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ABSTRACT 
Governments routinely claim the power to subject individuals to 
secret investigation, forcing technology Service Providers to 
divulge User data without notification. Warrant canaries invert the 
notification problem by telling a User each time a Service Provider 
has not received a secret request for their data. Current canaries 
suffer from non-standardization, poor granularity, and brittleness in 
the face of attacks, leading the Electronic Frontier Foundation and 
Berkman Center to discontinue their Canary Watch service, which 
previously aggregated and monitored Service Provider warrant 
canaries, in May 2016. 

Aviary is a distributed, tamper-proof, per-user warrant canary 
system intended to automate and replace obsolete canary practices. 
Aviary provides confidential, private, and secure warrant canaries 
with massively distributed auditing. This paper presents the Aviary 
system, analyzes it in the context of a threat model assuming a 
government-level adversary, and presents several mitigation 
strategies that inform the design of our distributed architecture.  

To our knowledge, Aviary is the first scheme for global, distributed, 
confidential per-user warrant canaries, and among the first works 
to model a distributed system explicitly against the pervasive 
adversary outlined in the Internet Architecture Board's RFC 7624, 
"Confidentiality in the Face of Pervasive Surveillance: A Threat 
Model and Problem Statement." 

1. INTRODUCTION 
Research has quantified direct effects on Users from the threat of 
government incursion on privacy. Considered broadly, we might 
interpret such effects as part of a social "threat model" the present 
work attempts to address. In particular, it is troubling that mass 
surveillance effectively chills citizen research on precisely the 
issues given as necessitating more mass surveillance. A recent 
study found that views of Wikipedia articles related to terrorism 
dropped in a statistically significant fashion following the Snowden 
disclosures, both in the short term and over the long run, suggesting 
that internet users feared being flagged for secret government watch 
lists [25].   

It is impossible for a free society to rationally debate policy 
tradeoffs when, as Glenn Greenwald writes, "1 in 6 writers [curb] 
their content out of fear of surveillance…Scholars in Europe [are] 
accused of being terrorist supporters by virtue of possessing 
research materials on extremist groups, [and] the British Library 
refuse[s] to house any material on the Taliban for fear of being 
prosecuted for material support of terrorism" [26] [27]. More 
recently, Google's automated account alerts triggered in a wave of 
suspected State-hacking attempts, many of which targeted 

journalists and professors in the wake of a contentious presidential 
election in the United States [17] [18] [19] [20] [21] [22] [23] [24].  

However, political will among technology companies for 
protecting User privacy exists, and appears to be growing. The 
Electronic Frontier Foundation (EFF) and Berkman noted that the 
adoption of warrant canaries has increased by an order of 
magnitude, claiming that "[t]he last year has, without a doubt, been 
a banner year for the awareness of warrant canaries" [7]. We note 
that Facebook made its social network available over Tor, with over 
1 million people making use of it [10] [11], Microsoft's President 
and General Counsel Brad Smith repeatedly challenges the legality 
of secret spying [12] [13] [14], Twitter wants to avoid the image of 
being cozy with secret police, as evinced by their efforts to reduce 
information leakage to the CIA [15], and Apple's CEO Tim Cook 
famously refused to hack into the company's own phones in the 
wake of the San Bernardino shootings [16]. 

Politically, from the perspective of technology Service Providers, 
will exists to protect User privacy and to adopt canaries. Notably, 
canaries are the only option available for companies wishing to 
notify Users of secret spy requests. Current law appears to support 
secret gag orders, forbidding companies from explicitly notifying 
subjects of secret government investigation. Warrant canaries 
invert this problem by having Service Providers instead notify 
Users whenever they are not a subject of a secret information 
request [1]. Canaries have additionally been at the forefront of legal 
challenges that have begun to question gag authority, placing some 
limits on gag duration and enforcement by allowing recipients to 
challenge gags and requiring the FBI to affirmatively prove the 
national security interest of each gag when challenged [89].  

