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ABSTRACT 

In building energy management, the electrical storage is important to ensure power supply 

continuity and reduce cost of electrical consumption. Therefore, an electrochemical battery model 

is highly recommended for our main objectives, which can contribute to simulate the impact of 

electrical storage in the building. In our framework, we have developed a complete solution for 

the electrical optimal management, including prediction, optimization, and real-time management 

of an electrical storage system with photovoltaic generation. We firstly present the models 

required to predict consumption patterns, production and storage. Then, under our experimental 

platform, we detail the predictive control algorithm, monitoring solutions and equipment control, 

as well as the results obtained. In near future, this research will be applied for the “Micro Smart 

Grid Development and Application for Building Energy Management” project (USTH, HIT, 

G2Elab and VAST). 

Keywords: building energy management, electrical storage, renewable energy, demand response, 

energy autonomy. 

1. INTRODUCTION 

The building is a major sector in the power system and have an important role in solving 

problems related to the operation of power systems such as peak consumption and blackout. In 

addition to reducing consumption, reducing peak demand will go through the smoothing of daily 

consumption curves through actions of Demand Response (DR) as moving loads to times of low 

consumption [1] [2]. 

Decentralization of energy production at the user level (especially in buildings) due to the 

integration of renewable energy, introduces additional difficulties in managing the overall 

production of electric network [3]. On the other hand, it can have degrees on consumption 

adjustment and energy autonomy. 
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The smart building must be equipped with the following capabilities related to: energy 

storage; energy consumption and load shedding; generation [4] [5]. 

These capabilities will be coupled with: 

 energy market , market offloading capability; 

 prediction: each node must be able to anticipate the capacity of production, storage 

and consumption. 

 real-time control : each node must be able to dynamically adjust the production 

capacity , storage , consumption and load shedding to respond to hazards that may 

be related to incidents (loss of production units, meteorology, ... ) 

The storage medium can be heat capacity, it is indeed possible to anticipate heating using 

thermal inertia [6]. The storage medium can be electrochemical batteries, and in this case, the use 

of existing batteries is preferred. For example, vehicle-to-grid (V2G), operates the electric vehicle 

batteries [7] [8]. 

In our framework, we have developed a complete solution for the electrical optimal 

management, including prediction, optimization, and real-time management of an electrical 

storage system with photovoltaic generation. We firstly present the models required to predict 

consumption patterns, production and storage. Then, under our experimental platform, we detail 

the predictive control algorithm, monitoring solutions and equipment control, as well as the results 

obtained. 

2. PREDICTION MODELS 

In this section, model used for electrical energy prediction are briefly presenter (photovoltaic 

production, load consumption, electrical price). The energy storage systems, that we want to 

control, which is electrochemical batteries, have been modeled more accurately in order to have 

access to important parameters like the state of charge (SOC) and state of health (SOH), is detailed 

in section III. 

2.1 Photovoltaic production 

The power output of the PV generator is related with solar irradiance and ambient 

temperature. From these forecast data and manufactures data for PV modules, we can predict this 

production in according to the following equation [6]:  

tmgPV GANP   (1) 

where ηg is the instantaneous PV generator efficiency. This value is represented as follows 

[10]: 

))1)(
800

20
()(1( ptrttratptrg
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
  (2) 

2.2 Load prediction 

From classroom internet calendar, we can obtain the occupant plan (1 or 0 for each hour) and 

number of students who will be using classroom computers for the next day. By supposing an 

average power load consumption of each used laptop of 30W, we can predict the load consumption 

(3) and its profile. 
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 30 nsPload   (3) 

2.3 Electrical price  

In electrical market of developed country, the electrical price is depended on energy demand 

and furnished by electrical distributor (EPEX www.epexspot.com). 

