R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides, Autonomous Movement and Self­Assembly, Angew. Chem. Int. Ed. Engl, pp.41-652, 2002.
DOI : 10.1002/1521-3757(20020215)114:4<674::aid-ange674>3.0.co;2-z

W. Wang, W. Duan, S. Ahmed, T. E. Mallouk, and A. Sen, Small power: Autonomous nano- and micromotors propelled by self-generated gradients, Nano Today, vol.8, issue.5, pp.531-554, 2013.
DOI : 10.1016/j.nantod.2013.08.009

N. Mano and A. Heller, Bioelectrochemical Propulsion, Journal of the American Chemical Society, vol.127, issue.33, pp.11574-11575, 2005.
DOI : 10.1021/ja053937e

X. Ma, A. Jannasch, U. R. Albrecht, K. Hahn, A. Miguel­lopez et al., Enzyme-Powered Hollow Mesoporous Janus Nanomotors, Nano Letters, vol.15, issue.10, pp.7043-7050, 2015.
DOI : 10.1021/acs.nanolett.5b03100

S. Gaspar, Enzymatically induced motion at nano- and micro-scales, Nanoscale, vol.126, issue.14, pp.7757-7763, 2014.
DOI : 10.1039/c4nr01760a

J. Li, O. E. Shklyaev, T. Li, W. Liu, H. Shum et al., Self-Propelled Nanomotors Autonomously Seek and Repair Cracks, Self­ Propelled Nanomotors Autonomously Seek and Repair Cracks, pp.7077-7085, 2015.
DOI : 10.1021/acs.nanolett.5b03140

R. Golestanian and A. Sen, Micromotors Powered by Enzyme Catalysis, Nano Lett, vol.2015, issue.15, pp.8311-8315

T. R. Kline, W. F. Paxton, Y. Wang, D. Velegol, T. E. Mallouk et al., Catalytic Micropumps:?? Microscopic Convective Fluid Flow and Pattern Formation, Journal of the American Chemical Society, vol.127, issue.49, pp.17150-17151, 2005.
DOI : 10.1021/ja056069u

S. Sundararajan, P. E. Lammert, A. W. Zudans, V. H. Crespi, and A. Sen, Catalytic Motors for Transport of Colloidal Cargo, Nano Letters, vol.8, issue.5, pp.1271-1276, 2008.
DOI : 10.1021/nl072275j

K. K. Dey, F. Wong, and A. Altemose, Catalytic Motors???Quo Vadimus?, Current Opinion in Colloid & Interface Science, vol.21
DOI : 10.1016/j.cocis.2015.12.001

V. Yadav, W. Duan, P. J. Butler, and A. Sen, Anatomy of Nanoscale Propulsion, Annual Review of Biophysics, vol.44, issue.1
DOI : 10.1146/annurev-biophys-060414-034216

W. Wang, W. Duan, S. Ahmed, A. Sen, and T. E. Mallouk, From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors, Accounts of Chemical Research, vol.48, issue.7, p.48, 2015.
DOI : 10.1021/acs.accounts.5b00025

M. Guix, C. C. Mayorga­martinez, and A. Merkoci, Nano/Micromotors in (Bio)chemical Science Applications, Chemical Reviews, vol.114, issue.12, pp.6285-6322, 2014.
DOI : 10.1021/cr400273r

C. Zhou, H. Zhang, Z. Li, and W. Wang, Chemistry pumps: a review of chemically powered micropumps, Lab Chip, vol.30, issue.10, pp.1791-1811, 2016.
DOI : 10.1039/C6LC00032K

P. H. Colberg, S. Y. Reigh, B. Robertson, and R. Kapral, Chemistry in Motion: Tiny Synthetic Motors, Accounts of Chemical Research, vol.47, issue.12, pp.47-3504, 2014.
DOI : 10.1021/ar5002582

URL : http://arxiv.org/abs/1407.6338

A. A. Solovev, Y. Mei, E. Bermudez-urena, G. Huang, and O. G. Schmidt, Catalytic microtubular jet engines self­propelled by accumulated gas bubbles Catalytic Nanoshell Micromotors, Small 1688­1692. J. Phys. Chem. C, vol.5, issue.117, pp.21590-21596, 2009.
DOI : 10.1002/smll.200900021

R. Liu and A. Sen, Autonomous nanomotor based on copper­platinum segmented nanobattery
DOI : 10.1021/ja2082735

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, . St et al., Catalytic Nanomotors:?? Autonomous Movement of Striped Nanorods, Journal of the American Chemical Society, vol.126, issue.41, pp.13424-13431, 2004.
DOI : 10.1021/ja047697z

T. E. Mallouk, Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions ?, 10451­10456. (23) Pumera, M. Electrochemically powered self­propelled electrophoretic nanosubmarines, 2006.

S. Fournier­bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, Synthetic self­propelled nanorotors, Chem. Commun, 2005.

X. Ma, K. Hahn, and S. Sanchez, Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery, Journal of the American Chemical Society, vol.137, issue.15, pp.4976-4979, 2015.
DOI : 10.1021/jacs.5b02700

URL : http://doi.org/10.1021/jacs.5b02700

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self­ motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett, pp.99-048102, 2007.
DOI : 10.1103/physrevlett.99.048102

URL : http://arxiv.org/abs/0706.4406

A. E. Frankel and A. S. Khair, Dynamics of a self­diffusiophoretic particle in shear flow

. Phys, . Rev, . Stat, S. Nonlinear, R. Matter-golestanian et al., Propulsion of a molecular machine by asymmetric distribution of reaction products, Phys. Rev. Lett, 2005.