However, current canaries are reaching their strategic limits, and 
advances are needed. While previous warrant canary notices were 
high profile and numerous—including firms such as Reddit [2], 
Twitter [3], Lavabit [4], and the 
Google/Yahoo/Microsoft/LinkedIn/Facebook lawsuit resulting in 
the ability to publish ranges for secret requests received [5] [6]—
current canaries face a strategic deployment problem. The EFF and 
Berkman Center shutdown their joint warrant canary aggregator in 
May of 2016, citing several challenges, including a lack of standard 
canary format, difficulty interpreting canaries, irregular tracking, 
and non-definitive information provided by canaries [7]. Absent an 
automated solution to these problems, the ability of canaries to 
scale is in doubt. 

In this paper, we aim to create a new canary architecture, Aviary, 
that addresses these problems. Aviary provides a standardized, 
confidential and secure per-user distributed canary system. We 
wish to provide confidential (only the designated User knows if 
their canary is present), private (only the designated User can read 
their canary), secure (the User trusts the value of their canary) per-
user warrant canaries. We further desire that the User's canary be 
anonymous, in the sense that attributing any given published canary 
to a given User is equally as likely as any other attribution. 
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Our traditional technical goals are to: (1) rule out passive pervasive 
surveillance as a successful strategy for determining if a User is 
aware of a secret spy request; (2) provide some safeguards against 
active network manipulation attacks targeting the Aviary system 
and Users of interest; and (3) harden the system against brute force 
active attacks, e.g. State-level DDoS. We have an additional goal 
we expand on momentarily, that of (4) limiting opportunities for 
transparent collusion between technology Service Providers and 
government agents. Our design architecture balances these privacy 
goals against the necessity of providing a performant solution for 
Service Providers and Users alike.  

Here "performant" refers not only to standard engineering systems 
measures (computational cost, bandwidth expenditure, etc.) but 
also to designing a system that avoids inconveniencing Users as 
much as possible. Indeed, Users only interact with Aviary twice: 
once during key registration (Section 4.9), and in the event that their 
canary dies (Section 4.6). In these respects, Aviary advances the 
state of the art in massively distributed, government-resistant, and 
user-friendly privacy. 

Our design avoids traffic fingerprinting to the extent possible while 
maintaining authentication to safeguard against active 
manipulation attacks, and uses smart addressing to frustrate 
common DDoS techniques, thereby addressing goals (1) through 
(3) above. Goal (4) bears some explanation. Per RFC 7258, 
"Pervasive Monitoring is an Attack," the general methodology to 
mitigate pervasive secret spying is to make it significantly more 
expensive and/or infeasible to perform without active 
collaboration, which risks detection and accompanying legal or 
business consequences [9]. Put plainly, secret spying is no longer 
secret when it becomes known. Under Aviary a government entity 
would not be able to request User data without Aviary alerting the 
User to the fact of the request. Accordingly, the government is left 
to attempt forcing the company to comply, in which case the 
constitutionality of its gag orders can be challenged in court (an 
outcome the government consistently avoids, see [89]). Otherwise, 
the government must find sympathetic or vulnerable entities within 
the Service Provider that they can successfully coerce into 
subverting Aviary. 

This scenario has already played out, with disastrous consequences 
for the Service Provider in question. Recent revelations confirmed 
that executives at Yahoo actively circumvented their own security 
team to install a government backdoor into their email service. The 
backdoor was so poorly configured that: A) in a massive Fourth 
Amendment violation all Yahoo emails were intercepted and 
queried, not just investigative targets; B) it left the door wide open 
for external hackers to read all incoming Yahoo email; and C) in 
the words of a former Yahoo security engineer, when the security 
team found it, "they immediately assumed it had been installed by 
malicious hackers, rather than Yahoo's own mail team. (This says 
something about what the backdoor code may have looked like.)" 
[8].  

The consequences were grave, with security engineers bleeding 
away to join rival firms, Yahoo's own Chief Security Officer Alex 
Stamos quitting to join in the same role at Facebook, and a massive 
public relations hit with two Congressmen voicing their 
displeasure, all at a particularly acute time as Yahoo attempted to 
close a sale to Verizon [90] [91].  

