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Abstract

This work focuses on the asymptotic behavior of the density in small time of a stochastic dif-
ferential equation driven by an a-stable process with index « € (0,2). We assume that the process
depends on a parameter 3 = (6,0)” and we study the sensitivity of the density with respect to
this parameter. This extends the results of [5] which was restricted to the index o € (1,2) and
considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus,
we obtain the representation of the density and its derivative as an expectation and a conditional
expectation. This permits to analyze the asymptotic behavior in small time of the density, using

the time rescaling property of the stable process.
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1 Introduction

We consider the following stochastic differential equation (SDE)
t
XP =z +/ b(XP,0)ds + oL (1.1)
0

for t € [0,1], where (L)1) is a Lévy process whose Lévy measure is similar near zero to the one of
an a-stable process with exponent 0 < a < 2.

In the last decades, a large literature has been devoted to the existence and regularity of the
density to the solution (X;), for ¢ > 0, of a general stochastic equation driven by pure jump Lévy
processes. We can mention the works of Bichteler, Gravereaux and Jacod [2], Picard [13], Denis [§],
Ishikawa-Kunita [10], Fournier-Printems [9] and more recently the works of Debussche-Fournier [7]
and Kulik [12], under Hélder continuity assumptions on the coefficients of the equation and assuming
that the equation is driven by an a-stable process.

In this paper, our aim is to study the asymptotic behavior, in small time, of the density of (Xtﬁ ), the
solution of (1.1), as well as its derivative with respect to the parameter 3 = (0, ¢)”. This problem plays
an important role in asymptotic Statistics based on high frequency observations. Indeed, considering
the estimation of 5 from the discrete time observations (X Z-ﬁ/n)ogz‘gm and denoting by pf /n(m,y) the
transition density of the discrete time process, the estimation rate of the parameter 8 strongly relies
on the asymptotic behavior of the derivative Vgpf /n(m, y), as n goes to infinity. Based on the results
established in the present paper, we derive, in [6], an asymptotic expansion of the log-likelihood ratio
and we prove the LAMN property for the parameter 3.

The main contributions of this paper are obtained by using the Malliavin calculus for jump pro-
cesses developed by Bichteler, Gravereaux and Jacod [2] and adapted to the particular case of equation
(1.1) by Clément-Gloter [5]. Although it requires some strong derivability assumptions on the coeffi-
cients of the equation, it leads to some explicit representation formulas for the density and its derivative
(see also Ivanenko - Kulik [11]). Let us mention that alternative representations for the density can be
obtained by other methods, for example the method proposed by Bouleau-Denis [3] based on Dirichlet
forms or the parametrix method used by Kulik [12].

This paper is made up of two parts. In the first part we establish some representation formulas
for the density and its derivative. This extends the results of Clément-Gloter [5] where only the
derivative with respect to the drift parameter 6 was considered. These representation formulas involve
some Malliavin weights whose expressions are given explicitly. This permits to identify in the Malliavin

weights a main part and a negligible part in small time asymptotics.



In the second part of the paper, we study the asymptotic behavior of the transition density of
XtB and its derivative, in small time. This was done in [5] with the restriction « > 1 and for a
derivative with respect to parameter in the drift part of the SDE only. In Theorem 3.2 and Theorem
3.3, we obtain asymptotic results in small time for 0 < o < 2 and for the derivatives with respect to
parameters in the drift and the Lévy part of the SDE. In contrast to [5], the exposition now involves
the solution of the ordinary differential equation defined by the deterministic part of (1.1). Our results
are established through a careful study of each terms appearing in the Malliavin weights, which is
complicated by the non integrability of the a-stable process as a < 1.

The present paper is organized as follows : in Section 2, we recall the Malliavin integration by
parts setting developed by [2] and used in [5], and give some representations of the transition density,
its derivative, as well as its logarithm derivative. The main contribution of this section is to explicit
the iterated Malliavin weights appearing in the expression of the derivative of the density. Section
3 studies their asymptotic behavior in small time by decomposing the Malliavin weights into a main
part and a negligible part, and contains the main results of the paper (Theorem 3.2 and Theorem
3.3). It is worth to note that the rate of convergence for the derivative of the density with respect to
f and o are different and that the derivative with respect to ¢ involves a more careful study. Finally,

Section 4 contains some more technical proof.

2 Representation of the transition density via Malliavin calculus

The main aim of this section is to represent the density of a pure jump Lévy process as well as its
derivative and its logarithm derivative as an expectation, using the Malliavin calculus for jump pro-
cesses developed by Bichteler, Gravereaux and Jacod [2] and used by Clément-Gloter [5]. Due to the
singularity of the Lévy measure of (L;) at zero, we are not exactly in the context of [2], and we first
recall the appropriate integration by parts setting developed in [5] for the reader convenience.

We first introduce some notations which are used throughout this article. For a vector h € R¥, hT
denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on R x R?
depending on both variables (x, 3), here 8 = (§,0)T € R x (0,4+0oc), we denote by f’ the derivative of
f with respect to the variable x, by dyf the derivative of f with respect to the parameter 6, by 9, f

9o f

9o f

the derivative of f with respect to the parameter o, and Vgf =



2.1 Integration by parts setting

We consider a filtered probability space (€2, G, (Gt)e[o,1), P) endowed with a Poisson random measure p
on [0,1] x E, where FE is an open subset of R, with compensator v on [0, 1] x E and with compensated

measure [ = 4 — v. We now consider the process (Ytﬂ )tefo,1]> the solution of

Yt —yo+/ a(YP,0) ds—l—ca/ / (ds,dz), (2.1)

where the parameter 3 = (0, )7 belongs to R x (0,00), a is a function and c is a constant.
This is the framework of Clément-Gloter [5] and our aim is to give some explicit representation formulas
for the density of Yl’B and its derivative with respect to j3.
We assume that the following assumptions are fulfilled.
H: (a) The function a has bounded derivatives up to order five with respect to both variables.
(b) The compensator of the Poisson random measure  is given by v(dt, dz) = dt x g(z)dz with g > 0
on E, C! on E and such that

Vp > 2,/ |z|Pg(z)dz < 0.

E

Note that comparing to the assumptions of [5], we relax the boundedness assumption on a.

We now recall the Malliavin operators L and I" and their basic properties (see Bichteler, Gravereaux,
Jacod [2], Chapter IV, Section 8-9-10). For a test function f : [0,1] x E — R ( f is measurable,
C? with respect to the second variable, with bounded derivative, and f € N,>1LP(v)) we set u(f) =
fo g f wu(dt,dz). We introduce an auxiliary function p : E +— (0,00) such that p admits a
derivative and p, p’ and p% belong to Np>1LP(g(2)dz). With these notations, we define the Malliavin

operator L, on a simple functional u(f), in the same way as in [5] by the following equations :

L(u(f)) = %u (p’f/ + p%f’ + pf”> ,

where f’ and f” are the derivatives with respect to the second variable. For ® = F(u(f1), .., u(fx)),

with F of class C2, we set

Zaxz (i) L( Z 8%8% F0)s oo () (P 11 £)-

7.]_
These definitions permit to construct a linear operator L on a space D C Np>1L” with the same basic
properties as in [5, equations (i)-(iii), p.2322].

We associate to L, the symmetric bilinear operator I':

I'(®,0) = L(®V) — ®LY — VL.



Moreover, if f and h are two test functions, we have:

L(u(f), p(h)) = p(pf'H).
These operators satisfy the following properties (see [2, equation (8-3)])
LF(®) = F'(®)Ld + %F”(@)F((I), ),
L(F(2),¥) = F'(2)r(2, V),
D(F(®1,P2), V) = 0p, F(P1, P2)T(P1, V) + 0g, F (P, P2)[(Po, V). (2.2)

The operator L and the operator I' permit to establish the following integration by parts formula (see

[2, Propositions 8-10, p.103]).

Proposition 2.1. For ® and ¥ in D, and [ bounded with bounded derivatives up to order two, we

have
Ef (®)UT(®, ) = Ef(P)(—20LD — T'(,V)).

Morover, if T(®, ®) is invertible and T=1(®, ®) € Ny>1 LP, we have

Ef ()0 =Ef(®)Ha (D), (2.3)

with
Ho (V) = =20 1(®, &) LD — T'(®, VT 1(D, ®)) (2.4)
= 20T H(®, )LD — F(q}@)T(‘P, ) + F(;j@)zf@, ). (2.5)

2.2 Representation of the density of Ylﬁ and its derivative

The integration by parts setting of the preceding section permits to derive the existence of the density
of Ylﬁ given by (2.1), and gives a representation of this density as an expectation. From Bichteler,
Gravereaux, Jacod [2, Section 10, p.130], we know that V¢ > 0, the variable Ytﬁ, the solution of (2.1),
belongs to the domain of the operator L, and we can compute LYtB and F(Ytﬂ ) Ytﬁ ) as in [5]. We recall

the representation formula for the density of Ylﬁ (see [5]).

Theorem 2.1. [Clément-Gloter [5]]: Let us denote by ¢° the density of Yl'B. We assume that H holds

and that the auziliary function p satisfies:

u—oo Inu

1
lim inf — 1{p(z)21/u}g(z)dz = +o00. (26)
E
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Then,

qﬁ(u) = E(l{ylﬁzu}ﬂylﬁ(l))7
with,
rofref ) o, owyy o wp oy
Hyﬂ(l) = B8 B - B B\ By ) (2.7)
! F(Yl 7}/1 )2 F(}/l a}/1 ) (Ul )2 Ul
where the processes (LY,gB) and (UI{B) = F(Ytﬁ, Yﬁ) are solutions of the linear equations:
8 [ wivP oLy? N RYAC)
LY = [ o'(Y],0)LY] ds+ a"(YP,0)U! ds—l—— B p(ds,dz), (2.8)
0 g z
uf / "Y2,0)Uds + to? / / p(ds, dz). (2.9)
The process (Wt )= (Ytﬂ, Ut ) is the solution of the linear equation:
t t
W :3/ a’(Yf,@)Wfds—i—2/ (Y2, 0)(UP)2ds + o / / 1(ds, dz). (2.10)
0 0

In [5], the authors studied the derivative of ¢® with respect to the drift parameter 6 only. Here,
we intend to study the derivative of ¢” with respect to both parameters § and o. We first remark that
(Y/); admits derivatives with respect to 6 and o (sce [2, Theorem 5.24 p.51 ]), denoted by (85Y;’),

and (&,Yf )¢ respectively. Moreover, ((%YB )t, (05 YB )¢ are respectively the unique solutions of

t
Y = / (Y8, 0)0,YPds + / pa(YE.0)ds, (2.11)
0

0,Y/ :/ 0N Yﬁds+c/ /zu (ds, dz). (2.12)

By iterating the integration by parts formula, since Ylﬁ admits derivatives with respect to 6 and o,
one can prove, under the assumption H, the existence and the continuity in 8 of ngﬁ (see Theorem
4-21 in [2]), moreover, we will represent it as an expectation in Theorem 2.3. The next result extends
the result of Theorem 5 in [5], by giving an expression for the logarithm derivatives of the density

w.r.t. (f,0) in terms of a conditional expectation.