3. BATTERY MODEL 

In simulation and application of electrical storage, the preferred electrical model of battery 

is electrical capacity, which is simple and describes energy balance in charging and discharging 

process. However, this model cannot describe accurately the functional states of the battery at 

each moment (state of charge, state of health) and some functional conditions (overvoltage, 

overcurrent) for predictive and feedback control. For example (Figure 1), in the constant voltage 

stage, charge current depends highly on battery property, and real charge time is much longer than 

estimated charge time by using an electrical capacity model. To reach these proposed goals and 

take into account the battery typical characteristics, a physical model is required but has to be as 

simple as possible. 

 

Figure 1. Charge profile of a Li-ion battery 

3.1 Functional specification 

Specification of this model is designed to fit a large scale of operations in different scenarios. 

The input data is the power set point (Psp: positive in discharge mode and negative in charge 

mode) and output data are real battery power (Pb), state of charge (SOC), state of health (SOH), 

Joule losses, available discharge power and available charge power. (Figure 2) 

As a physical battery, the following constraints must be satisfied: 

 Charge power should not cause overvoltage (V ≤ Vmax), 

 Charging current does not exceed a limit value (I ≤ Ilim). 

In case of a discharge or charge power greater than the available value, the model will only 

provide its available power. Moreover, to preserve battery life-time, the model will decide to 

disconnect battery from electrical load when the state of charge is too low (SOC = SOCmin). 

3.2 Electrical equivalent model 

Charge current of a 

classic model 

Charger float voltage 

of a classic model 

Charge capacity 

of a classic model 

http://www.epexspot.com/
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Various models are available in the literature [15] [17]to reach fine and fast simulation. In 

our framework, a simple model is preferred to describe charging and discharging process. This is 

the reason why we have chosen Shepherd’s hypothesis [12] as the basis content of this model. 

These hypotheses are based on a simple equivalent circuit: a voltage source is connected with a 

variable resistor. (Figure 3) 

 
  

Figure 2. Battery model 

specification. 
Figure 3. Electrical equivalent 

circuit. 
Figure 4. Typical Discharge 

Curve Characteristics. 

This model must take into account the variation of battery voltage depending on battery state 

of charge. Indeed, the curve consists of three operating zones: exponential zone, nominal zone and 

polarization zone. (Figure 4) 

By synthesizing the three discharge phenomena and Shepherd‘s hypothesis, we can re-

establish power discharging and charging equations [13]. 

For the discharge mode (IB ≥ 0), the battery power equation across the battery can be defined 

as below: 
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In charge mode (IB ≤ 0), the polarization resistor is modified to approach the operation of the 

battery. So the power equation is rewritten: 
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These equations allow determining the state of charge (SOC), the available powers (charge 

and discharge) and Joule losses. 

State of charge: 

%100
nomQ

Q
SOC  (6) 

Joule losses in discharge mode: 
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Joule losses in charge mode: 
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Available discharge power: 
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Available charge power at constant current stage: 
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Available charge power at constant voltage stage: 
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(11) 

Besides, the state of health (SOH) is estimated by “additive law” [17]: 
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The model can accurately simulate the behavior of an electric battery by using identified 

parameters from typical battery characteristics. 

In our framework, we have to keep a compromise between accuracy and ease of use. In 

particular, model parameters can be considered constant in charge mode and discharge mode, thus 

facilitating the implementation of the model. Our model integrates the parameters for four famous 

kind of battery (Lead-acid, Ni-Cd, Ni-Mh, Li-ion). 

3.3 Validation 

3.3.1 Simulation in different modes 

To survey available power in operation, the simulation test on Figure 5 illustrates set point 

powers for low and high demand for a battery with the following parameters: Ni-Cd, 4200mAh 

and initial SOC = 50%. 

  
(a) (b) 

Figure 5. Power and state of charge in different modes. 

Figure 5.a shows that the battery can provides a power that is lower than set point value (see 

zone A and zone B). Therefore, this demonstrates that our model allows calculating real battery 

power at the end of discharging or charging processes, this is important to decide the optimal 

control in building energy management. 