Absent a system like Aviary, vulnerable individuals within a 
Service Provider face intense government pressure to facilitate 
mass privacy violations without any counterweight to protect them. 
In this regard, Aviary protects not only Users, but also Service 

Providers. It is worth noting that Aviary, like all warrant canaries, 
depends upon a Service Provider acting in the interests of 
disclosing secret spy requests to Users. Accordingly, nothing in 
Aviary's design prevents a rogue element within a Service Provider 
from disregarding it.  

We argue that the existence of Aviary accomplishes three important 
goals in this regard. First, it offers a stable target for internal 
security teams to evaluate external delivery of User data against, 
raising the likelihood of discovery. Second, it changes the calculus 
for rogue elements and government agents alike, who must factor 
in the capacity for a User to be alerted to a secret spy request 
properly administered, or else hack the company. Finally, as live 
Aviary canaries constitute non-repudiable speech from Service 
Provider to User, in the event that a Service Provider lies about a 
secret search that becomes known, that lie is documented without 
the ability of the Service Provider to challenge it (see Section 5.5 
"Cooperative Hosting and Archiving" for more). 

We note that any implementation of a warrant canary mechanism 
remains at the forefront of legal precedent, with arguments on both 
sides regarding the legality of the practice [28]. Some legal scholars 
even suggest that widespread, granular warrant canaries may 
effectively 'flip' the legal debate, calling into question the legality 
of secret government gag orders within the United States [29]. 
While laws vary globally [30], current privacy advocates hold that 
the government cannot compel false speech, and as a result 
recommend the use of warrant canaries [1]. Noting that legal advice 
is well outside the scope of this paper, we nonetheless maintain that 
it behooves technology Service Providers to continue advocating 
strongly on behalf of Users, as it is providers who will be asked to 
implement policy and legal enforcement in cooperation with 
governments. 

The remainder of this paper introduces our Threat Model and 
Design Goals in Section 3, provides a detailed explanation of our 
Canary Format and client software in Section 4, describes 
Distribution of Canaries in Section 5, and addresses some specific 
implementation details in Sections 6 and 7. An appendix addresses 
our choice of anonymizing network substrate.  

2. RELATED WORK 
Technical work on the deployment of warrant canaries appears 
almost non-existent. To our knowledge, Aviary is the first global, 
distributed, confidential and secure per-user warrant canary system 
in the literature.  

However, there is a wealth of related work in the context of privacy 
enhancing technologies and hardening distributed systems, both 
against pervasive surveillance and provider interference. We draw 
on many of the mitigation strategies and attacks in the literature, 
citing related work throughout. Tor [31], i2p [32], and Tahoe-LAFS 
[33] provide principled ways of deploying secure distributed 
systems, such as minimizing metadata and data persistence and 
engineering with awareness of a pervasive network adversary, 
while work such as [34] shows how unthinking adoption of 
cryptographic pseudonyms alone does not guarantee privacy.  

Specific work we draw inspiration from includes Google's 
Certificate Transparency efforts [35], a system using Merkle trees 
to monitor the Certificate Authority system for abuse, as well as 
work on measuring anonymity, e.g. thinking with anonymity sets 
and metrics [36]. Related work for hardening systems against the 
attack vectors defined in our threat model includes Octopus, an 
anonymizing DHT [37], Crosby-Wallach audit trees [38], and 
general DDoS mitigation tactics [39].  
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Our contributions include novel techniques specific to 
anonymizing warrant canary production and consumption (Section 
4), hardening a distribution channel in a hybrid peer-to-peer and 
client/server approach (Section 5), and engineering a robust system 
that requires the absolute minimum of User interaction, all under 
the threat of a pervasive adversary with long-term passive and 
active capabilities.  

3. SYSTEM OVERVIEW AND THREAT 
MODEL 
Below we offer brief overviews characterizing Merkle trees, the 
actors in our distributed system, and the canary lifecycle before 
introducing our threat model. 

3.1.1 Merkle Tree Properties 
Merkle trees are hash trees that permit auditable, tamper-proof 
distribution of information over untrusted channels. Data is 
chunked into payloads associated with leaf nodes, whose hashes are 
computed. The term "leaf" is alternately used to refer to the leaf 
node or the data node, with context clarifying.  