Theorem 2.2. Under the assumptions of Theorem 2.1,

Vsq° %(U)
L) =| * = E(H, s (VY)Y =), (2.13)
q aaqﬁ 1
P (w)
where
5 Hy o (05Y!) W\ ryf  (07\ wP 1 [TOF.00YY)
Hp(VeXi) = N 5| o o) wip uf 8o yh |
Hys(0:Y7) a,vP) Ui 9, Y/ 1 L \r(vf, 0,v7)
(2.14)



LYP, U and W are given in Theorem 2.1, the process (V) = T(Y},85Y,) is the solution of
t ¢
V=2 [arowias+ [ U2 (@) (V2 0) + (v 0)007 7] s (2.15)
0 0
oy B By ;
and the process (V7)) =T'(Y]",0,Y]) is the solution of

t t t
Ve = 2/ d(YP,0)Veds + / d"(YP,0)0,YPUPds + 020/ / p(z)u(ds,dz). (2.16)
0 0 0 JE

Proof. Theorem 2.2 is an extension of Theorem 5 in [5] where the main novelty is the expression

for a‘;—gﬂ. For the computation of the new term Hyﬁ(a(,Yf ), we apply Theorem 10-3 in [2] to the
1

stochastic differential equation satisfied by the vector (Y;B , Utﬁ , 80Yt5 )T this gives the above expression

for (V7). O

We end this subsection with an explicit representation of ngﬁ (u) which gives a computation of
the iterated Malliavin weight ’Hylg (Hylg(vﬁyf )).
Theorem 2.3. Under the assumptions of Theorem 2.1,

doq” (u)

Vsq® (1) = ) [1{Y1B>U}HY1B(Hylﬁ(vﬁylﬁ)) : (2.17)
05q° (u) B
where
B B
Ly? Wﬁ F(Yl aHyﬁ(aeyl ) 1
Hys(Hys (VoY1) = —2Hy 5 (VaY]) = + Hys (VY]) o — 1 —,
1 1 1 [f1 1 (Ul ) F(Ylﬂ, HYB (aoylﬂ)) Ul
1

(2.18)

where 39Y1’8,8(,Ylﬁ are respectively given by equations (2.11), (2.12) and Ulﬁ,Wlﬁ are computed in
Theorem 2.1, HY[%(VﬁYlﬁ) is given in Theorem 2.2.
1

Proof. Let f be a smooth functions with compact support. Then,

VAE [£07)] = [ duVa’ ) (o).

On the other hand, using the integration by parts formula of the Malliavin calculus, we have

VaE [107)] = E[£07)vayY]
= E ()M (V5¥7)]
=B [Py (Hyp(V677))]

where F' denotes a primitive function of f. If f converges to Dirac mass at some point u, from the

estimates above, we can deduce (2.17). Moreover, from (2.5) we also get (2.18). O



To complete the result of Theorem 2.3, we give the expressions for F(YIB s Hys ((%YIB )) and F(YIB s Hys (&,YIB ).
1 1

Lemma 2.1. Under the assumptions of Theorem 2.1,

LYY, Hys (0Y])) vy o) oY\ 2p? [00Y\ Hys (WY [0y f
- v\~ T B Bra
rmﬁ,ﬂyf(amﬁ)) ve) oY) Ut \o,yl) U 9, v{) (Ur)?

Y 1 (W wf
P

. (2.19)
o) U7 \ve) (U7)?

where 89Y1ﬁ,8ngﬁ are respectively given in (2.11), (2.12), UiB,WiB are computed in Theorem 2.1,

VP, Ve are computed in Theorem 2.2, Hys(1) ds given in (2.7) and D’f = F(Y{B,Lylﬁ), Q=
1

P ), 1 =T, V) and T7 = (YL, VY).

Proof. From the basic properties of the operators L and I' (linearity and the chain rule property)

stated in Section 2.1, we get that

Ly”] W/ (Y’ 077
T Hys (00Y7) =T | Y7, =200~ | + T Y/, 0pY, —3—| +T yp, - L31.0Y1) - D
Ul i L (Ul) Ul
LY?] [ W r(y’, o,Y’?
T Hys (0,Y1)) =T | Y, =20,V =5 | +T |Y1, 0¥ —— | + T | Y/, ~ L 5 D
Ul i L (Ul) Ul
where
8 s LY/ LYl s oos oY s s s LY 5
I D ) =22 DY, 9pY)) — 2= 5-D(Y{", LY) +205Y] — ST LU
Ul Ul 1 (Ul
Lyy OpY? Ly’
= —2=—Lvf — 2L D} + 20,v) —w).
Uy Uy (Uy)?
w/ wi AT 200V WP
DY 0 | = =T, apY]) + —Zr(v) W) - =Ly, uy)
oy (Uy) (Uy) (U7)
_ W1B Ve 4 39Y1 Q’B 289Y1BVV16 B
- 1 1-
w2 (O (U7)?
P lyp, DOTO) | DOAL DO 00W) | TOT 0¥ ) s sy - T W
Uy Uy (U7)? vl (Uf)?
Similarly, we have
p s LY, vy
r Yf,—2ayﬁLYB lel—za 1D6+28Y6L51 wP.
Ul Ul Ul (Ul )2




oWy ayl 0 20, YW/
@zt T wpy (Uy)3

O'

r vy oY, wy
P e

r(v?,0,Yy)
Uy

BN

v, -
Uy (uy)?

Then, from (2.7) and the above estimates, we get the formula (2.19), after some calculus and the proof

is complete. ]

Lemma 2.2. Under the assumptions of Theorem 2.1, there are versions of the processes (Dtﬁ) =
(OO LY, (QF) = DO, W), (10) = (Y, V)i and (T9), = (DY, V7)), that are solutions

of the linear equations:

t t 1 t 1 t
Df_2/ (Yﬁ 9)D5d5+/0 a”(}QB,H)LYfods—Fz/ a”(Yf,G)Wfds+2/ a"(YP,0)(UP)ds

0 0
'<z>>’
zZ)+p w(ds,dz),
) ()4 0 2 ) s,
(2.20)
t t t
QY :4/ a’(Yf,a)QfdsJﬂ/ a”(Yf,e)WfodsH/ a"(YP,0)(UP)ds
0
tclo // 2+ p(2)p(2)") lds, dz),
(2.21)
t t t
T =3 / w2 ortds+s [ @02 oVIULds + [ @Y (oWl [ v 00y ids
0 0 0 0
t t
+ [ @ 020w+ [ a2 o) U s
0 0
(2.22)
t t t
ngs/ a’(Yf,a)des+3/ a"(yf,e)ngfder/ d"(YP,0)0,YPWFds
0 0 0
t t
b [ @ oo,y wipas ot [ [ o) ulds,do).
0 0 JE
(2.23)

Proof. The proof of Lemma 2.2 is a direct consequence of Theorem 10-3 in [2]. Indeed, considering the
stochastic differential equation satisfied by the vector (Ytﬁ , LY;B , Utﬁ , Wtﬁ Ve ve, 891@6 , 80Ytﬁ )T and
using Theorem 10-3 in [2], we prove that the processes (D,@B) = (F(Yf,LYt’g))t, (Qf) = F(Ytﬂ, Wtﬂ)t,
(T?); = (F(Ytﬁ V)¢ and (T7); = (F(Ytﬁ , V7)) are solutions of linear equations, respectively, given
by (2.20)-(2.23). O



3 Application to the asymptotic behavior of the transition density

and its derivative in small time
We will study the density in small time of the process
t
XP =z +/ b(XP,0)ds+ oL, te[0,1],
0

where (Lt)ejo,) i a pure jump Lévy process and we assume that the following assumptions are
fulfilled.

H;: (a) The function b has bounded derivatives up to order five with respect to both variables.

(bi) The Lévy process (Lt )yejo,1] is given by Ly = fot f[—Ll] 2{n(ds,dz)—v(ds, dz)}+f0t f‘[_l,l]c zn(ds, dz)
where [ is a Poisson random measure, with compensator v(dt, dz) = dt x F(z)dz where F(z) is given

on R* by F(z) = IZM%_HT(Z), a € (0,2). Moreover, we assume that 7 is a non negative smooth

function equal to 1 on [-1,1], vanishing on [—2,2]¢ such that 0 < 7 < 1.

7_/

(w)
(w)

(biz) We assume that Vp > 1, [ pT(u)du <00, [p pT(u)du < 0.

7" (u)
(u)

T

Remark 3.1. The introduction of the truncation function T in the density of the Lévy measure is a
technical tool to ensure the integrability of |L4|P,Vp > 1. These assumptions will guarantee that (1.1)
has an unique solution belonging to L ¥p > 1 and ensure that our variables are in the domain of the
Malliavin operators which are introduced in the previous section. Moreover, under these assumptions,

Xtﬁ admits a smooth density, for t > 0.

3.1 Rescaled process

We can observe that the process (nl/ *L; /n) equals in law to a centered Lévy process with Lévy measure

1 z

Fo(z) = WT(W

). (3.1)

This clearly suggests that when n grows, the process (nl/ L /n) converges to an a-stable process. In
the sequel, it will be convenient to construct a family of Lévy processes (L}'),>1 with the same law
as (nl/ *L; /n), on a common probability space where the limiting a-stable process exists as well, and
where the convergence holds true in a path-wise sense, as done in [5].

Let us consider uf(dt,dz,du) a Poisson measure on [0,00) x R* x [0,1] with compensating measure
ve(dt,dz, du) = dtlzfjﬁdu and we denote by u¢(dt,dz,du) = pc(dt,dz,du) — vé(dt,dz, du) the com-

pensated Poisson random measure. This measure corresponds to the jump measure of an a-stable

10



process, where each jump is marked with a uniform variable on [0,1] .

We define the Poisson measures (™, for all n > 1, and p by setting :

VA C[0,00) xR, pu™(4) = / / / La(t, 2) L usr(—z)yuc(dt, dz, du),
[0,00) JR J[0,1] n

WA C [0,00) X R, M(A):/ // Lt 2) e (dt, dz, du).
[0,00) /R J[0,1]

By simple computation, one can check that the compensator of the measure p(™ (dt, dz) is v (dt, dz) =
dt x T(ﬁ)"zﬁ% = dt x F,,(2)dz and the compensator of u(dt,dz) is v(dt,dz) = dt x M‘fﬁ. Moreover,
we note i (dt,dz) = p™ (dt, dz) — o™ (dt,dz) and fi(dt,dz) = p(dt,dz) —v(dt,dz) the compensated
Poisson random measures. Remark that since 7(z) = 1 for |z| < 1, the measures u(™(dt,dz) and
u(dt, dz) coincide on the set {(t, 2)|t € [0,1],|z] < n'/?}.

Now we define the stochastic processes associated to these random measures,

t t
Ly :/ / zfi(ds, dz) —l—/ / zu(ds,dz). (3.2)
0 J[-1,1) 0 J[-1,1°

t t
L?—/ / zﬁ(")(ds,dZ)Jr/ / 21 (ds, dz). (3-3)
0 J[-nl/ant/e] 0 J=nt/enl/e]f

By construction, the process (L{') is a centered a-stable process, and the process (L}) is equal in law
to the process (nl/ *L; /n)te[o,l], since they are based on random measures with the same compensator.
Remark that the jumps of L} with size smaller than nl/® exactly coincide with the jumps of L with
size smaller than n'/®. On the other hand, the process L" has no jump with a size greater than 2n!/®.

