2 .

The part ii) of this lemma is proved by decomposing
Qn,β1

(Un,β1 )
3 , then we obtain that the main term is

(3.67) and the remainder terms are

Rn7,β(1) =
7(εn1 )4

∫ 1
0 (εn1 )−4b′′(Y

n,β,x0
s , θ)Wn,β

s Un,βs ds

n1+1/α
(
Un,β1

)3

Rn8,β(1) =
2(εn1 )4

∫ 1
0 (εn1 )−4b′′′((Y

n,β,x0
s , θ)(Un,βs )3ds

n1+1/α
(
Un,β1

)3 .

We now study the convergence of the main terms.

From (3.16), the boundedness of b′, and Lemma 3.1, it is clear that Ĥn3,βn(1) converges almost surely

to H3,Lα(1). Moreover, using again the boundedness of b′, the upper and lower bounds of (εns )s∈[0,1]

and the fact that ρn(z) is a non negative function, we deduce the upper bound, for some constant

C > 0,

∣∣∣Ĥn3,β(1)
∣∣∣ ≤ C


∫ 1

0

∫
R

(
ρn(z)

∣∣(ρn)′′(z)
∣∣+ ρn(z) |ρn′(z)| (1+α)

|z| + (ρn(z))2 (1+α)
z2

)
µ(n)(ds, dz)(∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)
)2

 . (4.4)

Now we show that supn

∣∣∣Ĥn3,βn(s)
∣∣∣p is integrable. This is done by the same method as in Step

1.1 in the proof of Theorem 3.2. And then applying the dominated convergence theorem, we get

Ĥn3,β(1)
n→∞−−−−−→

Lp,∀p≥1
H3,Lα(1). In the same way we prove that Ĥn4,β(1)

n→∞−−−−−→
Lp,∀p≥1

H4,Lα(1).

Moreover, using that b has bounded derivatives and Un,βs

Un,β1

is bounded for 0 ≤ s ≤ 1, the remainder
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terms satisfy the upper bounds

|Rn5,β(1)| ≤ C

[
sups∈[0,1] |LY

n,β,x0
s |

n1+1/αUn,β1

+
sups∈[0,1] |W

n,β
s |

n1+1/α(Un,β1 )2

]
, |Rn6,β(1)| ≤ C

2n1+1/α
, (4.5)

|Rn7,β(1)| ≤ C

[
sups∈[0,1] |W

n,β
s |

n1+1/α(Un,β1 )2

]
, |Rn8,β(1)| ≤ C

n1+1/α
. (4.6)

Now from (3.19), (3.20) and (3.21), using that b has bounded derivatives and sup0≤s≤1
Un,βs

Un,β1

is bounded

again , we get that

sups∈[0,1] |LY
n,β,x0
s |

n1+1/αUn,β1

≤ C

 1

n2+1/α
+

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)

nσ
∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)


+ C

∫ 1
0

∫
|z|>2 z

2
∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣µ(n)(ds, dz)

σn1+1/α
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)



sups∈[0,1] |W
n,β
s |

n1+1/α(Un,β1 )2
≤ C

 1

n2+1/α
+

∫ 1
0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)

nσ
[∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)
]2

 . (4.7)

From the results of Step 1.1, Step 1.2 in the proof of Theorem 3.2, and the control given in the proof

of Theorem 3.1 for (3.27) we can easily deduce that
sups∈[0,1] |LY

n,β,x0
s |

n1+1/αUn,β1

and
sups∈[0,1] |W

n,β
s |

n1+1/α(Un,β1 )2
converge to

zero in Lp, ∀p ≥ 1. Clearly, Rn5,β(1) and Rn7,β(1) also converge to zero in Lp,∀p ≥ 1.

We now consider the convergence to zero of Rn4,β(1).