In the figure below, data nodes are designated d0, d1, …, d6. Their 
corresponding leaf nodes are a, b, …f, and j, whose values are 
simply a cryptographic hash of the corresponding data node. 
Successive intermediate nodes are built "bottom up" by applying 
the hash function to the concatenation of the two child nodes. For 
example, intermediate node g has a value of H(H(a) || H(b)), where 
H is our cryptographic hash function and || denotes concatenation. 
The Merkle root, also known as the "tree head," is the resulting of 
this recursive hash procedure, and must be signed by the distributor. 
A recipient with a signed tree head and accompanying data nodes 
can reconstruct the hash tree to verify that data has not been 
changed or corrupted in transit. If the root cannot be reached, one 
or more leaf nodes has been corrupted. 

 
Figure 1. Sample binary Merkle tree with seven leaves. 

Adapted from Example 2.1.3 of [35]. 
Merkle trees also permit sparse verification, in which only a data 
node, signed tree head, and co-path are needed. Co-paths, or audit 
paths, are the hash values necessary to verify a node's presence in 
the tree. For example, in the tree above the co-path for d6 is [i, k], 
while the co-path for d3 is [c, g, l]. This property is the key insight 
behind our "binning" procedure detailed in Section 4.5. It also 
permits an interested auditor to begin auditing a Service Provider's 
published Merkle tree in an online fashion, without requiring a full 
download before verification can begin. Finally, Merkle trees also 

provide historically tamper-proof records, as node deletion or 
removal is not possible without altering the hash tree. Note that 
some subtleties regarding implementing Merkle trees are addressed 
in Section 7.1, "Choosing a Cryptographic Hash Function." 

3.1.2 System Overview 
The following sub-section identifies key players in the distributed 
systems architecture of Aviary. Users are end-users of a technology 
service, e.g. webmail, a social networking service, etc. Service 
Providers are technology companies providing services, from ISP's 
to social networks or backup and storage companies. Service 
Providers publish Merkle trees communicating canary information 
to Users once each publication period (e.g. once a month). 
Remarkably, Merkle trees permit anyone to audit them without 
endangering the privacy and confidentiality requirements set out 
above. Aviary trees are subject to repeated and automatic system-
wide audits at the hands of the Users. 

Tree Hosts, run by Service Providers and interested volunteers, are 
seed peers in an anonymized BitTorrent swarm acting as a 
distribution mechanism. A Key Service is a third-party service 
providing identity proofs for User ownership of public keys, which 
Service Providers use when constructing canaries. i2p is an 
anonymizing mixnet over which the Aviary architecture runs.  

Wherever TLS certificates are mentioned, we follow RFC 7624 
Section 5.2, "Attacker Costs," and recommend implementation of 
RFC 6962, Certificate Transparency, to strengthen the TLS 
certificate chain [40] [35]. 
Finally, we note that the system, device, and region diversity of 
large Service Provider userbases (i.e. O(1 billion Users)) 
proportionally increases the strength of auditing for their canary 
trees. While concerns over backdoored hardware, operating 
systems, and supply chains exceed the focus of this paper, it is 
worth noting that the massively distributed nature of the Merkle 
audits being performed lends higher credibility to the integrity of 
Aviary warrant canaries. 

3.1.3 Canary Lifecycle  
We present a brief overview of the canary construction, publication, 
distribution, and consumption lifecycle. Canaries are tied to 
specific Users and come in one of two states: live, or dead. Since 
canaries cannot constitute additional speech under current law, 
dead canaries are simply absent, or missing, canaries [47]. Thus, 
under Aviary, a dead canary is one that is not published. Service 
Providers also publish a second kind of canary, "dummy canaries," 
which are not tied to any User and are explored in Section 4. 
We do not assume any special security literacy or action on the part 
of the User, and the vast majority of their interaction with Aviary 
is automated. Once the User registers a public/private keypair with 
an attestation service (a third-party Key Service that provides 
identity proofs for key ownership), their subsequent responsibilities 
are nil. A Canary Locker (Section 4.6) component in their web 
browser automatically handles updating a client salt with the 
Service Provider (a key component for randomization of canary 
placement in the Service Provider's Merkle tree) and pulling new 
canaries each publication period. These network transactions occur 
over i2p, an anonymizing mixnet with end-to-end encryption that 
severs IP addresses from routable destinations and frustrates 
passive fingerprinting.  