Using that the measures p and p(™ coincide on the subsets of {(t, 2);|z| < n'/®}, and the function

T(nf/a)|2|ll+a = |z|11+0‘ is symmetric on |z| < n!/®, we can rewrite:
t t t
L} = / / 2{p(ds,dz) — v(ds,dz)} + / / zu(ds, dz) —i—/ / 2™ (ds, dz).
0 J[-1,1] 0 Ji<|z|<nl/e 0 Jnl/ag|z|<2nl/a
(3.4)
The following simple lemma gives a connection between L™ and the stable process L.
Lemma 3.1. On the event A, = {u({(t,2)[0 <t < 1,]z[ > nt/ey) = 0}, we have
p™ =y, LY =LY, (3.5)
and,
P(A,) =14+ 0(1/n). (3.6)

11



Furthermore, let (fn)nen and f be measurable functions from Q x [0,1] X R to R such that there exists

C with P(C) =1 and Yw € C, Vs € [0,1],V|z] > 1 fu(w, s, 2) 2= f(w,s,z). Then
1 1
[ ] fosau®dsa) 25 [ pes s, de) (3.7)
0 J)z|>1 a.s. 0 Jz|>1

n—o0
Moreover, we have LY —— LY.
a.s

Proof. We know that the measure p(™ (ds, dz) and u(ds, dz) coincide on the set {(s, z)|s € [0,1],]z| <
n/®}, and by comparison of the representations (3.2) and (3.4), it is clear that equation (3.5) holds
true on the event that the supports of the random measure p and p(™ do not intersect {(t, 2)|0 < t <
1,|z| > n'/*}. On the other hand, the support of x(™ is included in the support of p, and thus (3.5)
is true on the event p({(t,2)|0 <t <1,|z| > n'/®}) = 0. The probability of the latter event is e~2/*"
which converges to 1 at rate 1/n as stated. Then we also get (3.6).

Let A =92, Ay, we get that P(A) = 1 since A,, C A4 for each n € N and (3.6) holds. Thus, for
all w € ANC,3Ing(w) > 1,Yn > no(w), ™ = p and f,(w,s,2) = f(w,s,2)¥s € [0,1],V|z| > 1. And
then we deduce that

1 1
[ ] fosau®dsa) =25 [ pes s, de)
0 Jz|>1 a.s. 0 Jz|>1

As a consequence, it is easy to see that L} converges almost surely to L{. O

3.2 Representation of the density in small time and first approximation

Our main aim is to study the asymptotic behavior of the transition density of the random variable

X ﬁ . In that follows, we denote by pi (z,y) the transition density of the homogeneous Markov chain

n

(Xg)izo,,,,,n. We observe that (Xg)te[[),l] equals in law (?:L"B’xo)te[m} where the process (7?’5’930)%[0,1]
is given by

T06,T 1 t —n,B,x g

o :x0+n/0 WL O)ds + LIy e 0,1, (3.8)

where (L) is defined by (3.4) and is such that ——(L}) equals in law to (L, /n)-

nl/a

Let ¢™#®0 be the density of ??,B,xo then the connection between the densities of X f and ?Tf’ﬁ’xo is

given by
P} (0, 7) = 50 (z). (3.9)

12



We are in the framework of Sections 2.1 and 2.2, with g(z) := F,,(z) = |Z‘ﬁT(i)

We choose the auxiliary function p™ as

2 if |z] <1
p"(2) =1 ¢(2) if 1< 2] <2 (3.10)

27(22) if 2] > 2,

Ipl/a
where 7 is defined in the assumption H; (;), and ( is a non negative function belonging to C* such that
the function p™ belongs to C*°. Note that ¢ is defined such that p™(z) satisfies all conditions of Section

2?2 if 2§]z\§2n1/a

2.1. From the assumptions of 7, we can easily deduce that 227(271? 5) =

0 if |z] > 4nl/e.
Moreover, we can see that p™(z) = p(z) where
2 if |zl <1
p(z) =19 ¢(z) if 1<z <2, (3.11)

22 i 2] > 2.
Note that from the definition of p™ and p, we can easily see that p"(z) = p(2) if |2| < 2nl/e.

Remark 3.2. The choice of the auxiliary function p™ for |z| < 1 ensures that the non-degeneracy
condition (2.6) is satisfied. It will appear later that the choice of the auxiliary function p™ for |z| > 2
permits to obtain Malliavin weights sufficiently integrable to compensate the lack of integrability of L

[ see remark 3.5 below ].

From now on, the function a and the constant ¢ appearing in Section 2.1 will be given explicitly

as

1 1
a(z,0) = gb(l‘, 0), c= A

Using the results in Section 2.2, we get a representation of the density of X i . Moreover, we obtain a

first approximation for the weight ’H?n,a,zo (1). This leads to the decomposition of the density into a
1

main part and a remainder part.

Theorem 3.1. Under the assumption Hi, we have

P71 (zo,u) = qn,ﬁ,xo (u) = E(l{??,g,IOZU}'H??,B,IO (1)), (3.12)

3=
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with
1
Mg (1) =~ [ 5(1) + H3 5(1)] + RE5(1) + RE 5(1) + R 5(1). (3.13)

The main terms ﬁ’f’ﬂ(l),ﬁgﬁ(l) are given by

1 n -3 n ny/ (n)
n €5 (p ) (z)p'™ (ds, dz)
Ta(1) = Jo Je : (3.14)
I €l [fo Jr(em)~ Y (ds, dz)]
. (1) = _fo Jo(em L [(p" /(Z) 1+apn(z)] 1 (ds, dz) (3.15)
0 I €l fo Jr(er p(™ (ds, dz) 7
where
n 1 / nﬁﬂﬁo
€7 = exp (/ b(Y,” ", 0)du ) (3.16)
n Jo
The remainder terms satisfy
n ¢ n c n ¢
vp>2, E|RIg(1[" < o R = REs(D] = (3.17)

where C is some deterministic constant.

Proof. Under the assumptions H;, we can apply the results of Theorem 2.1 to Y wAT0  The non
degeneracy assumption is verified by the choice of p"(z) near zero [see (3.10)]. Let us denote by

UZLnB _ FI:?:L’IB’:EO,??7B’IO], and thyﬁ _

[4”5530

Iy, U], then we obtain:

P (0,0) = "0 (1) = B i, Mg (1)
with 5 5
Wi Lyyo
Hornpmo (1) = nlﬁ 5 —2 17176 : (3.18)
' ™) Uy
Applying the results of Theorem 2.1 and solving the linear equations (2.8)-(2.10) we get,
Ut = P (2) ™ (ds, dz), (3.19)
1 n2/a .
LYy = ;/ YT 9y (UmB) () ds
0
061 F?é(z) n (n)
+ 5 1a (2) + % " (2)]p'™ (ds, dz), (3.20)

o3 (e 3 1 e 3 1 — B30 B
wp? = C S [ @y o o s, d:) + <7;) | @ e s
(3.21)

14



Fh(z) _ _14a , T/ 1 if

Fn(z) — z r(z/nt/e) nl/e
|z] < 2nl/®. Based on these expressions and (3.18) we deduce, after some calculus, the decomposition

Recalling that F,(z) = W%T(ﬁ) [see Eq.(3.1) in Section 3.2],

(3.13), where the remainder terms are given by,

z/nt/ n
Jy Juter % ()(ds, dz)

fall) == o€l fo fR (em)=2p"(2) ™) (ds, dz) (322
" ”5% n,B )3 s

- 2L <Uf§)>i S, @29

W (@) T 0y U () s

5.6(1) = ) : (3.24)

We now consider the properties of the remainder terms.
For R 5(1), since (€y) is bounded by above and below (recall (3.16)), and since 7/(z) = 0 on [—1,1]

s

then for M a positive constant we have

7' (z/nt/ n
fol f|z\>2 22 W put™ (ds, dz)

T
o o f|z|>2 221" (ds, dz)

IR s(1)] < M (3.25)

Assume that there exists a jump of the Lévy process L} in [—2n!/® —n/®) U (n'/® 2n'/*], then we

get fol f|z\>2 22 (ds, dz) > n?/*. Thus,

m
Bl e 0 / / ) T 0 s, d). (326)
O-fo j‘lz|>2 ZZM( )(ds dZ ‘ |>2 nl/a T(z/nl/a)

Assume that there are no jumps in [—2n'/®, —n/*) U (n1/® 2n1/], since 7(z/n"/*) = 1 if |2| < nl/®,
then 7/(z/n'/®) = 0 and as a consequence, the right-hand side of (3.25) equals zero in this case.

In both cases, for any p > 1

1 7/ (z/nt/e n 2p
Jo Jiops2?? 77((2//711/@)) ") (ds, dz) - / / 2 2
afol f\z|>2 22" (ds, dz) - 12|52 nl/a

Now from p(™ (ds, dz) = (™ (ds, dz)+v"™ (ds, dz), by convexity inequality, we have for C(p) a positive

7' (z/nl®)
7(z/nt/)

2p
1™ (ds, dz)) .

(3.27)
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constant

! z ' (z/nMY | 2
i/o /Z|>2 (nl/a>2 T((Z//nl/a)) ul )(ds,dz)]
2p
< C(I;)E [/01 /Z|>2 (nf/a>2 :((ZZ’//SII//:)) p,(n)(ds,dz)] (3.28)
' (z/nM) 2

o™ (ds, dz)]

[ ] Gy

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]), there exists a constant D(2p) > 0 such that

1
8 /0 /z|>2 <nf/a>2

o?p

7(z/n'/®)

7' (z/nt/e)
7(z/nt/<)

2p
i (ds, dz)]

2 p
v | [, G [l v
D(2p) /1/ z >4p T/(Z/nl/a) ” (”)(d dz)
Y 0 Jlz|>2 <nl/0‘ 7(z/nt/e) v 5,02
2 p
= D(2p) /01 /Z|>2 <nlz/a>4 77—-((5//211//&)) Z}_i_aT(Z/nl/a)dzds]
D(2p) / /|>2 nf/a 4p 7;,((5//:11//:)) zLaT(z/nl/a)dzds]
) [/01 /12 (“al ’ TT/((ZZ)) 2T<u)> duds] / / <ua+1 —Ip T((z)) ! (U)> dudSI.

where at the last line we have used the change of the variable u = —7.

3,

Moreover, we have

1 z \2 |7 (z/nl/) z 2 7 (z/nt/®) 1 2
/ / < 1 ) T v™(ds, dz) / / I 1 1+OéT(Z/nl/O‘)dzds
0 Jiz|>2 \ /e T(z/n /a) |z|>2 \1 /a 7(z/n /a) 2|
7' () 2
= |- dud . (3.29
g mad o
Under the assumption Hj(b;;), we can deduce the bound for E ‘R? 5(1) : ,Vp > 2.

n,8
Finally, using that b has bounded derivatives and that supg<<; —gi‘lﬁ is bounded, the remainder terms
- 1

5 5(1), Ry 5(1) satisfy the upper bound
[R5 5(1)] <
where C' is some deterministic constant. O
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3.3 Asymptotic behavior of the transition density and its derivative

In this section, we study the asymptotic behavior of pi (zo,u) (the density of X g ) and its derivative

n

with respect to the parameter 5. From the connection (3.9), instead of working directly with the

density pﬁl, we consider the asymptotic behavior of ¢, the density of Y1’67 given by (3.8).

n

Considering the equation (3.8), one can prove that if a > 1 then nl/a ( yho x(]) is close to a
stable Lévy process [see [5]]. If a < 1, this is no longer the case and we have to introduce the solution

of the ordinary differential equation
1 t
P — o 4 - / b(s™P20 B)ds t e [0,1]. (3.30)
0

We prove that nl/o‘( yiro g{“ﬁ’zo) is close to a stable Lévy process in Lemma 3.2 below.