3.3.2 Measurement vs Model 

3.3.2.1 Simulation in different modes 
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This model is validated by a test on a Laptop DELL Latitude E6400 including a Li-ion battery 

(rated voltage: 11.1 V, rated capacity: 6100 mAh, cycle durability: 1200, initial state of charges 

100%). Measurements are obtained by BatteryMon software (v2.1, www.passmark.com). 

In Figure 6, the simulation is well reproducing the measured power set point and the 

measured state of charge. Because of using average parameters for Li-ion battery, the model 

cannot reproduce exactly the battery voltage which is sensible with different parameter values. 

This has an influence for calculating the state of charge which is sometimes a little bit higher or 

lower than measurement data. This is also the case for the output power which cannot reproduce 

exact values at the end of discharge mode or charge mode as shown on Figure 6.a. 

For health protection, the battery should not be used until the end of its charge like it was 

done in this test case. Thus the peak estimated voltage at the end of battery charge (see Figure 6.b) 

would not exist in almost operation modes. Thus, if we exclude this peak value, Figure 6.b shows 

that the difference between simulations and measurements is lower than 10% which is the level of 

accuracy that we can accept. 

3.3.2.2 Validation in terms of charge mode: 

  
6(a) 6(b) 

 
 6(c) 

 

Figure 6. Simulations vs measures for power, 

voltage and SOC. 
Figure 7. Model validation for power in charge 

mode. 

Actually, the power set-point in charge mode of a laptop is not clearly defined. In fact, in 

almost cases, we usually estimate charge power of battery between the maximum power value of 

adapter and power consumption of the PC, while the real value depends completely on its 

properties (type of battery and technical parameters). 

In order to validate battery model function in this condition, we made a test of charge mode 

(without using the PC) of a Li-ion battery from a computer: DELL PRECISION module KY265 

11.1 V, battery capacity: 85 Wh, design charge power: 130.65 W (19.5 V × 6.7 A), the initial state 

of charge SOC0 = SOCmin = 5%, maximum charge current Ilim = -0.7Qrat and maximum voltage 

Vmax = 1.13Vrat. 
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In Figure 7, the estimated power curve during charging is close to the battery characteristic 

curve. In constant current stage, the model calculation could well reproduce the measured power. 

But, in constant voltage stage, battery model start to make errors in calculation and they will be 

accumulated and lead to a different at end of charge process with an order of 7%. In our 

framework, these errors of charge power and charge state are acceptable for the purpose of 

prediction. 

4. IMPLEMENTATION IN “PREDIS SMART BUILDING” 

The PREDIS “smart building” (PREDIS SB) is situated in Grenoble Electrical Engineering 

Laboratory (France). It is a building used for researches on (building + grid) smart system. Battery 

modeling and control is one of research activities of this project. 

To realize application of battery control strategy, a part of this platform is used as a computer 

room with laptops and controllable switches. We simulate a photovoltaic generation supply for 

the 15 laptops with a curve of generated power for 1 day illustrated on Figure 8. A command 

server sends wireless ON/OFF signal to each switch to decide charging/discharging mode of each 

laptop. The goal is to reach, or to be closer as possible from the photovoltaic autonomy [19]. 

Therefore, our objective is to define an autonomous and optimal control strategy by using battery 

model from a proposed scenario and initial battery states. 

Technical details:  

 Laptop DELL Precision, battery module KY265, type Li-ion, 11.1 V, 85Wh 

 Photovoltaic panel: Pmax = 1000W. 

4.1 Simulation using models for prediction and real-time control 

4.1.1 Forecast data 

Our first application is realized by a simulation on a typical day in 2012 November. The total 

load (Figure 8) is summed from wattmeter measurements of each laptop at 100% state of charge 

in order to retrieve pure user load consumption (without battery charge consumption). Besides, 

the photovoltaic production is taken from measured data (Figure 9) and the electrical price is given 

by EPEX www.epexspot.com (Figure 10). State of charge for each battery is initialized to 100% 

by a full charging process, but the optimal control tries to reach the target of 50% SOC at the end 

of each day in order to have the possibility to charge or to discharge batteries. 