Service Providers publish three Merkle trees each publication 
period: a canary tree, a key tree, and a tree of record. The canary 
tree contains User canaries, while the key tree is a rapid indexing 
tree that solves some scaling challenges as well as providing extra 
anonymization benefits, as the Service Provider does not persist a 
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mapping of canary to User, and thus minimizes risk of User de-
anonymization (Sections 4.4, 4.7). The tree of record provides 
contiguity between each publication period's canary and key trees, 
providing non-repudiability across time (Section 5.4). 

This tree material is distributed via an anonymized and 
authenticated BitTorrent swarm running over i2p (Section 5.2.1). 
User Canary Lockers coordinate participation in a multi-Service 
Provider DHT (distributed hash table), while volunteer or Service 
Provider-run Tree Hosts act as full seed peers on the swarm, 
bootstrapping tree distribution (Section 5). Users' Canary Lockers 
unpack the canaries they have downloaded to search for a valid 
canary belonging to their User, and in the process audit the Merkle 
tree to verify that tree material (canaries) have not been 
manipulated. In the event that a User's Canary Locker cannot find 
a valid canary for a given Service Provider, the browser displays a 
persistent banner warning alerting the User that their account for 
that Service Provider may be subject to secret investigation. 
Many details concerning implementation, DDoS-hardening, and 
specific tricks involved in realizing anonymity and privacy gains 
are omitted, but we hope this bird's eye view helps orient the reader 
for the work ahead. We now proceed to introduce our threat model. 

3.1.4 Threat Model and Design Considerations 
We follow the language of RFC 7624, "Confidentiality in the Face 
of Pervasive Surveillance: A Threat Model and Problem 
Statement" [40]. We assume an adversary with the following three 
capabilities and interests. First, massive pervasive passive 
monitoring of the entire internet, including post-hoc analysis of 
recorded data. Second, active monitoring of some portion of the 
internet, including ad-hoc manipulation, deletion, or injection of 
messages, and/or impersonation, particularly in the case of targeted 
Users. For example, a State actor may wish to know if a target of a 
secret government investigation has successfully been alerted 
through the use of an Aviary canary. Third, State-level DDoS 
against core infrastructure items of the Aviary system. We assume 
that the communication endpoints, in other words Users and 
Service Providers (or, at a minimum, the internal security teams of 
Service Providers), do not collude with the adversary, but do permit 
the adversary to present malicious "user" nodes. 

We assume an adversary without quantum computing capability, 
though we note throughout the text where this assumption may be 
worrisome and offer some mitigating strategies. Our approach 
consists of a "defense in depth" model, the combination of 
cryptographically sound primitives, and targeted usage of 
distributed systems architectures engineered for security and 
privacy. 
We wish to provide confidential (only the designated User knows 
if their canary is present), private (only the designated User can 
read their canary), secure (the User trusts the value of their canary) 
per-user warrant canaries. We further desire that the User's canary 
be anonymous, where we define anonymity as the maximally 
entropic distribution over elements in a set (e.g. random uniform 
distribution). Hence, we seek to expand the User's anonymity set 
(the number of canaries her canary mingles with) wherever 
possible, while balancing this goal against the engineering tradeoffs 
involved. 

We assume trust in the Service Provider's intentions, and weakly 
assume trust in the integrity of their TLS connection, though this 
trust is as minimal as possible (see the salt pin message in Section 
4.7 "Communicating Bins to Users").  
Passive attacks are by definition not detectable at either endpoint of 
the communication medium (assuming neither endpoint is a 

collaborator), but permit an attacker with sufficient resources to 
record communication for later analysis, e.g. when an investigation 
indicates a particular individual of interest, when a new analysis 
technique permits fingerprinting an exchange that was previously 
not easily detected, or when the advent of a quantum computer 
permits cracking TLS keys previously assumed safe against 
classical attacks. 