From the boundedness of (εnt )t∈[0,1], the definition of ρn [see (3.10)], and from the fact that µ(n)(ds, dz)

is a positive measure, we have

∣∣Rn4,β(1)
∣∣ ≤ C

2σ2


∫ 1

0

∫
|z|>2

[
|z|3
n1/α

∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣+ z4

n1/α

(∣∣∣ τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣+
(
τ ′(z/n1/α)

τ(z/n1/α)

)2
)]

µ(n)(ds, dz)(∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
)2


(4.8)

≤ C

2σ2


∫ 1

0

∫
|z|>2

[
|z|3
n1/α

∣∣∣ τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣+ z4

n1/α

(∣∣∣ τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣+
(
τ ′(z/n1/α)

τ(z/n1/α)

)2
)]

µ(n)(ds, dz)

n4/α


(4.9)

where we used the fact that
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz) > n2/α, if there exists a jump of the Lévy process

in [−2n1/α,−n1/α)∪ (n1/α, 2n1/α]. And if there are no jumps in [−2n1/α,−n1/α)∪ (n1/α, 2n1/α], since
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τ(z/n1/α) = 1 if |z| ≤ n1/α, we have τ ′(z/n1/α) = 0 and τ ′′(z/n1/α) = 0. Thus, for M(p) a positive

constant, we have

E
(
R1,n

4,β(1)
)2p
≤ C2p

22pσ2pn2p/α
E

 ∫ 1

0

∫
|z|>2

 1

n1/α

(∣∣∣ z

n1/α

∣∣∣)3
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣
+
( z

n1/α

)4

∣∣∣∣∣τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣+

(
τ ′(z/n1/α)

τ(z/n1/α)

)2
 µ(n)(ds, dz)

2p

≤ M(p)

σ2pn2p/α

 E

 ∫ 1

0

∫
|z|>2

1

n1/α

(∣∣∣ z

n1/α

∣∣∣)3
∣∣∣∣∣τ ′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

2p

+

E

 ∫ 1

0

∫
|z|>2

( z

n1/α

)4
∣∣∣∣∣τ ′′(z/n1/α)

τ(z/n1/α)

∣∣∣∣∣µ(n)(ds, dz)

2p

+ E

 ∫ 1

0

∫
|z|>2

( z

n1/α

)4
(
τ ′(z/n1/α)

τ(z/n1/α)

)2

µ(n)(ds, dz)

2p 
Similarly to the proof of Theorem 3.1, we show that under assumption H1(bii), R1,n

4,β(1) converges to

zeros as n→∞ in L2p for all p ≥ 1 and this completes the proof of this part.

iii) From Lemma 3.3-ii) and the estimation (4.7), we easily deduce the result of this part.

Proof of Lemma 3.5: i) From (3.60), the fact that b has bounded derivatives, sup0≤s≤1
Un,βs

Un,β1

is

bounded, the upper and lower bounds of ((εnt ))t∈[0,1], we easily deduce the result of the part i).

ii) From (3.19), (3.64) we have

Tn,θ1

n
2
α
−1
(
Un,β1

)2 =
3(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)V n,θ

s Un,βs ds

n
2
α

(
Un,β1

)2 +
(εn1 )3

∫ 1
0 (εn1 )−3(∂θb)

′(Y
n,β,x0
s , θ)Wn,β

s ds

n
2
α

(
Un,β1

)2

+
(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s Wn,β

s ds

n
2
α

(
Un,β1

)2 +
(εn1 )3

∫ 1
0 (εn1 )−3(∂θb)

′′(Y
n,β,x0
s , θ)(Un,βs )2ds

n
2
α

(
Un,β1

)2

+
(εn1 )3

∫ 1
0 (εn1 )−3b′′′(Y

n,β,x0
s , θ)∂θY

n,β,x0
s (Un,βs )2ds

n
2
α

(
Un,β1

)2 .

