Palladium-Catalyzed Addition of 1,3-Diones to Ynamides: An Entry to Alkoxy-Substituted Enamides
Lionel V. Graux, Hervé Clavier, Gérard Buono

To cite this version:
Lionel V. Graux, Hervé Clavier, Gérard Buono. Palladium-Catalyzed Addition of 1,3-Diones to Ynamides: An Entry to Alkoxy-Substituted Enamides. ChemCatChem, Wiley, 2014, 6 (9), pp.2544 - 2548. 10.1002/cctc.201402398 . hal-01409701

HAL Id: hal-01409701
https://hal.archives-ouvertes.fr/hal-01409701
Submitted on 7 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Palladium-catalyzed addition of 1,3-diones to ynamides: an entry to unprecedented alkoxy-substituted enamides

Lionel V. Graux,[a] Hervé Clavier,[a] and Gérard Buono[a]

A new metal-catalyzed addition reaction of 1,3-diketones to ynamides providing an access to unprecedented alkoxy-substituted enamides is disclosed herein. A screening of catalytic systems showed that either a phosphapalladacycle or a cationic gold complex were efficient to promote rapidly and cleanly this reaction. The scope investigation revealed that variously substituted terminal ynamides and cyclic 1,3-diones were well tolerated. The use of internal ynamides led to the formation of both E- and Z-isomers with low to good selectivities. The mechanism proposal suggests that the phosphapalladacycle acts as a π-Lewis acid to activate the ynamide.

Alkynes and more particularly the subgroup of nitrogen-substituted alkynes, ynamides, are important and versatile building blocks used in a myriad of chemical transformations.[1] The electron-donating character of the nitrogen atom leads to a strong polarization of the triple bond, which alters perceptibly their reactivity compared to alkyl- or aryl-substituted alkynes. The keteniminium tautomer of ynamides shows clearly the regioselectivity of additions onto ynamides: nucleophiles are added at the α-position to the nitrogen atom and the β-position reacts with electrophiles (Scheme 1).[2,3] Since it gives a straightforward access to synthetically relevant functionalized enamides, additions of nitrogen-, carbon- or oxygen-containing nucleophiles at the position α have been investigated using various catalytic systems.[4] For instance, Skrydstrup reported the gold-catalyzed addition of anilines to ynamides[5] using the cationic complex AuNTf$_2$(PPh$_3$) developed by Gagosz.[6] This catalyst was later used for ynamide dimerization giving rise to cyclopentadienones.[7] On the other hand, palladium(II) acetate was found to promote efficiently the addition of boronic acids, as disclosed by Zhu,[8] and the hydroacyloxylation of ynamides reported by Lam a couple of years ago,[9] during the course of our researches on the [2+1] cycloaddition between alkynes and norbornene derivatives using palladium-based complexes prepared from secondary phosphine oxides precursors,[10] we noticed that the Herrmann-Beller phosphapalladacycle H-B promoted this transformation in the case of polarized carbon-carbon triple bonds such as ynamides (Scheme 2).[11,12] However, during the scope investigation, we observed that norbornene derivative 2a containing a 1,3-cyclopentane-dione moiety did not afford the expected [2+1] cycloadduct 3 but nearly quantitative yield of 4aa resulting from the addition of the enol form of 2a to ynamide 1a (Scheme 2). Considering the fact that it gives an access to unprecedented alkoxy-substituted enamides, we decided to pursue the examination of this hitherto unknown reactivity.[13-15]