   

Figure 8. Total load consumption 

by laptop device. 
Figure 9. Photovoltaic power. Figure 10. Electrical price. 

 

4.1.2 Control strategy 

0 5 10 15 20 25
0

100

200

300

400

500

600

Time (h)

T
o
ta

l 
p
o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

W
)

 

 

0 5 10 15 20 25
0

100

200

300

400

500

600

Time (h)

P
o
w

e
r 

(W
)

 

 

0 5 10 15 20 25
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (h)

P
ri
c
e
 (

€
/K

w
h
)

 

 

www.epexspot.com%20


 
 

Dặng Hoàng Anh, Nguyễn Đình Quang 
 

 

To reach an optimal management, the control strategy must be deduced by following two 

steps: predictive and feedback control. The predictive control calculates energy balance from data 

prevision and allows preparing necessary energy in battery for whole day operations. In this case, 

the battery model is used to define charge time and to decide when each laptop should be charged 

from electrical price evolution. Further, the feedback control decides what laptop can be charged 

or discharged in each check-point time (each 6 minutes). For this goal, model is also used to 

calculate or predict battery states at next time. 

4.1.3 Simulation results 

  
Figure 11. Total power consumption at electrical 

outlet and photovoltaic power. 
Figure 12. Electrical grid power. 

Figure 11 shows total power consumption which is balanced with the photovoltaic 

production. By using batteries and an optimal control, the power consumption profile can benefit 

as much as possible from the generated power of the photovoltaic panel maximizing by this way 

the photovoltaic autonomy. Because the energy consumption in this case is more than the 

generated energy, this system need still to buy energy from electrical grid which is stored on laptop 

battery. 

From Figure 12, the necessary power is bought at the cheapest moment (3:00am to 5:00am, 

from electricity variable prices of Figure 10) to minimize costs. Sometime, we can sell generated 

power to grid but in reality, this power is used locally for other consumptions (HVAC, lighting…). 

To understand the gains of this application, the table below compares our strategy to the classical 

case (PC without electrical storage). The cost gain is about 10 times. 

4.2 Application in real the system 

The previous part was done for a simulated system in order to developed models and optimal 

control algorithm. In this section, we have applied the optimal control on the real system. 

4.2.1 Control devices 

In this section, we introduce control materials in our control protocol: command server, 

receiver and transmitter RF module, controlled outlet, Zigbee wattmeter and virtual sensor (Figure 

13). 

By integrating the control module and the management module data, our home abstraction 

layer (HAL) server allows retrieving measured data and control actuators in order to manage 

energy devices and especially energy storage system of laptops. 
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Besides, receiver and transmitter RF module communicates to command server on TCP / IP 

connection. This module converts RF frames to PLC signals (power line communication) which 

are transferred on the electrical grid, in order to turn on or off the controlled outlets. 

Zigbee wattmeter and controlled outlet are inserted between the network electrical and laptop 

adapter (Figure 14) 

 Zigbee wattmeter measures power consumption and sends it via Xbee gateway, 

which is connected to the server by USB interface port. 

 The controlled outlet receives ON/OFF signals via electrical grid by PLC. 

Measured battery status (SOC, SOH ...) is got from software BatteryViewInfo (Figure 15) 

(www.nirsoft.net). 

This software allows exporting data in several types (*. Txt, *. html*. xml ...), which are very 

easy to operate through the TCP/IP network. Thus, this software is considered a "sensor virtual " 

because it produces quantities that are not directly measured such as current capacity (%). 
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Figure 13. Communication 

network. 
Figure 14. Electrical power meter 

and receiver (Zigbee radio 

frequency). 