D. A. Wilson, R. J. Nolte, and J. C. Van-hest, Autonomous movement of platinum­loaded stomatocytes, Nat. Chem, 2012.
DOI : 10.1038/nchem.1281

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.658.5545

S. Wang and N. Wu, Selecting the Swimming Mechanisms of Colloidal Particles: Bubble Propulsion versus Self-Diffusiophoresis, Langmuir, vol.30, issue.12, pp.3477-3486, 2014.
DOI : 10.1021/la500182f

J. Hu, T. W. Odom, and C. M. Lieber, Chemistry and Physics in One Dimension:?? Synthesis and Properties of Nanowires and Nanotubes, Accounts of Chemical Research, vol.32, issue.5, pp.435-445, 1999.
DOI : 10.1021/ar9700365

R. Cromer, C. D. Keating, and M. J. Natan, Submicrometer metallic barcodes, Science, vol.294, pp.137-141, 2001.

T. Ozel, G. R. Bourret, and C. A. Mirkin, Coaxial lithography, Nature Nanotechnology, vol.3, issue.4, pp.319-324, 2015.
DOI : 10.1038/nnano.2015.33

T. R. Kline, W. F. Paxton, T. E. Mallouk, and A. Sen, Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods, Angewandte Chemie, vol.11, issue.5, pp.754-756, 2005.
DOI : 10.1002/ange.200461890

C. M. Hangarter, Y. I. Lee, S. C. Hernandez, Y. H. Choa, and N. Myung, Nanopeapods by galvanic displacement reaction, Angew. Chem. Int. Ed. Engl, pp.49-7081, 2010.
DOI : 10.1002/ange.201001559

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core???shell and core???multishell nanowire heterostructures, Nature, vol.285, issue.6911, pp.57-61, 2002.
DOI : 10.1063/1.102280

X. Y. Kong, Y. Ding, and Z. L. Wang, Metal???Semiconductor Zn???ZnO Core???Shell Nanobelts and Nanotubes, The Journal of Physical Chemistry B, vol.108, issue.2, pp.570-574, 2004.
DOI : 10.1021/jp036993f

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.501.5711

H. Q. Cao, Z. Xu, H. Sang, D. Sheng, and C. Tie, Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules, Advanced Materials, vol.13, issue.2
DOI : 10.1002/1521-4095(200101)13:2<121::AID-ADMA121>3.0.CO;2-L

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. Lee, Fabrication of Germanium-Filled Silica Nanotubes and Aligned Silica Nanofibers, Advanced Materials, vol.15, issue.1, pp.70-73, 2003.
DOI : 10.1002/adma.200390014

J. L. Moran, P. M. Wheat, and J. D. Posner, Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis, Physical Review E, vol.81, issue.6, p.65302, 2010.
DOI : 10.1103/PhysRevE.81.065302

J. L. Moran and J. D. Posner, Electrokinetic locomotion due to reaction­induced charge auto­ electrophoresis, J. Fluid Mech, pp.680-711, 2011.

W. Wang, T. Y. Chiang, D. Velegol, and T. Mallouk, Understanding the Efficiency of Autonomous Nano- and Microscale Motors, Journal of the American Chemical Society, vol.135, issue.28, pp.10557-10565, 2013.
DOI : 10.1021/ja405135f

B. J. Nelson and S. Pané, Silicon­supported aluminum oxide membranes with ultrahigh aspect ratio nanopores, RSC Adv. 2015, vol.5, pp.94283-94289

J. J. Hill, K. Haller, B. Gelfand, and K. J. Ziegler, Eliminating capillary coalescence of nanowire arrays with applied electric fields Diffusive behaviors of circle­swimming motors, ACS Appl. Mater. Interfaces Phys. Rev. Lett, vol.2, issue.87, 2010.

T. C. Lee, M. Alarcon­correa, C. Miksch, K. Hahn, J. G. Gibbs et al., Self­ propelling nanomotors in the presence of strong Brownian forces, Nano Lett, vol.14, 2014.

U. K. Demirok, R. Laocharoensuk, K. M. Manesh, J. Wang, R. Laocharoensuk et al., Ultrafast Catalytic Alloy Nanomotors, Angewandte Chemie International Edition, vol.31, issue.48, pp.9349-9351, 2008.
DOI : 10.1002/anie.200803841

S. V. Teeffelen and H. Lowen, Dynamics of a Brownian circle swimmer, Physical Review E, vol.78, issue.2, pp.78-020101, 2008.
DOI : 10.1103/PhysRevE.78.020101

S. Ebbens, R. A. Jones, A. J. Ryan, R. Golestanian, and J. R. Howse, Self-assembled autonomous runners and tumblers, Physical Review E, vol.82, issue.1, p.15304, 2010.
DOI : 10.1103/PhysRevE.82.015304

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle, Computer Physics Communications, vol.182, issue.2
DOI : 10.1016/j.cpc.2010.09.017

D. W. Mckee, Catalytic decomposition of hydrogen peroxide by metals and alloys of the platinum group, Journal of Catalysis, vol.14, issue.4, pp.14-355, 1969.
DOI : 10.1016/0021-9517(69)90326-1

*. E­mail, :. Ch-author-contributions, S. P. , and B. J. , initiated the project and S.W. fabricated the magnetic nanoswimmers and analyzed their motion. W.W. and B.J. conducted the simulation experiments performed the analysis of the swimmers and provided theoretical discussion, S.P. and B.J. designed the fabrication experiments. B.J