We started to investigate this original transformation by a thorough examination of the catalytic system using benchmark substrates: ynesulfonamide 1a and dimedone 2b (Table 1). Surprisingly, the α-addition of 1,3-dione to ynamide occurs at room temperature without catalyst. However, after 4 days only 34% of 4ab was isolated along with a large amount of degradation products which complicated the purification step.
(entry 1). Of note, heating the reaction mixture led to the increase of the degradation rate. Herrman-Beller phosphapalladacycle H-B was found competent to catalyze rapidly and cleanly the addition of 2b to 1a (entry 2). The structure of 4ab was unambiguously determined by X-ray crystallography (Figure 1).[10] The C(9)=C(10) bond distance of 1.305(3) Å is significantly shorter for C-C double bond, especially for enamides (typically bond lengths between 1.35 and 1.39 Å).[11] Such a bond length is generally observed for C=O in allenenes. The bond angle O(2) – C(9) – N(1) of 110.3(2)° is smaller than expected (120°). Dihedral angles C(1)-O(2)-C(9)-C(10) and C(1)-O(2)-C(9)-N(1), respectively 109.1(3)° and 74.6(2)° indicate a relatively weak steric congestion around the carbon-carbon double bond. More importantly, adduct 4ab was found quite stable in solution and could be easily purified by flash chromatography on silica gel. However, the newly formed C-O bond was found sensitive to acidic traces and its cleavage released the dimedone 2b and N-phenyl tosylamide. Therefore, chloroform-d was filtrated on basic alumina prior to use in order to slow down the hydrolysis process. Control experiences carried with PPh3, Pd(OAc)2 and a mixture Pd(OAc)2/PPh3 (1.2) showed a low formation of adduct 4ab in addition to noticeable amounts of degradation products (entries 3-5). Interestingly, gold-complex AuNTf2(PPh3) exhibited an analogous activity to the one observed with H-B (entry 6). In order to probe that the Lewis acid character of gold is responsible for the catalysis, the reaction was performed in the presence of a strong Brønsted acid, triflic acid (entry 7). No improvement in comparison to the non-catalyzed addition of dimedone to ynamide 1a was noticed. Solvent screening revealed that, to the exception of DMF, various solvents were compatible with this palladium-mediated addition and 4ab was isolated in good yields (entries 2, 8-13). In dioxane, the reaction proceeded with the formation of byproduct 5ab in 11% yield in addition to 65% of 4ab (entry 11). With other solvents, only traces of 5ab were detected by 1H NMR from the crude reaction mixture.

Having established the optimal reaction conditions, we further investigated the reaction scope with a range of 1,3-diones or derivatives (Table 2). Cyclohexane-1,3-dione-based substrates 2b–2e were found to be good nucleophiles and the corresponding alkox-substituted enamides 4ab-4ae were isolated in satisfactory yields in short reaction times (entries 2–6). The diisymmetric dione 2d gave rise to two isomers in ratio 4:1 in favour of 4ad resulting from the attack of the more sterically demanding ketone (entry 4). 1,3-diketone 2f was tested but the lack of reactivity - even at higher temperature - demonstrates that substitution in 2-position inhibits completely the addition (entry 5). Similarly to 6-membered 1,3-diones, 5-membered analogues were smoothly added to ynamide 1a (entries 7-9). Despite a prolonged heating at 60 °C, 1,3-indandione 2j did not react (entry 10). On the other hand, other aromatic 1,3-diones such as 1,3-phenalenendione 2k and 4-hydroxy coumarine 2l led to the formation of the expected adduct in moderate yields, respectively 55 and 51% (entries 11 and 12). Finally, we were unable to carry out this transformation with acyclic 1,3-diones, for example 2m (entry 13). More than the keto-enol equilibrium, we believe that the acidity of the 1,3-diones allows for the rationalization of the success of the addition. Indeed, pKa values for cyclic 1,3-diones, including 4-hydroxycoumarine 2l, are around 5 (dimedone 2b, pKa = 5.2), whereas acyclic analogues show higher values (2m, pKa = 9.2).[12] Similarly, 1,3-indandione 2j (pKa = 7.2) is significantly less acidic than other cyclic 1,3-diones which would explain the lack of reactivity observed for this substrate. In a general manner, all isolated compounds showed a good stability at solid state.

We then examined the transformation scope with respect to the ynamide partner (Table 3). In addition to the N-substituted phenyl ynamide 1a, analogues 1b-1e afforded the corresponding adducts with good to excellent yields (entries 1-4). Other ynnamides 1f and 1g were found to be good partners for the addition of dimedone 2b (entries 5 and 6). Ynamides bearing different electron-withdrawing groups such

Table 1. Catalyst and solvent optimization.[9]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst[a]</th>
<th>Solvent</th>
<th>Time [h]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>DCM</td>
<td>96</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>H-B</td>
<td>DCM</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>PPh3</td>
<td>DCM</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)2</td>
<td>DCM</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)2/PPh3</td>
<td>DCM</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>AuNTf2(PPh3)</td>
<td>DCM</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>TiO2</td>
<td>DCM</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>H-B</td>
<td>DCE</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>H-B</td>
<td>Toluene</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>H-B</td>
<td>THF</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>11</td>
<td>H-B</td>
<td>1,4-dioxane</td>
<td>3</td>
<td>65[9]</td>
</tr>
<tr>
<td>12</td>
<td>H-B</td>
<td>MeCN</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>H-B</td>
<td>DMF</td>
<td>3</td>
<td>traces</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: 1a (0.5 mmol), dimedone 2a (0.5 mmol), 5 mol% of catalyst (2.5 mol% of dimeric H-B). Solvent (3 mL). [b] 11 mol% of 5ab were also isolated. Tf = trifluoromethanesulfonyl (CF3SO2)
as carbamate or amide were also found to be reactive in this transformation (entries 7 and 8). Only the vinylogous indole-containing ynamide 1\textit{j} gave the isolated product with a moderate yield (43%, entry 9).