We deduce, using Lemma 3.3-i) and Lemma 3.5-i) that∣∣∣∣∣∣∣
Tn,θ1

n
2
α
−1
(
Un,β1

)2

∣∣∣∣∣∣∣ ≤
C1

n
2
α

+ C2

sups∈(0,1] |W
n,β
s |

n
2
α (Un,β1 )2

, (4.10)

where C1, C2 are some deterministic constants. Now from the estimation (4.7), we easily deduce that
sups∈(0,1] |W

n,β
s |

n
2
α (Un,β1 )2

tends to zero as n→∞ and then we get the result of this part.
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iii) and iv) From (3.19), (3.61), (3.65), an easy computation shows the decomposition of
V n,σ1

Un,β1

and

1
n1/α

Tn,σ1(
Un,β1

)2 , where the leading term is (3.73) and the remainder terms are given by

Rn9,β(1) =
(εn1 )2

∫ 1
0 (εns )−2

(
b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Un,βs

)
ds

nUn,β1

Rn10,β(1) =
3(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)V n,σ

s Un,βs ds

n1+1/α
(
Un,β1

)2

Rn11,β(1) =
(εn1 )3

∫ 1
0 (εn1 )−3b′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s Wn,β

s ds

n1+1/α
(
Un,β1

)2

Rn12,β(1) =
(εn1 )3

∫ 1
0 (εn1 )−3b′′′(Y

n,β,x0
s , θ)∂σY

n,β,x0
s (Un,βs )2ds

n1+1/α
(
Un,β1

)2

Moreover, using that b has bounded derivatives and sup0≤s≤1
Un,βs

Un,β1

is bounded, the remainder terms

satisfy the upper bounds

∣∣Rn9,β(1)
∣∣ ≤ C

n
sup
s∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣ , ∣∣Rn10,β(1)
∣∣ ≤ C1

n1+1/α

[
sups∈[0,1] |V

n,σ
s |

Un,β1

]
,

|Rn11,β(1)| ≤ C2

n1+1/α

sups∈[0,1] |∂σY
n,β,x0
s Wn,β

s |(
Un,β1

)2

 , |Rn12,β(1)| ≤ C3

n1+1/α
sup
s∈[0,1]

∣∣∣∂σY n,β,x0
s

∣∣∣
where C,C1, C2, C3 are deterministic constants.

We observe that from Lemma 3.3 and Lemma 3.4-iii), we can deduce immediately the convergences

to zero in Lp,∀p ≥ 2 of the remainder terms Rn9,β(1),Rn11,β(1) and Rn12,β(1).

For Rn10,β(1), the proof strongly relies on the Lemma 3.3-ii), (3.61), (3.19), the boundedness of (εns ),

the fact that b has bounded derivatives and Un,βs

Un,β1

is bounded for 0 ≤ s ≤ 1. Then we easily deduce the

result of this step.

From the above estimations, it follows that the remainder terms converge to zero in Lp for all p ≥ 2.

The convergence of Ĥn5,β(1) follows by the same method as in the proof of the convergence of Ĥn3,β(1)

in the proof of Lemma 3.3 and this completes the proof of this lemma.

Proof of Lemma 3.6: We first prove (3.75). From the fact that supx0 sups∈[0,1] |εns − 1|+ |(εns )−1 −

1| n→∞−−−→ 0, the explicit expression of ∂θY
n,β,x0
1 given in (3.58) we easily get

sup
x0
|n∂θY

n,βn,x0
1 − ∂θb(x0, θ)|

n→∞−−−→
a.s

0.
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From the expressions (3.14), (3.15), using the fact that s 7→ εns converges uniformly with respect to x0

to the constant 1 and Lemma 3.1, it can be seen that

sup
x0
|Ĥnβ(1)−HLα(1)| n→∞−−−→

a.s
0.

We deduce that almost surely, one has the convergence

sup
x0

∣∣∣∣n∂θY n,β,x0
1

(
Ĥnβ(1)

)2
− ∂θb(x0, θ) (HLα(1))2

∣∣∣∣ n→∞−−−→ 0. (4.11)

Since supn

∣∣∣Ĥnβ(1)
∣∣∣p is integrable for all p ≥ 1, and using |∂θY

n,β,x0
1 | ≤ C

n , we can apply the dominated

convergence theorem and see that the convergence (4.11) holds in Lp-norm for all p ≥ 1.