Lemma 3.2. Let (s nﬂxo) be the solution of the ordinary differential equation (3.30), then

ne v 578,20 _g{uﬁ,m) nO0 oL, (3.31)
a.s.

and this convergence is uniform with respect to xg.
Proof. We have

‘nl/a <?’T75»IO o g{l,ﬂ,xo) O_La

—nﬁ,:p
/ ”b/H 1/a ( o _ §:”B’x0) _ O'L?

where ||V/||cc = sup,eg |V (x,0)]. Applying the Gronwall’s lemma and using the boundedness of ¥/, we

1 ! 1/a 718,00 n,B,x n o
nt/e (720, 0) = b0, 0)| ds + o [L] — L]
nJo

v 1
}ds#’”n'“’/ 2] ds + o |LY — L8],
0

get,
o 1
<C [n/ |L%|ds + o| L} — L‘f]] , (3.32)
0

sup nt/® (??’ﬁ’xo — g{"ﬁ’“> — oL

o
where C is a positive constant. From Lemma 3.1, we have L} >3 L¢, and from the construction of
the a-stable process LY (recall (3.2)), we get fol |L%¥|ds < oo a.s. Then %fol |L]ds £ 0 and we get

the result of Lemma 3.2. ]

Remark 3.3. If we assume that the function b is of class C'** with respect to x (k > 0) and setting
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A(f) =bf" such that f(gf’ﬁm,e) = f(cg"g’wo,é?) + fg(Af)(gg’ﬁ’mo,G)ds. Then we obtain
" (Ab)

b _ gy B0, 0) (o, 8 / / (5P 9)dtadty

th(xo,0)  t*(Ab)( bt

= 20+ (xo’ ) | “’“07 / / / A(Ab)) (5570 9)didtadty
n 2n n3
h B ki ,8
n,m/ / (AFFLY) (VP70 0)dtydty—1...dty,

th(zo,0) t2(Ab 0 th(AFD)(
(o, )+ (Ab)(wo, )+...+ ) (20,0
n 2n2 kink
(k),n,B,x 1 bt b 8
=T k+1/ / / (AFFLD) (70, ) dtgdty—1...dty,
n 0o Jo 0
(k),n,Bxo

tb(zo, )

t2(Ab)(20,0) 1+ (ARD) (0,0)

with St = X0 + + o2 =+ ..+ kink

Under the assumption that the function b is of class C'F with respect to x (k > 0), we deduce that

k b b 9
gtn,,&fco - Ct( ).m,8,20

C+1. Combining this with Lemma 3.2, we get

_ 1
nl/a(Y?’ﬁ’xO - gfk)’n’ﬁ’xo) ﬂ oL{, assoon as — < k+ 1. (3.33)
@
Hence we can replace in Lemma 3.2 the solution of the ordinary differential equation by its explicit

(k:)vnvﬂ:xo

short time approximation ¢ as soon as k is large enough.

We will now state the main result of this section about the asymptotic behavior of the transition
density and its derivative with respect to the parameter 8. In order to apply these results in statistics,

we need some uniformity with respect to the parameter S and consequently we study the asymptotic

behavior of pl where (3,)n>1 is a sequence such that f, a7, 3.

Theorem 3.2. Let (s;' b, 0 be the solution of the ordinary differential equation (3.30) and let (By)n>1

n—oo

be a sequence such that 3, ~——> (3. For all (zg,u) € R?,

1. -Znphn (o, 2o + ¢ "0) 222 4y (u),

2' SupuER Supn ﬁpﬁln (33(), ul/a + § ,ﬂn,IO) < o0,
where @, is the density of LY.

Proof. From (3.9) and Theorem 3.1, we have

On

Bn Uan, n,0n,T0\ __ n,B,x n5n7$0 _
( 0 1/a+g1 )_nl/aq 0( 1/a+1 )_E< {Yn6n10>ua/,;+§1 ano} l/aH n5n10(1)>,

1/apl

where n‘{ya’li??,ﬁn,zo(l) =Hlg (1) +Hys (1) + TRy (1) + TRy 5 (1) + Ry 5 (1), with
H s (1), Hy 5 (1) given by (3.14), (3.15) and RY 4 (1), Ry 5 (1), RE 5 (1) satisfy the bounds (3.17).
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Then from (3.16), the boundedness of ¥, and Lemma 3.1, it is immediate that

1p, (1) — Hire(1), (3.35)
HE 5, (1) =55 Hy pa(1). (3.36)
where H1_ 1o (1), Ho, 1o (1) are given by
Hi,ra(l) = Jo Jz. ()P ), dz)7 (3.37)
M&p @w}
Ho 1 (1) = _Jo Ju [0(2) = 2 0(2)] lds, dz) (3.38)

fO fR wu(ds,dz)

Moreover, using again the boundedness of b’ and the fact that p"(z) is a non negative function, we

deduce the upper bounds

’7'77115” 1 ’ < C* fo Je " ()™ (ds, dz) , (3.59)
| Mﬁ M““W
_ (2 1+7a "(z)| ™ (ds, dz)
A, (1) < €7 _fo g [pfo Jer u<pn dj sz) | o

for some constant C* > 0.

We now show that sup,, ﬁ’fﬁn(l)‘p and sup,, ﬁgﬁn(l)‘p are integrable VYp > 1. The proof will be
divided into the two following steps:

Step 1.1: We show that the right-hand side of (3.39) is bounded by a random variable independent
of n and belonging to N,>1L”. In fact, since the measures p(™ (ds,dz) and u(ds,dz) coincide on the

set {(s,2)|s € [0,1],]2] < n'/*}, and p™(2) = p(z) on the support of the Poisson measure x(™, we have

Jo Je @@ ()t (ds, dz) _ Jo Ji<2 10/ ()] p(2)p(ds, d2) . Jo fiopon 2121200 (ds, dz2)
[fo fR ,U(" ds dz)} - (fol f‘z|§2 p(z),u(ds,dz))2 (fol f|2|>2 zglu(”)(ds,dz)>2

(3.41)

We now consider in the right-hand side of (3.41). Using that p, p’ belongs to ﬂpzle(l‘nglz\*l*adz),

[(/ /||<2 Yu(ds, dz)>p] <oo, Vp>1. (3.42)

On the other hand, since p satisfies the non degeneracy assumption (2.6), fo f‘ <2 p(2)u(ds, dz)] 1

we get

belongs to Np>1LP [see [5, Theorem 4 p.2323]], we deduce that the first term of (3.41) belongs to
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Np>1L¥, moreover, it does not depend on n .
We now consider the second term of the right-hand side of (3.41). From the fact that v(™ ({(¢, 2)|0 <
t <1,]z| > 2}) < 0o, we can construct the integral with respect to the random measure 1™ as follows

[see Chapter VI in [4]]

1 N

// 23 (ds, dz) = S 2ZP as.,

0 J|z[>2 i—1

// )(ds, dz) = ZZZQ a.s.,
|z\>2

=1

(3.43)

where N = (N¢)1>¢>0 is a Poisson process with intensity A, = f| >2 Fo(2)dz < oo, and (Z;)i>0 are

Fn(2)l)z|>0d2
A

i.i.d. random variable independent of N with probability measure . Thus,

1 3
Jo Jpa 220 s dz) - 5 0z 5N 2z,

(fol f|z|>2 Z2M(n)(d5,dz))2 (Ziv:ll 22)2 Sy Nign S

where we used the fact that Z2 > 0, and |Z;| > 2. We deduce sup,,

ﬁ?ﬁn(l)’p is integrable Vp > 1.
Step 1.2: We show that sup,, ‘ﬁgﬁn(l)‘p is integrable.
Using the definitions of p" (recall (3.10)), p (recall (3.11)) and p™ = p on the support of the Poisson

measure p(™ [see Section 3.2], we have

Jy Ji [l ()] + Ko "<zﬂ ™) (ds, dz)
fo Jr P (2)p™) (ds, dz)
kfgq(m<ﬂ+p@wgﬁﬂuaw> S a3 + )21 (ds, d2)
Jo Jiz<a P(z)n(ds, dz) Jo S0 2210 (ds, dz)
where we used the fact that fo fI2IS2 p(z)u(ds,dz) > 0, fol flz|>2 p"(2)u™ (ds, dz) > 0, and the mea-
sures ;1™ (ds, dz) and u(ds, dz) coincide on the set {(s, z)|s € [0,1], |z| < n'/*}.

(3.44)

Proceeding as for the first term in the right-hand side of (3.41), we also get that the first term of
(3.44) belongs to Np>1LP.
On the other hand, for the second term of (3.44) we have:
Jo 52+ )lelu®(ds,dz) g [lo0(3 + )22 (ds, d2)
fo f ‘>2z ™ (ds,dz) B fo f| 22 2 (ds, dz)
And this completes the proof of Step 1.2.
ﬁ?ﬁn(l)’p and sup,,

=3+ .

We finally deduce that sup,,

~ p
Hy Bn(l)’ are integrable for all p > 1. Applying

the dominated convergence theorem, we get

1Y 5, (1) 2% Hage (1), Vp2 1. (3.45)



n—o0

H5 5, (1) 0, Hae(l), Vp2 1L (3.46)

On the other hand, Lemma 3.2 implies that n'/ O‘(Y?’B"’IO —q B *0) converges almost surely to

oL{. Then, an easy computation, using that P(L{ = u) = 0, shows the almost sure convergence

7n75nyx() sPny
=1 nl/a (Yl - g{L A xo) a.s.
{Yn 0> TR pimroy = Huoo) on

Lu,00) (L) (3.47)

n—oo

Moreover from the boundedness property of the variables, applying the dominated convergence theo-
rem, we get the latter convergence in LP, Vp > 1. We finally get that :

On
nl/a

where Hpo (1) = Hi,ro(1) + Ho,re (1) and Hi,ro(1), Ho, (1) are given by (3.37), (3.38), respectively.
Remark that, we easily get from (3.12), (3.13), (3.17) and (3.45), (3.46) that

n.B, zos WOn n,Bn,roy N0
gPm o(an +o B 0) oo, ]E[l[u oo)(Ll)HLa( )] (3.48)

Supsupo-ina nvﬁnyIO( 1/a + nﬂn7x0> < 0. (3.49)

To finish the proof of the convergence, it remains to show that the right-hand side of (3.48) is a
representation for ¢, (u), the density of L{'. Let us denote by ¢™(u) the density of the variable L.
We consider the situation where the drift function b = 0 and g = 0 for which n!/ a??,ﬁ,xo =olL}.