Per RFC 7624 we assume the adversary has the capacity and 
capability to observe all packets sent in the internet and observe all 
data at rest in any intermediate devices between endpoints. We 
further assume the possibility of an active pervasive attacker in the 
case of Users or popular Service Providers subject to secret 
government investigation. We restrict our interest in this active 
scenario to the integrity of security guarantees only insofar as the 
warrant canary system is concerned.  

While we note that such Users and Service Providers are likely to 
be subjects of advanced persistent threats, or so called "network 
investigative techniques" (NIT's) as what appear to be at work in a 
case of the FBI allegedly mass hacking users of TorMail without 
regard to the scope of their warrant (over 8,000 users in 120 
countries on the basis of a single warrant [41], [42], [43] and [44]), 
we do not address such ancillary threats in this work, treating the 
security of internal systems for both Users and Service Providers 
as outside the scope of our analysis. In general, our method assumes 
an untrusted core and pushes security competency to the edge as 
much as possible, with analysis restricted to the case of a global, 
trustworthy, per-user, confidential, and private warrant canary 
system. 

4. WARRANT CANARY FORMAT 
4.1 Current Challenges 
Current warrant canaries face three significant challenges. Their 
format is not standardized, leaving Users and Service Providers to 
reinvent the wheel each time a warrant canary is deployed. Some 
examples of current canaries include automated postings to Twitter 
accounts, color schemes for Service Provider logos, and statements 
in regular corporate reports, such as Annual or Transparency 
Reports. Since there is no standard canary, adoption and user 
literacy are both hampered.  

Second, canaries tend to be extraordinarily coarse. For example, 
Reddit has over 10M monthly unique visitors in 2016, but its 
warrant canary provided no information on which accounts might 
be affected when it sprang earlier this year [45] [46]. Coarse 
canaries are not informative. Once the canary is triggered no User 
has a good idea if they were caught up in the dragnet or not, and the 
canary becomes unusable for future requests. This scenario also 
incentivizes a government agency burning a coarse canary on a 
dummy request and then sending legitimate requests after the 
Service Provider loses the ability to meaningfully signal the 
occurrence of subsequent snooping attempts. 

Finally, canaries are both centralized – in the sense that they are 
generally hosted on a single page – and fragmented, in the sense 
that no Service Provider benefits from the existence of other 
Service Providers' canaries.  

These design decisions minimize canaries' utility, as Users are left 
to interpret changes in a canary status on their own, without a 
reliable audit trail (was that logo always blue or did it change? Did 
it actually change or was that a momentary bug?), and Service 
Providers are unable to offer independent proof-of-record of a 
canary's status over time, nor are they able to easily insure a canary 
against a determined DDoS attack.  
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4.2 Aviary Canary Format 
Warrant canaries in Aviary are formatted as leaf nodes in a Service 
Provider's canary tree. Aviary canaries must be easy for client 
software to interpret, private such that only the User can read their 
own canary, and confidential such that only a User can know if 
there exists a canary corresponding to their account. In addition, we 
want to satisfy these conditions within a tractable engineering 
design space, and in a cryptographically secure fashion. Finally, to 
comply with current law, "dead" or "tripped" canaries cannot 
constitute additional speech to notify their owners of a secret 
government request. Dead canaries must be silent. 
We accomplish privacy through the use of public-key 
cryptography, as described in Sections 4.4 and 4.5. We now 
proceed to describe our standardized Aviary canary format.  
An Aviary canary is 32 bytes long. The first half consists of 16 
bytes for the first 16 characters of the User's username. If the 
username is shorter than 16 bytes, a pad of length (16-h) where h is 
the length in bytes of the username is appended. The second half 
consists of a 16-byte cryptographically secure nonce, unique 
(random) within a Service Provider's publication set. Canaries are 
encrypted with the User's public key. 