For (3.76): the proof is similar to (3.75).

For (3.77): let us recall that Lns =
∫ s

0

∫
|z|≤1 zµ̃

(n)(dt, dz) +
∫ s

0

∫
|z|>1 zµ

(n)(dt, dz). Then, from (3.59) we

have

n1/α∂σY
n,β,x0
1

(
Ĥnβ(1)

)2
=
(
Ĥnβ(1)

)2
εn1

∫ 1

0
(εns )−1dLns

=
(
Ĥnβ(1)

)2
εn1

∫ 1

0

∫
|z|≤1

(εns )−1zµ̃(ds, dz) +
(
Ĥnβ(1)

)2
εn1

∫ 1

0

∫
|z|>1

(εns )−1zµ(n)(ds, dz) (4.12)

where we used the fact that the measures µ(n) and µ coincide on the set {(t, z)|t ∈ [0, 1], |z| ≤ n1/α}.

We now consider the first term of (4.12). We will prove that
(
Ĥnβ(1)

)2
εn1
∫ 1

0

∫
|z|≤1 (εns )−1zµ̃(ds, dz)

n→∞−−−−−→
Lp,∀p≥1

(HLα(1))2 ∫ 1
0

∫
|z|≤1 zµ̃(ds, dz) which reduces to prove that(

Ĥnβ(1)
)2 n→∞−−−−−−→

L2p,∀p≥1
(HLα(1))2 and εn1

∫ 1
0

∫
|z|≤1 (εns )−1zµ̃(ds, dz)

n→∞−−−−−−→
L2p,∀p≥1

∫ 1
0

∫
|z|≤1 zµ̃(ds, dz).

From (3.45), (3.46) and the fact that supx0 sups∈[0,1] |εns − 1| +
∣∣(εns )−1 − 1

∣∣ n→∞−−−→ 0 we easily get the

result about the convergence of the first term in the right-hand side of (4.12).

For the second term in the right-hand side of (4.12), we show that(
Ĥnβ(1)

)2
εn1
∫ 1

0

∫
|z|>1 (εns )−1zµ(n)(ds, dz)

n→∞−−−−−→
Lp,∀p≥1

(HLα(1))2 ∫ 1
0

∫
|z|>1 zµ(ds, dz) which reduces to prove

Ĥnβ(1)
n→∞−−−→
L2p

HLα(1), ∀p ≥ 1, (4.13)

Ĥnβ(1)εn1

∫ 1

0

∫
|z|>1

(εns )−1zµ(n)(ds, dz)
n→∞−−−→
L2p

HLα(1)

∫ 1

0

∫
|z|>1

zµ(ds, dz), ,∀p ≥ 1. (4.14)

For (4.13), this follows from (3.45), (3.46).

For (4.14), applying Lemma 3.1, the fact that s 7→ εns converges uniformly to the constant 1 and (3.35),

(3.36), it follows easily that

Ĥnβ(1)εn1

∫ 1

0

∫
|z|>1

(εns )−1zµ(n)(ds, dz)
n→∞−−−→
a.s.

HLα(1)

∫ 1

0

∫
|z|>1

zµ(ds, dz). (4.15)
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Now using (3.39) we can deduce that for C a positive constant,∣∣∣∣∣Ĥnβ(1)εn1

∫ 1

0

∫
|z|>1

(εns )−1zµ(n)(ds, dz)

∣∣∣∣∣
≤ C


∫ 1

0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 +

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

∫ 1

0

∫
2≥|z|>1

|z|µ(ds, dz)


+C


∫ 1

0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 +

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(ds, dz)


(4.16)

Considering the first term in the right-hand side of (4.16), from the proofs of Step 1.1 and Step 1.2

in Theorem 3.2, we deduce that it is bounded by a random variable independent of n and belonging

to ∩p≥1L
2p.