Then (3.48), (3.49) yield

" (1) =2 ElLjy00) (L) H o (1)] := 9 (u), (3.50)
sup sup ¢" (u) < oco. (3.51)
u€ER n

Assume by contradiction that, for some u, we have ¥ (u) # pq(u). From the fact that P(Ly = u) =0,
it can be seen that 1 is continuous at the point u. Hence, one can find a continuous, compactly

supported, function f such that

/ Flay(a)d # / F(@)a(x)de. (3:52)
On the one hand we have, = [ flz)™(x)de =% [ f(x)ib(z)dz where we have used the

dominated convergence theorem with (3.50)—(3.51). On the other hand, we can write

E[f(LY)] = E[f(LY) {pr=rey] + E[f (LY) iz 2r0y]- (3.53)

n—oo

By Lemma 3.1, we have P(L} = L{) —— 1. We deduce that,

E[f(LD)] "% E[f(LS)] / F(@)palz (3.54)

This last convergence result clearly contradicts (3.52). And consequently we get that E[1(, o) (L{)H L (1)]
¢a(u). Combining the preceding results with (3.48), we can easily get the results of Theorem 3.2. [
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Remark 3.4. i) From the convergence (3.33), proceeding as in the proof of Theorem 3.2, we can state

that

n uo k M, 0n, — . 1
l/oz.pﬂ1 (xo’nl/z +§§ b $0) %@a(u% Zf k> 5_1-
i1) The results of Theorem 3.2 have been obtained by Kulik [12], using the parametriz method.

In the next theorem, we study the asymptotic behavior of the derivatives of the density with

respect to the parameters 6 and o. Such results are crucial in asymptotic statistics.

n—oo

Theorem 3.3. Let (Bn)n>1 be a sequence such that 8, —— B. For all (z¢,u) € R?,

N o2
i) Sz
2 —
S 0,p 7" (0, 228 + 61 T0) T2~ (1) — uh (u),
n

(20, Bom 4 P Pmm0) B2 _dgb(wo, 0) x @l (w),

Y 40-72L Bn n n,Bn,T
i) SUDy e SUD, | —Fr D (30, 225 + [ ) | < o,
no n
U% 8 Bn UTn n,Bn,0
SUPyer SUPy, | 1/ YoP 1 (20, e TS )| < oc.

The proof of this theorem is postponed to Section 3.4.2 below. Let us first remark that from (3.9)

and Theorem 2.3, we have

Vﬁpl (o, = / B0y — 7 ggmBnwo( LT  nfnsoy

l/a

N,Bn,T
= ]E {Yn ,Bn, x0> uop + n,Bn, :cO}HYn Bn,xq (H??,Bn,xo (Vﬁyl 0)) . (355)

nl/a
Moreover, from (2.7), (2.14) and (2.18), (2.19), by some simple calculus, we get the explicit formula
for the iterated Malliavin weight

X~ 7ﬁ’
Hegrn.20 (om0 (VaY17™))

V1" Heminrg (1)? VN 2Hpmaa (1) (00Y7770) Hpman W (077070 (g2
= sy (1) — g + L)
0.7 ﬂﬁzo yyho e U?’ﬁ 607711»5@0 (Ufﬁ)2 o, Ynﬂaco (Uf’ﬁ)4
n,0 718,20 v B o n,0
o TL,B 3 + — ﬁ TL,ﬂ 2 o B nnB 3 + nnB 2‘
i (U") D, Y (") ag?’f’ zo | (U;"7) T (U1")
(3.56)
where H*nﬁwo( ), U{l’ﬂ,Wln’B are given by (3.13), (3.19), (3.21), respectively.
The expression of 897?’6’:60 is given by solving
N / BT 0)0, 70 ds 4 - / Db(Y"P™ 0)ds, (3.57)
nJo
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we get

0pY "0 = egl/ (€) apb(Y"""° 0)ds.
n 0
(3 58)
The expression of 9,Y AT given by solving 9,Y " Pro f V(Y yrhwo ,0)0,Y B0 gs l/a, and
we get that
.8, 1 LD
9, Y0 = e [ (enylarn. (3.59)
nl/a 0

For the computations of V™ = F(??”B’xo, 89?711"3’330) and V"7 = F(?nﬁ "0 0,Y ﬂﬁ’ %), using (2.15),
(2.16) we have

1
VI = e [ (U [y (70 + 0 (7 0)a, 7 ””ODds, (5.60)
0
n,o 1 n\2 ! n,8,20 aﬁxo n,B
Vi = () /O () (B (7, 002,700 ds + () / / 1) (ds, dz).
(3.61)
Finally from Eq.((2.20) - (2.23)) we compute explicitly D{** = F(?711757xo7 LY o T, QM =YY yhre WP,
0 = D7 vty T = DY VT we get:
2 1 2 1
pp? = ) | ey, 0>LY”“°U”ﬁd + 4L / ()72 (V2" o)W ds
0
(6?)2 /1 11 (37108570 n,p / / ny/ gy En(2) / (n)
el MCON 2 (Y0 0) (U 2ds + ng/a (p")'(2) +p (Z)Fn(z) ™ (ds, dz),
(3.62)

n\4 1 n.B.x 2 4 1 —n,B,x
v = TN [yt gwonias + 280 [yt gy woyas
0 noJo

T Un(f/i;) /O (€)™ p"(2) [((p")’(Z))2+p”(z)(p”)”(z)} 1™ (ds, dz),

(3.63)
n\3 1
Tl’nﬂ: 3(61) / ( ) Sb//(YanO 9) 89[) ﬁwo Q)Wnﬁds
n 0 n
n\3 1 n
+ (67{&) /0 ()3T 0o,y s s 4 ) / 3(0p0)" (Y70, 0) (U2 ds
n\3 1
+ (E;l) / ( ) db///( n,8,20 9)8 76370(UTLB) d
0
(3.64)
n\3 rl €n)3 1
Tf’”:3(2> /( DT 0V ds +( D /( DY 0)0, Y W ds
0
n\3 1
e SRR ) L NS

(3.65)
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From the above calculus and combining with (3.55) and (3.56) we have a representation for the
derivative of the density with respect to parameter 8 as an expectation and this permits to analyze
its asymptotic behavior in small time. To obtain the results of Theorem 3.3, we have to consider the
convergence of the iterated Malliavin weights and this is based on the preceding explicit expressions.
In the sequel, we prove that all the terms involving the derivatives of b with respect to z are remainder

terms.

3.4 Asymptotic behavior of the iterated Malliavin weight and the proof of Theo-

rem 3.3
3.4.1 Preliminary lemmas

In this section, we study the convergence of the iterated Malliavin weight H—n,ﬁn,xo (an,ﬁn,xo (Vg??’ﬂ"’xo))
which is the cornerstone of the proof for the convergence of Vgp'" 1 later. Flrstly, we state some tech-

nical lemmas useful for our aim. The proofs of these lemmas are postponed at the end of the paper.

Lemma 3.3. We have

i) |89?711’6’x0\ < %, where C' is some deterministic constant.
i) SuPsefo, 1] 0,7, n;jo 0, vp=>1

Lemma 3.4. The following decompositions and estimates hold

; by’ nl/>g3 n n n

i) i (Uflvﬁ)Q = G My (1) + RY 5(1) + RE 5(1) + R 5(1)-
.. 1 IL’B _ nlt/e g3 n n

i) 7 ="My 5(1) + R7 5(1) + Ry 5(1).

nl/o (Ulruﬂ)

1 SUPsgo,1] 100 Y"ﬁxownﬁ| n—00

1) s vres (07?) o

0, Vp=>1.

The main terms ﬁg’ﬂ(l),ﬁzﬁ(l) are given by

- Jy Jal€)720"(2) [(0)"(2) = () (2) 422 + 7 (2) 2| ) (s, d2)
5(1) = ; 5 : (3.66)
()2 (Jo Julen)2pn(2)u (ds, dz2))
en 4n n/Z2 (o) (2 (”)ds,dz
0 = Jo Jelef) [<<p><>> +p<><p><>}u (ds,dz) .

(fo Jr(em)=2pn( Y™ (ds, dz))3

24



where (€3)sejo,1] 8 given by (3.16), and the main and remainder terms satisfy for p > 1, C is some

deterministic constant

H (1) "5 Hape (1), Hi (1) *5 Hage (1), (3.68)
n n—00 n n—00 n C
15(1) ? 0, 55(1) R 0, [REs(1)|< onitija’ (3.69)
n n—,oo n C
7.5(1) ;J >0, [Rgp(1)] < Tiija (3.70)
with
Jy Je (P00 (2) = p(2)9'(2) 2 + (p())” B2 ) (s, d2)
Ha,re(1) = : (3.71)
(fo fRP Ju(ds, dz))
Jo fpl2) [(p’(z» )0"(2)] wlds, dz)
My pa(l) = . . (3.72)
(fo S p(2)p(ds dz))
Lemma 3.5. The following estimates hold:
. Vln’e e}
Z) Uiﬂyg S n?
%  nooo
i) e (Uljw) S0, Vpx,
VTLU
i) UII”’B =1 + Ry 5(1),
y Tn’o ATL n n n
w) nll/a <U71‘*6)2 = %HE),/B(l) +R10”3(1) ‘f‘Rllwg(l) + ng,ﬁ(l))
1
where C is some deterministic constant. The main term ﬁgﬁ(l) is given by
~ P (2)(p") () (ds. d
7‘[751,3(1) fO fR E1 (p )( ) ( S, Z) (373)

€l (fo Jr(€2)=2p(2) ™ (ds, dz))

with (€3) is given by (3.16). Moreover, the remainder terms (R 5(1))9<i<12 converge to zero asmn — 0o

n—oo

in LP Np > 2 and?—[5ﬁ( )T>H5La( ), with

Hs 1o (1) = Jo Jg ()0 (2)plds dz). (3.74)
(i homon o]

Lemma 3.6. For all p > 1, the following convergences hold uniformly with respect to xq:

nap¥ 3 (A1) 22 apb(a. 0) (e (1))2, (3.75)
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ndgY 1 HE(1HE 5(1) 2, Qgb(ao, O) e (1) Ha 0 (1), (3.76)

an BT in 2 n— 00 a
ne9, V" O(Hﬂ(n) T L9 (Mo (1)), (3.77)
0! 0,V HG (LT 5(1) S LiH e (1) Ha 10 (1), (3.78)

where H3(1) = HY 5(1) + Hy 5(1) with HY 4(1), Hy 4(1) given by (3.14), (3.15); Hpe(1) = Hi e (1) +
Ho (1) where Hi e (1), Ho (1) are defined by (3.37), (3.38), 897?’6’350 is given by (3.58) and
80??6’10 is given by (3.59).

Lemma 3.7. For all p > 1 then the following convergences hold uniformly with respect to xg:
. AV 757 17 —
i) ndgY " 5 5(1) % Ogb(xo, 0)Hs, (1),

i) nBQYTf’B’mO Afﬁ(l) HTO% Opb(wo, 0)Ha L (1),

n—oo

iii) n'/20, YOS 5(1) S5 Ly 1 (1),

i) n!/20, YT H 4(1) T LiHa e (1),

where ﬁgﬁ(l),ﬁiﬁ(l) are given by (3.66), (3.67), and Hs (1), Hare(1), are defined by (3.71),
(3.72).

Remark 3.5. We observe that although L{ does not belong to LP, the choice of the auziliary function
p permits to prove that LY (Hre(1))%, L¢Hs 1o(1) and L¢Ha (1) belong to LP,Vp > 1.

