Effect of supply conditions of liquid nitrogen on the cryogenic assisted machining of the Ti64 Titanium alloy
Yessine Ayed, Guenael Germain, Anna Pubill Melsio, Pierre Kowalewski

To cite this version:
Yessine Ayed, Guenael Germain, Anna Pubill Melsio, Pierre Kowalewski. Effect of supply conditions of liquid nitrogen on the cryogenic assisted machining of the Ti64 Titanium alloy. HSM - High Speed Machining, 2016, 2016, pp.1-3. hal-01409039

HAL Id: hal-01409039
https://hal.archives-ouvertes.fr/hal-01409039
Submitted on 5 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effect of supply conditions of liquid nitrogen on the cryogenic assisted machining of the Ti64 Titanium alloy

Y. AYED1, G. GERMAIN1, Anna PUBILL MELSIÓ2, P. KOWALEWSKI2
1LAMPA, EA1427, Arts et Métiers campus d’Angers, France
2Air Liquide, Bagneux, France

Abstract
This study focuses on the optimization of the machining assisted by cryogenic cooling. The main objective is to analyze the effect of the pressure and the flow of liquid nitrogen on tool life when machining titanium alloy Ti-6Al-4V using the cryogenic assisted machining. A nozzle holder has been specially developed for this study to ensure positioning and the replacement of calibrated nozzles of different diameters. Several nozzle diameters have been therefore used in order to vary the pressure and the flow according to tests to be conducted. The flow rate has been varied between 1.2 l/min and 3.4 l/min for two pressure ranges 8-10 bar and 4-5 bar respectively. The machining tests have allowed to highlight the effect of the pressure and flow rate of liquid nitrogen jet on the tool life. Indeed, the results showed that increasing the flow rate increases the tool life. In addition, the increase in pressure slowed down the evolution of the wear and further improves the tool life. Indeed, in all tested cases, the cryogenic assistance improves the tool life but the best results have been obtained for the highest pressure and flow rate. Moreover, surface integrity has been greatly improved.

Keywords: Tool wear, Titanium alloy, cryogenic assistance, residual stress

1 INTRODUCTION
Titanium alloys present very interesting assets in the aerospace, marine and biomedical fields especially for their excellent mechanical characteristics, their corrosion resistance and their low density. However, machining these alloys is often challenging. Among the solutions that have been developed to overcome this problem is machining assistance. In the recent years, research about the cryogenic assistance is continually growing. Most of these studies were focused on the impact of this assistance on tool life. It has been shown that the phenomenon of wear is greatly reduced which leads subsequently to a considerable increase of tool life. [1,2,3]. Other studies had as object to study the impact of the cryogenic lubrication on surface integrity (residual stress and surface roughness). Again, the results were very encouraging especially with the considerable improvement found compared to conventional machining [4,5]. According to [6] surface integrity could be improved by 35% when machining Ti-6Al-4V titanium alloy. However, influence of the liquid nitrogen parameters such as its pressure and its flow rate is unknown. Thus, this study aims to assess the impact of these parameters on tool life and residual stresses. The study has been funded by Air Liquide and only a part of these results will be presented in the present article for reasons of confidentiality.

The cutting conditions are listed below:
- Cutting speed Vc: 80 m/min.
- Depth of cut ap: 1 mm.
- Feed rate: 0.2 mm/rev.

A new nozzle holder has been specially developed for this study (Figure 1). It allows the positioning and the supply of calibrated nozzles of different diameters.

Figure 1: New nozzle holder

The correspondence of the flow rate with the nozzle diameter, for a given pressure, has been carried out experimentally. Table 1 summarizes the results of the preliminary tests.

<table>
<thead>
<tr>
<th>Nozzle diameter (mm)</th>
<th>Flow rate (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6</td>
<td>1,8</td>
</tr>
</tbody>
</table>

2 EXPERIMENTAL SETUP
In order to determine the influence of the liquid nitrogen parameters (pressure and flow rate) on tool life, several wear tests have been carried out. These experimental trials were conducted on Leadwell LTC25iL (2 500 rev/min, 24kw) lathe. The liquid nitrogen is conditioned in a 180 liter tank. It is supplied to the tool through thermally insulated pipes. H13A uncoated carbide inserts have been used (CCMT 12-04-08KM). Different flow rates have been tested (1.4 l/min, 1.8 l/min and 3.4 l/min) for two different pressure levels. These tests have been accompanied by the measurement of surface roughness, cutting forces, tool wear and residual stresses.
Tool wear has been controlled every minute using a stereo microscope and basing on the ANSI/ASME B94.55M-1985 standard. The tool is considered as worn if the flank wear (VB) exceeds 0.3 mm.

The first series of tests consists in varying the flow of liquid nitrogen while maintaining an elevated pressure (8-10 bar). Figure 2 shows the results of these trials. First of all, it could be remarked that the cryogenic assistance permits to significantly increase the tool life. It allows, in the worst case, to increase the tool life of about 5 times compared to the dry machining. Moreover, these tests show that the flow rate has a great influence. Indeed, with a flow rate of 1.8 l/min tool life is about 12 min while when using a flow rate of 3.4 l/min the flank wear does not exceed 0.15 mm.

The second series of tests consists in varying pressure of liquid nitrogen while maintaining the flow rate. Figure 3 shows the results of these tests.

As well as the previous tests, the variation of the liquid nitrogen pressure impacts the tool life. In fact, when reducing the pressure from 8-10 bar to 4-5 bar the tool life drops.

Finally, it should be noted that the tool life obtained for a high pressure (8-10 bar) and a low flow (1.8 l/min) corresponds almost to the tool life obtained at low pressure (4-5 bar) and a high flow rate (3 l/min).