We now consider the second term in the right-hand side of (4.16). From (3.10), we have∣∣∣∣∣∣∣
∫ 1

0

∫
R ρ

n(z)|(ρn)′(z)|µ(n)(ds, dz)[∫ 1
0

∫
R ρ

n(z)µ(n)(ds, dz)
]2 +

∫ 1
0

∫
R

[
|ρn′(z)|+ 1+α

|z| ρ
n(z)

]
µ(n)(ds, dz)∫ 1

0

∫
R ρ

n(z)µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(ds, dz)

∣∣∣∣∣∣∣
≤

∫ 1
0

∫
|z|≤2 ρ(z) |ρ′(z)|µ(ds, dz)(∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)
)2 +

∫ 1
0

∫
|z|≤2

(
|ρ′(z)|+ ρ(z)1+α

|z|

)
µ(ds, dz)∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)

+

 ∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2 +

∫ 1
0

∫
|z|>2 (3 + α) |z|µ(n)(ds, dz)∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz) (4.17)

Using the Cauchy - Schwarz inequality
∫ 1

0

∫
|z|>2 µ

n(dt, dz)×
∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz) ≥
(∫ 1

0

∫
|z|>2 |z|µ

n(dt, dz)
)2

we get:∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 z

2µ(n)(ds, dz)
)2

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz) ≤

∫ 1
0

∫
|z|>2 2|z|3µ(n)(ds, dz)(∫ 1

0

∫
|z|>2 |z|µ(n)(dt, dz)

)3

(∫ 1

0

∫
|z|>2

µ(n)(dt, dz)

)2

=

∑N1
i=1 2|Zi|3(∑N1
i=1 |Zi|

)3

(∫ 1

0

∫
|z|>2

µ(n)(dt, dz)

)2

≤ 2

(∫ 1

0

∫
|z|>2

µ(dt, dz)

)2

(4.18)

and∫ 1
0

∫
|z|>2(3 + α)|z|µ(n)(ds, dz)∫ 1
0

∫
|z|>2 z

2µ(n)(ds, dz)

∫ 1

0

∫
|z|>2

|z|µn(dt, dz) ≤ (3 + α)

∫ 1

0

∫
|z|>2

µ(dt, dz). (4.19)
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Combining (4.18), (4.19) with (4.17), it follows that the second term in the right-hand side of (4.16)

is also bounded by a random variable independent of n and belonging to ∩p≥1L
2p. As a consequence,

we get that

sup
n

∣∣∣∣∣Ĥnβ(1)εn1

∫ 1

0

∫
|z|>1

(εns )−1zµ(n)(ds, dz)

∣∣∣∣∣
2p

is integrable ∀p ≥ 1. (4.20)

Under (4.15) and (4.20), we can apply the dominated convergence theorem and the result on the

convergence of the second term in the right-hand side of (4.12) follows. This achieves the proof of

(3.77).

For (3.78), the proof is similar to (3.77).

Proof of Lemma 3.7: i) and ii): From (3.68) and proceeding as in the proof of (3.75), we deduce

the results of i) and ii).

iii) and iv): From (3.59) and the fact that the measures µ(n) and µ coincide on the set {(t, z)|t ∈

[0, 1], |z| ≤ n1/α}, we have

n1/α∂σY
n,β,x0
1 Ĥn3,β(1) = Ĥn3,β(1)εn1

∫ 1

0
(εns )−1dLns

= Ĥn3,β(1)εn1

∫ 1

0

∫
|z|≤1

(εns )−1zµ̃(ds, dz) + Ĥn3,β(1)εn1

∫ 1

0

∫
|z|>1

(εns )−1zµ(n)(ds, dz). (4.21)

From (3.68) and proceeding as in the proof of (3.77), we can deduce the result of iii). Moreover, in

the same way we can complete the proof of part iv).
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