Based on the preceding lemmas, we can prove the following convergence result.

n—0o0

Proposition 3.1. Let (8,)n>1 be a sequence such that 5, —— B then for allp > 2

2

On BTNy o0 4 (2)
nl/a H?;L,Bn,xo (H?’{L,Bn,(to (8O-Y1 )) 7) 7‘[ 3 (379)
Ty (H (DY 1Pm"0)) %% gpb(ao, O)HY (3.80)
n2/a—1 ?71%57%»’00 ?;lﬁn«wo 0X 1 I 0O\ L0, 1 .

where H® and 7—[52) are some random variables whose expressions do not depend on 3 and b.
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Proof. From the equation (3.56), we have

EL < "Bn,To N,0Bn,T
i g snan (Honsnen GV 1)) (ot e 4 [TV e )
721 ﬂl 5n717 - 100, Yoo n n 7,Pn
W?—[?’T,Bn,zo (%Yn Bn,zq (a 0)) 701-7(1 ao-Yl o . nl/a Vn i (Ul )
a 377000, n,8n N,Bn,T
2(/70—1 a Yl 0 H??’B"’CEO (1)W1 2/o< 1 60Y 0 (W{’ﬂﬁn)Z n2/a - Vln ,0n W{'J:ﬁn
+ 2 7%8n,T0 (Unyﬁn)Q + N, Bn,T0 W o n Vn’an (Un,ﬁn)g
1/a3 Y 1 nl/af) Yl 1 ni/a V1 1
1 Bn,T —N,Bn,T 2
+ 27[’:‘71 a@Yl ? QD?’BH’ 2/a 1 a@Y 0 ?:Bn n272,71 T;lnyan 1
(7rBye B 2 w | (prmBy2”
o g | W\ gy | 0 e | 070

(3.81)

We will prove the convergence of each term in the right-hand side of (3.81)
Term 1: Recall (3.13) and set Hj (1) = HYz (1) + Hy g (1), Rj (1) = Ry 5 (1) + Ry 4 (1)
Remark that by (3.17), we have ‘Rgn(l)‘ < € where C is some deterministic constant. Moreover, we

can rewrite the first term as

2 —n
2(/72 laeylyﬂn,mo 9
|:H77L,Bn,l'0 (1)]
1

n B, To
nl/aa Y
%aeﬁﬁmxo nl/a ~ . n n ?
REPE Tn[ Lon (1) +H 5, ()] +Rig, (1) + Rop, (1) + Ry g, (1)
nl/a
BnJDO 20 Evald 5n7$0 »Bna
n@gyn —~ 2 ST (%Y —~ P agy ~
= )+ [ s Ry 1 [T H, (DR 5, (1)
l/a M Bn,To B Bn,To P B Bn,T0 Pn Pn
n’“0,Y 200,0,Y 7 20n80Y1
o2 "N Bn,T0 MBn,To N, Bn,To
7”789}/ 89Y a Y
n2/a—1 1 2/a 1 2 2/a 1001 1
* /Bn,wo 711’6”(1)2 ' ﬁn,a:o (Rg”(l)) + n2crﬂ Bmxo R?’Bn(l) Té"(l)
n17a8 nl?aa l/aa

(3.82)
where RY 5 (1) is given by (3.22). We can deduce from (3.17), (3.45), (3.46), Lemma 3.6 and Lemma

3.3 that
,Bn,To
89Yn 2 agb(l'o 9)
2/04 1 ’
o | (oo ) 95 (77 (Ran (D)7,
nl/aa Yl ’ - Ll

27



Term 2: From (3.13) and Lemma 3.5 part i) and part iii), we can estimate the second term as

YO\ 2 snn0 (1) O7s)
At B (O ) [ )+ R, )+ R, ()
ﬁ‘/l7 n (U]_ ) 1/@ [Rn ( )+ ai| On
B O(iza ) HE, (1) + O(am)RY 5, (1) + O(mm)RE, (1)
B o 20, R, (1) 20,RZ (1) n o 202R™ . ()R7, (1)  202R% (DRZ, (1)
—2H n(1> - nll/ﬁ" - nl/ﬂg - 2UnRg,6n(1),H5n(1) - 17[321/& i - ﬁnnl/a .

where C is some deterministic constant and O( — /a) is a random variable bounded by nz% From

(3.17), (3.45), (3.46) and Lemma 3.5, we also conclude that

o2 On\ —2H__
2/2 1V1n7 2HY?’BH’IO (1) n—00 0
,On n,0n
vy @) ez \ )
" \Bn 1/a 5 ~ .
Term 3: From (3.13) and T nﬁn)Q =" —H's (1) + Ry 5 (1) where HY 5 (1) and Ry 4 (1) are given

by (3.14) and (3.23), we have

n \Bn
2/a 18@Y1 371:Pn,Zo H??,ﬂn,xo(l)W{l
6 Yn ,Br,To (Ufﬂﬁn)?

l/a

71%8n,T0 >
21 0pY | n'/*H? (1
2/ 1 1 5n< ) —i—'Rfi n(l) +Rgn<1)
n 8 Yn ﬂnﬂ?o On On

nl/a

8n,T0
l/a 189Y1 5

= _ )71, (1) + B8\ 7%2,8,
1/04(90}/?75%330 O_naaylﬂn,ro
yoPnszo T 1Bn,T0
89Y ) Y ) N
2/0‘ 1 1 n n 1/a 1001 q n n
+ ( ey v B Rig, (DR, (1) + ng 8.7 ﬂgmxo RY g, (UMY 5,(1)
nl/a n
ﬁmmo Evall Bn,fEO
ag*” - 2/& 1 80Y
l/a 1
O'nao'Yl nl/aa Yla L0

From (3.17), (3.45), (3.46), Lemma 3.3 and Lemma 3.6, we also conclude that

5L nyﬁn
im0V Hprsns W™ (B, 01 1, (1) H1, (1)
25,y (O w2 L g ()M, (1),
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’"«qﬁn a
Term 4: Using (U” Py = % 15,(1) + Ry 5 (1) again, we can rewrite

2
A0 grpe (0T e T
e | (P s || o 8. (1) + R2p, (1)
1;;8 Y] () % 9,Y" n

nl/a

nae??ugnumo R 8 Y17’8n »Z0 205, a ?’;L,Bn,ﬂfo

= = (H1p, (1) + (Ry5, (1)) + [ ™/
n'/eg, Yy 20, Y 20,0,V

nQ/a 1

R 5, (DH g, (1).

From (3.17), (3.45), (3.46), Lemma 3.6 and Lemma 3.3, we also conclude that

nseo [ 6b(x0,0) (1 La(1))?
ot g | (UpPyE 122 L (M1 10(1))?

nl/cx

0'% 4’”7571755
et 0gY ’ (Wln’ﬂ”)2

Term 5: From Lemma 3.5 we can estimate the fifth term as

0'2 n,Un n L
n2/§ Vi ! wi Bn O(nzl/a) nl/ o
now | (grBys . M, (1) + Ry, (1)
2V @\ (R, )+ 2) )\ o

O(E=)HY 5 (1) + O(F=)RE 5 (1)
i 0'2 On n
R s, (DHY 5, (1) + 775 9,ﬁn(1)R2,/3n( )+ Hi 5, (1) + 5= RE 5, (1)

where C' is some deterministic constant. From (3.17), (3.45), Lemma 3.5, we also conclude that

Vln O Wlm Bn 0

n—oo

o (U{Lﬁn)g LPvp=22 Hi,re(1)

n2/a 1

Term 6: Using Lemma 3.4 we write the sixth term as

0'% ﬂ?ﬁnﬂj
mang ’ D?’B n
n a Y” ,Bn,o (U{hﬁn)Q

nl/a

7”)/8 Preo] B xo
ﬂ& Y | " ~ nl/a 189Y1 "

i gy g Hy g, (1) + (R, (1) +RE 5, (1) + Rg g, (1)) -

1/a 28 ﬂlﬁn,wo

Applying Lemma 3.4, Lemma 3.7 and Lemma 3.3 we obtain that

02 6PN,
A0V g e Dublx, 0)Hs 1o (1)
9,7 om0 | (UPF)2 12 vpz2 LYHs 10(1)

n—o0

n
nl/a

29



where H3 r«(1) is defined in Lemma 3.4.

Term 7: From Lemma 3.4, we can rewrite the seventh term as

72L ﬂ?ﬁnvx
2C/fa71 aeyl ’ Q?’Bn
n a —n Bn,xo (U{lvﬁn)S

nl/a

n,B8n,T0 Bn,T0

774(99Yv17 ’ -~ l/a 189Y1
= Hi g, (1) + (R75,(1)+Rg s, (1))
nl/aaa‘yl »Bn,To ) JZ&UYI»BH,IO ’ ’

Applying Lemma 3.4, Lemma 3.7 and Lemma 3.3 we obtain that

2 —
0V QP Ogb(x0,0)Ha, o (1)

n—o0
7/871
o 9,y ) ()P L2\ pagy, 1a(1)
where H4 ra(1) is defined in Lemma 3.4.
Term 8: From Lemma 3.5, we have
Gn O’% Tn,@n
n2/a 1Tn 1 . n2/a-1 (U;’ﬁ”ﬂ

s Mn,on n,Bny2 =
ST (U) 55, (1) +0uRYy 5, (1) + 07 RY, 5 (1) + 07 RY, 5, (1)

Using the results of Lemma 3.5, we easily deduce that

0’”
n2/a 1T1n 1 n—o0 O
gy | (UPP ez \g )

where Hs 1o (1) is defined in Lemma 3.5.
Finally from the above convergences, we can deduce the result of Proposition 3.1.
3.4.2 Proof of Theorem 3.3

We will first prove part iz) and then give a proof for part 7).
i1) Remark that from (3.79), (3.80)

2
O' nﬁn,l“o
supsup E |1 —n.8n.00 < woy | 16 ——H_ e ang 20 (09Y 1 < 0
i ’ Ty o0z sy om0y -z =1 Py oo (M onro )| < oo
and,
supsupE 1 ,—n.s 8 % —aHe .3 (Hon .20 (0sY ’ﬁ"’xo)) < 00
weR 1 {Y n, 0>uo'/" +§n nzo} l/a n,TQ Y1, n,>TQ ot ] )

by representation (3.55) this leads to
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2 ) n,Bn,T0
supsup | 5" 0pp1" (20, 70 + < )| < o0,
ueER n na n
and
2
Bn Uon, n,Bn,To
sup su Oy X0, —— +¢ < 00.
ueg np nl/ p%( 0 nl/a 1 )
i) From (3.55), (3.47) and Proposition 3.1, we easily deduce that
2 2
g n uo sPny U n, n, -
00 (an, ST 4 ) = S g (T ) 25 iy, (L, (3.8)
a UOn | n,Bn,moy _ 721 _n_ g, gMBnsTo U0n | n,Bn,woy N0 b 0) X F. o (2)
Opl ($07 1/a+§1 )_ 24 04 ( 1/a+§1 ) > Op ($07 )X [1[u,oo)( I)Hl ]7
na n o

(3.84)
where H?) and H?) are defined in Proposition 3.1.
To finish the proof of Theorem 3.3, it remains to show that E[1}, ) (L?)ng)] = —¢p(u) and E[1}, o) (LYHHP)] =

— [pa(u) + upys'(uw)]. This is done in Lemma 3.8 below.
Lemma 3.8. We have
P () = ~EfLy o) (L)L),
— [pa(u) + upa ()] = E[Ljy,00) (LF)HP],
where @, is the density of LY and H®P) and 7—[52) are defined in Proposition 3.1.