Next, a series of internal benzylynamides 6\textit{a} was studied and it appeared that a thermal activation at 80 °C was required for the Pd-catalyzed addition to 1,3-diones (Table 4). With re-optimized reaction conditions, adducts 7\textit{b} bearing alkyl substituents were obtained with good yields (entries 1-3) and the phenyl-substituted product 7\textit{db} was isolated in a almost quantitative yield (entry 4). With the silylated ynamide 6\textit{e}, no product was detected in the crude mixture. We believe that the
lack of reactivity might be due to electronic reasons more than to the steric bulk of the TIPS group. Adducts 7ab-7db were isolated as a mixture of E and Z isomers for which a ratio and the identification were determined by NMR spectroscopies, respectively 'H and NOESY experiments. No E/Z selectivity was noticed for phenyl-substituted ynamide 6d (entry 4), while a little selectivity has been observed with methyl- and Scheme 3. Mechanistic proposal.

A plausible mechanism to explain the catalytic role of the Herrmann-Beller catalyst H-Bis depicted in Scheme 3. H-B is in equilibrium with its monomeric form A which activates the ynamide C-C triple bond and promotes the attack of the 1,3-dione enol form. The formation of intermediate C might be concomitant with an acetic acid release, unless the early departure of the acetate prompts the formation of the more nucleophilic enolate form. This will explain why only 1,3-diones with a pKa close to the one of acetic acid can be used in this transformation. Finally, acidolysis of D releases product E and catalytic active species A.

In summary, we reported an unprecedented palladium-catalyzed addition of 1,3-diones to ynamides giving rise to α-alkoxy-substituted enamides which, to the best of our knowledge, had not been described so far. This transformation was found to be compatible with acidic 1,3-diones (pka ≤ 5) and most of the ynamides we have been tested. In a general manner, reactions proceeded smoothly at room temperature for internal ynamides a heating at 80 °C is required and gave high yields. Further investigations are underway in our laboratories to better apprehend the mechanism and improve both selectivities and yields of the addition with internal ynamide partners. The reactivity and synthetic applications of α-alkoxy-substituted enamides are also studied.

Experimental Section

General Procedure for the palladium-catalyzed addition of 1,3-diones to ynamides:

A 5 mL Schlenk flask, under nitrogen, was charged with Herrmann-Beller catalyst (H-B) (11.7 mg, 0.0125 mmol, 0.05 equiv. in palladium), and DCM (2 mL). Then, ynamide (0.5 mmol, 1 equiv.), 1,3-diketone derivatives (0.5 mmol, 1 equiv.) and DCM (1 mL) were added in turn. The reaction mixture was allowed to stir at 25°C for the indicated time (TLC monitoring). In the case of internal ynamides, reactions were performed in DCE at 80°C for 5 h. Volatiles were removed under reduced pressure and the crude residue was purified by silica gel flash chromatography using petroleum ether and ethyl acetate (gradient 0 – 50%) as eluent leading the pure product.

Acknowledgements

This work was supported by the Ministère de l’enseignement supérieur et de la recherche (L.G. Ph.D. grant), CNRS, ECM and AMU. We thank Christophe Chendo and Dr. Valérie Monnier for mass spectrometry analyses and Dr. Michel Giorgi for X-ray determination (Spectropole, Fédération des SciencesChimiques de Marseille). Florian Corne (BTS trainee) for substrate syntheses. Drs A. Tenaglia and I. de Riggi are gratefully acknowledged for helpful discussions as well as Dr. Julie Broggi for useful comments on the manuscript.
Keywords: 1,3-dione • enamine • nucleophilic addition • palladium • ynamide

[16] Crystallographic data for 1a and 4ab: CCDC 1001427 and 1001428 respectively contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[19] For details, see the supporting information.

Received: (will be filled in by the editorial staff)
PUBLISHED ONLINE: (will be filled in by the editorial staff)
A new metal-catalyzed addition reaction of 1,3-diketones to ynamides providing an access to unprecedented alkoxy-substituted enamides is disclosed herein. After the optimization of the reaction conditions and the catalytic system, the scope investigation revealed a broad applicability to numerous ynamides and cyclic 1,3-diones.