Figure 15. Battery monitoring 

tool 

4.2.2 Real system results 

The optimal controller has been installed into the command server and is able to call model 

simulation for prediction phase, as well as real-time monitoring and control using HAL server. 

Results obtained during a day are the followings.  

In Figure 16, we can notice that batteries charging have been realized early on the morning 

and that power taken from electrical outlet follows photovoltaic production. In Figure 17, we can 

see batteries charging and discharging power, as well as computers load. 

  
Figure 16. Photovoltaic production ant electrical 

outlets power 
Figure 17. Batteries power (charge and discharge) and 

computers load. 

Fig. 18, is detailing batteries state of charge (SOC). Before class starting, batteries are full of 

charge. At 8 o’clock, some PC start running discharging their battery. After some minutes, 

photovoltaic production is enough to supply energy to some PC. From 11 am to 2 pm, there is an 

amount of energy which supply computer load as well as charging of batteries. From 2 pm to 6 

pm, batteries are discharging due to insufficient production. At the end of the day, batteries SOC 

are very low which is due to an intensive use of computer during. 

www.nirsoft.net
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Figure 18. Laptops battery state of charge on real system 

 

5. RESULTS AND DISCUSSION 

Based on ideas and results of this research, under the cooperation between USTH, HIT, 

G2Elab and IES-VAST, we are deploying the “Micro Smart Grid Development and Application 

for Building Energy Management” project in order to approach two new research directions: 

building energy management and micro smart grid [20]. In fact, our research focuses on the Micro 

Smart Grid development at the local level (building) that is estimated to last for a period of 3 years 

(2015 – 2018). The 5th floor and 6th floor (with four labs and a classroom) of USTH building, 

where we can carry out experimental simulation model in a real case, have been chose to be the 

research platform. Besides, the power supply system will be from a photovoltaic energy source, 

an electrical storage (battery energy storage station - Lithium batteries blocks of LiFePO4), and 

EVN power grid (low voltage). Indeed, the photovoltaic generation system at power scale of 15 

kWp including an inverter and solar panels will be installed on the rooftop of USTH building. 

This PV system extracts maximum power from the PV arrays and injects maximum power into 

grid in various conditions. The load includes in this case single phase and triple phase namely 

lighting systems, heating ventilation and air-conditioning systems (HVAC systems), and elevator 

of USTH building. Moreover, we will utilize another bank called “load bank”. It allows the 

simulation of resistive, inductive and capacitive loads and provides for the research in different 

conditions in the smart grid platform. Besides that, the monitoring system (energy meters, PLCs 

and SCADA) allows collecting data that can be analyzed providing information for the optimal 

operation. The energy controller reads all the data measured by the transducers for managing and 

running the equipment following the different selected modes. The energy manager controls the 

delivery of energy, the run of charges and discharges batteries. 

6. NOMENCLATURE 

Symbol Signification 

PPV Photovoltaic power (W) 

ηg Instantaneous PV generator efficiency 

N Number of cell 

Am Surface of one cell 

Gt Solar irradiance 

ηr Reference maximal efficiency 

ηpt Power operation efficiency 
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ns Number of students 

Βt Efficiency coefficient 

Ta Ambient temperature 

Tr Reference temperature 

NOCT Nominal operation cell temperature 
)(

0OC
maxV

QQB
eAV


  Open circuit voltage (V) 

Q

Q
KRR IV

max

 
Variable resistor (Ω) 

V0 Constant voltage (V) 

RI Internal resistor (Ω) 

K Polarization voltage factor (V) 

IB Battery intensity (A) 

Qmax Maximum capacity (Ah) 

Q0 Initial charge (Ah) 



t

BC dtIQQ
0

0 

 
Instantaneous charge (Ah) 16 

ηC Faraday efficiency 

A Voltage factor (V) 

B Charge factor (Ah-1) 

NC Cycle durability 
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