Proof Let us consider the situation where b(z,6) = 6 and zo = 0. In that case, we have Y Y =

757

1 and thus the density of "

1/a 1/
g0 () = S (” (u - 6>> |
o o n

is related to the density of L} by the relation,

Then,

1/« 1/« 1/00\2 1/«
ooy = "o (0 (= 0 ) - T (w DY ey (2 (w2,
o2 o n o3 n o n

By a change of variables, we get

0 2/a—1
Bpq™" " < oy > = -2 (e" ()

nl/a " n

Qa0 (7 ) = = [ + e ()]




Hence, we can apply the results of part i) of Theorem 3.3 and (3.83), (3.84) in this specific setting.
This yields

Vu, (") () 27 B[l 00 (LOH), (3.85)
Vu,  [@"(w) +u(@") (w)] 2= —E[1}y,00) (L) H ), (3.86)
sup |(¢")'(u)] < o, (3.87)
Suug) |<p”(u) + u(go”)/(u)} < 00. (3.88)

Let us denote X' (u) = —E[l[ujoo)(L‘f‘)Hg)] and assume by contradiction that X' # ¢/ . Using the conti-
nuity of u — X (u), there exists a smooth, compactly supported function f, such that [ X (u)f(u)du #
[ ¢4 (u) f(u)du. Now, on the one hand we have

/ (") (u) f(u)du "2 / X () (u)d, (3.89)

where we have used the dominated convergence theorem, together with (3.85), (3.87).

On the other hand, we can write,

— E[f(L})] 2% —E[f(L) (3.90)
— [vatf = [ i (3.91)

where the convergence (3.90) is obtained in the same way as (3.54). Clearly (3.91) contradicts (3.89),
and we get E[l[um)(L?)Hgg)] = —¢l (u).

By the same method, let us denote &i(u) = —E[l}, ) (L)HP)] and assume by contradiction that
u— Xy (u) is different from u — [pq(u) + u(pq) (u)] . Using the continuity of u — X;(u), there exists
a smooth, compactly supported function f, such that [ X;(u)f(u)du # [ [pa(uw) + u(ea) (u)] f(u)du.

Now, we have
[ 6@+ utey )] s === [ 20w (392
where we have used the dominated convergence theorem, together with (3.86), (3.88).

On the other hand, letting g(u) = uf(u) and using the integration by parts formula, we can write,
[ e+ ue @) fdu= [ @ fdu+ [ (Y wgudu
= E[f(Ly)] - /w"(u)g'(u)du = E[f(L})] - Elg'(L])] == E[f(L})] — E[g'(L})] (3.93)
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- / volw)f(u)du — | go(u)g (uw)du = / o () f () + / o (w)g(u)du (3.94)

where the convergence (3.93) is obtained in the same way as (3.54). Clearly (3.94) contradicts (3.92),

and the lemma is proved. ]

4 Appendix

In this appendix, we give the proofs of Lemmas 3.3 - 3.7 of Section 3.4.1.

Proof of Lemma 3.3: i): Using the fact that b has bounded derivatives, the boundedness of (€f')¢c0,1],
(€)™ )epo.y) and from (3.58) we obtain that [3,7 ™| < €.
ii): From (3.59) and the boundedness of ((€}')")c[0,1)V7 € Z, we have

sup y | e Sup e?/ (62)_1dLZ

s€[0,1] Y sefo,1] 0
p / / a(du,dz)| + . / / () 2™ (du,dz)|  (4.1)
/0‘ sE[O 1 l2|<1 /0‘ se[o 1] 21

We now consider the first term of (4.1).

Using Doob’s martingale inequality, we have

2p

f(du, dz) ia(du, dz)

2p
) - n2p/a

2
where D(p) = (%) " And then using Kunita’s first inequality (see Theorem 4.4.23 in [1]), there

1
pon /a sup

z|<1

|<1

exists a constant M (2p) > 0 such that

2p

f(du, dz)

n2p/a

p
D p M 2p 1 e — 1 N
- (n)QMO([) [/ /z|<1 ()4 z|1+a7(z/”1/ )dZdu]
2p —2p 2 1 1/«
n2p/a [/ /||<1 " p| \1+a7(2/”/ )dzdu

C’1D / / /1/ 1 n—00
< ——dzdu | + ———dzdu | —— 0.
n2p/a ( l2|<1 \Z|O‘ ! 0 Jizj<a 2o

where C} is some deterministic constant. Thus, we can deduce that the first term of (4.1) converges

z|<1

to zero in L%, V¥p > 1.
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We now consider the second term of (4.1).

From the fact that u(™ (du,dz) is a positive measure, and the boundedness of (€ )tejo,1]> we get that

/ /||>1 10 (du, dz) 1/a/ /|z>1 126 (du, d2). (4.2)

for C* a positive constant

sup
s€ [0,1]

Then,

1 e ! 2p
™) (du, d < E / / ™) (du, d
sup Ly u, dz < zZ|p u, dz
n2p/e <se[0 1) / /|;>1 . )> n2v/e < 0 |z\>1| G )

Moreover, from p(™(ds,dz) = i\ (ds, dz) + v (ds, dz) then for Cy(p) a positive constant, we have

n2p/a (/ /|Z>1 |21 (du dZ)>
<G o ([ o) ve([ [ )

Using Kunita’s first inequality (see Theorem 4.4.23 in [1]), there exists a positive constant C3(2p) such

2p
—E
nrle [ 0 J) ]
P 1
ds dz) | + // 222 (ds, dz
nzp/a !(/ /||>1 ) ( 251 ( )
= /oY dyds / / /e 1xd
nzp/"‘ (/ /|>1 Izl”a m(e/n")dz ) * n2p/a [ z|>1 Iz!Ha m(z/n")dzds
_ 2052 2nt/e " 2cs2p) 2n'/o 1] e
- nQP/a n2p/o Za-l—l 2p zas

where we used the fact that 7 is a non negative function equal to 1 on [-1,1], vanishing on [—2, 2]¢ and

that

|2|a™ (ds, dz)

z|>1

(4.3)

satisfying 0 < 7 < 1 and M is some deterministic constant. Hence, we get that the second term of

(4.1) also converges to zero in L?,Vp > 1. And this finishes the proof of the part 4i). O

Proof of Lemma 3.4: Recall that D™ and U™ are given by (3.62) and (3.19). The part ¢) of
1 1
n.B

this lemma is proved by decomposing (U»D71173)27 then we obtain that the main term is (3.66) and the
1
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remainder terms are

7/ (z/nt/ n
Jo Juale 2p”<z>pﬂ'<z>Wu< )(ds, d2)

1a(1) = i
202n1/o (e (fo Jr(€)72p ()™ (ds, dz))
1 ny— n 2 | 7 (z/nt/e (2 /1) \ 2
fo f‘z|>2(65) ’ (p (Z)) |:T((z//nl/a)) - (T((z//nl/a))> :| M(n)(dsvdz)
+ 5 ,
202n 1/0‘ 61 (fO fR 6” ” ( )(ds dz))
02 Jy )T, 0) (207U - Wi ds
56(1) = 5 ,
opl+l/a <U1n,ﬂ)
. 12 Jo () 2" (VP 6) (UL ) s
Rg 5(1) = .
opl+1/a <Uf’ﬂ)
n,6
The part 7i) of this lemma is proved by decomposing ([?”17)3’ then we obtain that the main term is
1

(3.67) and the remainder terms are
fO 61 4b// SVt x07 H)W;L’ﬂUsn’BdS
nl+l/a <U{z,g>3
—4 " 37710520 n,8\3
fo er) 0"((Y ,0)(Us™") ds
nl+1/a (Uilﬂ)s

75(1) =

We now study the convergence of the main terms.

From (3.16), the boundedness of ¥, and Lemma 3.1, it is clear that ’ﬁ" (1) converges almost surely
to H3,ra(1). Moreover, using again the boundedness of V', the upper and lower bounds of (f)sefo,1]
and the fact that p™(z) is a non negative function, we deduce the upper bound, for some constant

C >0,

By Jo (2@ |07 ()] + (@) 1 () B + (07(2))* S22 ) ) (ds, d2)
(fo Jg ()™ (ds dz)>2

‘ﬁgﬁ(l)‘ <C (4.4)

Now we show that sup,

~ P
Hy 5, (s)’ is integrable. This is done by the same method as in Step
1.1 in the proof of Theorem 3.2. And then applying the dominated convergence theorem, we get

55(1) % Hs o (1). In the same way we prove that HJ 5(1) :C—Oo> Ha e (1).

n.B
ﬁ is bounded for 0 < s < 1, the remainder
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terms satisfy the upper bounds

7n7ﬁvx0 ,,8
n SUPse(o0,1] |LYS | SUPse(o,1] ’ ‘ n C
< < —
REp(] < 0 | PP S e | IRb S e 49)
n7/8
n supgepo,1) [Ws ™| n C
R (D] <C R3 5D < ————. 4.6
R24(1)] < [ e | sl < (1.6

n.8
Now from (3.19), (3.20) and (3.21), using that b has bounded derivatives and supg<<; % is bounded
- 1

again , we get that

swaeoy IV _ |1 Jy Ji [l ()1 + 52 pn(2) | u™(ds, d2)
n1+1/0‘Uf’5 - n2+1/a no fol f]R p(2) ™ (ds, dz)
7/ (z/nt/ n
Jo Jopmn 22 | EE0 T | 1) (ds, d2)

onltl/a fol le|>2 z2u(")(ds,dz)

L B RN VA )Iu (ds, dz)
« n,B - 241/«
nl /e (U F)? e [ pr )(ds,dz)]

(4.7)

From the results of Step 1.1, Step 1.2 in the proof of Theorem 3.2, and the control given in the proof

38,z ,
sup,eo,1) [ILY °| d SUPs¢(0,1] W' B|

of Theorem 3.1 for (3.27) we can easily deduce that nlt1/agn? i1/ (P2

converge to
zero in L, Vp > 1. Clearly, Rf 5(1) and R7 5(1) also converge to zero in L”,Vp > 1.

We now consider the convergence to zero of Rj 5(1).

From the boundedness of (€}');c(o,1], the definition of p" [see (3.10)], and from the fact that p™ (ds, dz)

is a positive measure, we have

[ 1 2|3 |7 (z/nt/e 24 7 (z/nt/e (= /) \ 2 n
‘ | C f(] f\z|>2 |:7|Ll|/a T((Z//nl/a)) + ni/a ( T((z//nl/a)) + (T((z//nl/"‘))> >:| M( )(ds,dz)
Risz(D)| <55
) 2 2 2
7 (\/‘01 f‘z|>2 ZQIU’(n) (d87 dZ))
(4.8)
[ R ko | B B i T B E T A R Y ) ]
< C fO f\z|>2 |:n1/a T(z/nl/a) + nl/o < T(Z/’nl/a) + (T(Z/?’Ll/o‘)> >:| M( )(dS,dZ)
- TCQ n4/a

(4.9)

where we used the fact that fol f|z‘>2 22 (ds, dz) > n?/®, if there exists a jump of the Lévy process

n [—2n'/® —nt/) U (n!/* 2n1/*]. And if there are no jumps in [—2n'/*, —n/*) U (n/*, 2n1/%], since
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7(z/n'/?) = 1if |2| < '/, we have 7/(z/n'/*) = 0 and 7"(z/n'/*) = 0. Thus, for M(p) a positive

constant, we have

' (z/nt/®)
7(z/nt/e)

2p

1n 2p CQP 1 1 z 3
E <R4,5(1)> < 22p0—2pn2p/aE /0 /|z>2 nl/a <’n1/a )
2
2z N4 [ |7 (z/n) 7' (z/nV/®) (n)
" (ds,d
T (nl/a) T(Z/?’Ll/a) + T(Z/nl/a) K ( S, Z)
3
2pn2p/a / /|z>2 nl/a 1/04 > T(Z/nl/o‘)
2p 2p

"(z/ntle 2
//|z>2 12/“ 4 Hdsdz) | +E /ol/|z>2<nlz/a)4<:((z//nll//a))> s 2

Similarly to the proof of Theorem 3.1, we show that under assumption Hj(b;), ’Rig(l) converges to

2p

/ 1/«
m(z/n )u(")(ds,dz) +

T//(Z/nl/a)
7(z/nl/?)

zeros as n — oo in L2 for all p > 1 and this completes the proof of this part.

i7i) From Lemma 3.3-ii) and the estimation (4.7), we easily deduce the result of this part. O

n,B
Proof of Lemma 3.5: i) From (3.60), the fact that b has bounded derivatives, supp<,<; Z” 5 is

bounded, the upper and lower bounds of ((€}'))ic[0,1), We easily deduce the result of the part 7).

i1) From (3.19), (3.64) we have
T’ B o () (T OV U ds () Jy () ot (Ve o)W s

(U"’ﬁ) i () ok (ur)
P L) (T, 0)0,Y T W s (eh)? [ () B (@pb) (Ve 0)(URF)2ds
0 1 S 1 0 \*~1 0 S ) S

n 2 n, 2
na(Uﬁ) na(Ulﬁ)
f() Sblll ﬂ%ﬁxo 9)60?215@0 (Usn’ﬁ)QdS
> :
e (Ur)

We deduce, using Lemma 3.3-7) and Lemma 3.5-7) that

70 C SUPe(0.1) W]
() St T )

where C1, Cy are some deterministic constants. Now from the estimation (4.7), we easily deduce that

tends to zero as n — oo and then we get the result of this part.

2
na (Uln,ﬁ)2

SUPse(0,1] |W9n’6
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"l

i7i) and iv) From (3.19), (3.61), (3.65), an easy computation shows the decomposition of U ] * and

117
nl/a <U1 6)27

where the leading term is (3.73) and the remainder terms are given by

0 s (P )
2 (1
9,5( ) TLUn’ﬁ
3b// nﬂl?o 0 Vn,aUn,,Bd
R (1) = 24 ot OV U ds
’ nl+l/a (U"’B)
)3 (Y ), v WA g
?1,6(1) fO 61 ) S
nl+l/a <U""B>
o (1) = AP )T, 000,V UL s
12,8

nl+l/a (U{‘ﬁ)Q

. s B, .
Moreover, using that b has bounded derivatives and supg<y<; % is bounded, the remainder terms
- 1

satisfy the upper bounds

Cy

Vn,o
R ‘< SuPsE[O,l]’ s |
’ | To,s(1)] < nl+l/a

C 7”757370
}’Rnﬁ ‘ < — sup 0, Y —
1

Cy | SUPsgio,1] \30?2’6’% w?)

()

where C, C1, (9, C3 are deterministic constants.

60?78%5710

C3
o [Rig (D] < 775 sup
12,8 nl+l/a se[0.1]

We observe that from Lemma 3.3 and Lemma 3.4-iii), we can deduce immediately the convergences
to zero in L, Vp > 2 of the remainder terms Rg 5(1), R, 5(1) and RY, 5(1).
For RY; 5(1), the proof strongly relies on the Lemma 3.3-i1), (3.61), (3.19), the boundedness of (€),

the fact that b has bounded derivatives and U B is bounded for 0 < s < 1. Then we easily deduce the
result of this step.

From the above estimations, it follows that the remainder terms converge to zero in L” for all p > 2.
The convergence of ”ﬁg 5(1) follows by the same method as in the proof of the convergence of ”zqg B(l)

in the proof of Lemma 3.3 and this completes the proof of this lemma. O

Proof of Lemma 3.6: We first prove (3.75). From the fact that sup,, supcjo 1) €5 — 1| + |(€5 my=t

n—00 8,0
yr

1] —= 0, the explicit expression of Jy given in (3.58) we easily get

n—o0

sup|n89Y o — 0gb(z0,0)| — 0.
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From the expressions (3.14), (3.15), using the fact that s — € converges uniformly with respect to xg
to the constant 1 and Lemma 3.1, it can be seen that

sup ]ﬁg(l) — Hra(1)] ’H—°°> 0.

Zo
We deduce that almost surely, one has the convergence

sup

ndp Y% (ﬁg(1))2 — Opb(x0, 0) (e (1))%] 222 0. (4.11)

. o
Since sup,, yP |

ﬁg(l) ‘p is integrable for all p > 1, and using |[9pY < %, we can apply the dominated
convergence theorem and see that the convergence (4.11) holds in LP-norm for all p > 1.

For (3.76): the proof is similar to (3.75).

For (3.77): let us recall that L7 = [ f‘z|§1 M (dt, dz) + [ f‘z|>1 zu(™ (dt,dz). Then, from (3.59) we

have
l/og, 71 (7%%1))2 = ()’ [ @t

) / /Z|<1 (€)' ziads, dz) + 61/ /|Z>1 2™ (ds,dz)  (4.12)

where we used the fact that the measures (™ and yu coincide on the set {(t, 2)|t € [0,1],]z| < n'/e}.
- 2
We now consider the first term of (4.12). We will prove that (Hg(l)) €l fol Ja1<1 (€M) 2fu(ds, dz) %
- s VpZ
(Hre(1 fo f‘ <1 zfi(ds, dz) which reduces to prove that
2
n n—00 n—00 1 ~
(Hﬁ( )) M (Hpa(1 )) and €} fo f| ‘<1( ) zfi(ds, dz) Mfo fl <1 zfi(ds, dz).
From (3.45), (3.46) and the fact that sup,, sup,cp 1 le5 — 1| + ‘(6?)_1 —1] 222, 0 we easily get the

result about the convergence of the first term in the right-hand side of (4.12).
For the second term in the right-hand side of (4.12), we show that
~ 2 1 _ n—00
(’Hg(l)) e J5 f‘z|>1 (€M) 2™ (ds, dz) ﬁ) (Hpa(1 fo f 2>1 zu(ds, dz) which reduces to prove

HE(L) 2% Hia(1), Vp>1, (4.13)
1
’HB 61/ / (€M)t 2u ™ (ds, dz) Z=2% Hia(1 )/ / zu(ds,dz), ,Vp>1. (4.14)
|z[>1 L2P |z[>1

For (4.13), this follows from (3.45), (3.46).
For (4.14), applying Lemma 3.1, the fact that s — €7 converges uniformly to the constant 1 and (3.35),
(3.36), it follows easily that

Hi(1 61//z|>1 1™ (ds, dz)—>HLa //|z>1 u(ds, dz). (4.15)

39



Now using (3.39) we can deduce that for C' a positive constant,

ﬁﬁ )er / / 1™ (ds, d2)
|z|>1

' 107 )]+ (2| u (ds, dz)
<C fo fR ( )|M (dS dz) n fO fR [Ip \z| P (2 )] ( / / lua(ds,d2)
[fo fR () (ds dz)} fo fR )(ds, dz) 2>|2|>1
" i lta ) (ds, dz)
o | [ Bl @I @ ds dz) Jo Je [l H ' e )} ( / / |2t (ds, dz)
Uo fRP () (ds dz)} fo fR (™ (ds, dz) |z]>2
(4.16)

Considering the first term in the right-hand side of (4.16), from the proofs of Step 1.1 and Step 1.2
in Theorem 3.2, we deduce that it is bounded by a random variable independent of n and belonging
to Np>1 L.

We now consider the second term in the right-hand side of (4.16). From (3.10), we have

Jo Jur" (2)|p ™) (ds, dz) Jo Ji [|Pn/ l‘il‘”p”( )] )(ds, dz) z »
| 5 fR ) (ds,d2)] o Je ()™ (ds, dz) / /Z|>2l 1" ds, d2)

Jo Jiao P P () (s, d2) | Jy fge2 (10 )!+p( 2) 4R ) n(ds, dz) / / |2|u™ (dt, dz)
(fol le>2 zQM(n)(dS,dz)>2 fO f 252 )(dg dz) 12 >2

2|z (ds, dz 3+ a) |2|u™ (ds, dz)
fo fz|>2 |23 ) fo fz|>2( )(’ ‘ / / A ds) (417)
(fo f‘z|>22 ,u(”)(ds,dz)> fo f‘ |>22 p™ (ds, dz) |2|>2

2
Using the Cauchy - Schwarz inequality fol f‘z|>2 ,u"(dt,dz)xfo1 f‘2|>2 2 (ds, dz) > <f01 fIZ\>2 |z| ™ (dt, dz)>

we get:

1 31
2|z ds dz) 2|23 ds dz)
Jo Jma212PPut // | (d d2) < Jo fiaps2 212 // dh o)
|z|>2 |Z\>2

(fo J- \>22 (™ (ds, dZ (fo iz o |2 (dt, dz

_ 2’|Z2‘|3 (/ /|Z>2 )(dt, d2) ) <2 </ /z|>2 (dt, d=) >

and

(3 + a)|z|p'™ ds dz) 1
fO f| |>2 ) | |z|u"(dt,dz) < (3+ «) p(dt,dz). (4.19)
2
fo f|z\>22 )(ds, dz) |2]>2 0 J]z|>2

(4.18)
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Combining (4.18), (4.19) with (4.17), it follows that the second term in the right-hand side of (4.16)
is also bounded by a random variable independent of n and belonging to ﬁpzlLQP . As a consequence,

we get that
2p

sup 7—[5 61/ /z|>1 1™ (ds, dz) is integrable Vp > 1. (4.20)

Under (4.15) and (4.20), we can apply the dominated convergence theorem and the result on the
convergence of the second term in the right-hand side of (4.12) follows. This achieves the proof of
(3.77).

For (3.78), the proof is similar to (3.77). O

Proof of Lemma 3.7: i) and ii): From (3.68) and proceeding as in the proof of (3.75), we deduce
the results of ) and 7).
iii) and iv): From (3.59) and the fact that the measures x™ and u coincide on the set {(¢,2)|t €

[0,1], |z| < n'/?}, we have

1
W20,V T A (1) = F s (1)el / (er)ary

—H3ﬁ 61// f(ds,dz) +H35 61// p™ (ds,dz). (4.21)
|z|<1 [z[>1

From (3.68) and proceeding as in the proof of (3.77), we can deduce the result of iii). Moreover, in

the same way we can complete the proof of part iv). O
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