 
Figure 2. Aviary Canary Format 

Constant length canaries are a requirement to avoid leaking 
information about which usernames do or do not have current 
canaries published. The nonce is a requirement to ensure that a 
given User's canary status cannot be tracked. Without a nonce an 
interested third party could retrieve the User's public key and 
encrypt their (username + pad) combinations until finding a match 
among the canary tree's leaf nodes.  

Beyond de-anonymization of the canary, repeated publication of 
the same encrypted canary across publication cycles would also 
constitute a beacon, allowing an interested third party to know if a 
canary is still live, along with when a Service Provider has nullified 
a specific canary. Combining this information with the above de-
anonymization attack, or with private information an interested 
third party may be privy to (e.g. timeline of a secret government 
request to Service Provider), could permit de-anonymization of the 
canary, and consequently knowledge of the User's knowledge or 
lack thereof of a secret spy request for their information. Thus, we 
require nonces that are random across publication cycles.  

4.3 Dummy Canaries 
What should a canary do when it "trips" for a given User? For our 
purposes it is sufficient to permit Service Provider to effectively 
notify User so long as Service Provider can do so without 
producing any additional speech that causes this effect.  

Accordingly, when a given User's canary trips, the Service 
Provider simply stops publishing a canary for them. However, 
government desires to obfuscate the true number of secret spy 
requests made annually require Service Providers to avoid 
disclosing an exact count of NSL/FISA requests received, instead 
publishing ranges like "0-249" or "1000-1999" [47].  

If a Service Provider simply refused to publish canaries for 
compromised Users, an interested observer could subtract the size 
of a Service Provider's Merkle tree from one publication cycle to 
the next to derive the count of compromised Users, assuming no 

growth or churn in the Service Provider's userbase, or equivalently, 
a good enough estimate of Service Provider's net userbase growth 
between publication cycles (see Section 6 for a full treatment). 

Consequently, Service Providers must publish dummy canaries to 
replace any dead canaries of Users. A dummy canary has the same 
format as described in Section 4.2, with the exception that the 
canary is composed of two 16-byte nonces. In place of the User's 
public key, a random public key must be used to encrypt the canary. 
Note that the requirement for a random public key is necessary, as 
using the User's public key might constitute speech notifying a 
subject of a secret government investigation. 

4.4 Client Verification of an Aviary Canary 
The most client-optimal strategy, in terms of minimizing the 
amount of work a User must perform, would have the Service 
Provider send the User their canary node directly. This solution 
violates our security guarantee of auditability, as a User's canary no 
longer forms part of a public Merkle tree that leaves the control of 
the Service Provider. It also raises the attack profile for the Service 
Provider, as it would require the Service Provider to persistently 
associate wrapped canaries with Users instead of processing them 
as a one-time pass-through service (e.g. nonces never leave RAM, 
and are immediately wiped after processing). Additionally, 
transmitting the wrapped canary to client software would provide 
another vector for re-personalizing the canary, as a passive third-
party listener on the network would see only one wrapped canary 
passing from Service Provider to a given User. In the event of a 
tripped canary, if the Service Provider sent a dummy canary 
directly to the User to avoid passive detection, this may violate law 
by constituting speech notifying a User of a secret request.  

At the opposite extreme, a maximally agnostic strategy would 
involve the User downloading the entirety of the canary tree. With 
a Service Provider that serves 1 billion users, at 32 bytes per canary, 
this would correspond to at least 32GB of data, an unwieldy amount 
for many home internet data plans and end-user devices. We 
present our solution shortly, in Section 4.5, "Client Binning." For 
now, we describe how client software verifies a canary.  
_____________________________________________________ 
Algorithm 1: Client Canary Verification 

Given a set S of candidate nodes. 

1: canary_flag = False 

2: while S is non-empty: 

2:     select some node s from S 

3:     msg = s.decrypt(UserPrivateKey) 

4:     if msg[0-15] == first16CharsofUserName 

5:         canary_flag = True 

_____________________________________________________ 

A client function receives a node. It decrypts the node using the 
User's private key. If the first 16 bytes correspond to the first 16 
characters of its username, the canary is valid. If a User processes 
all nodes in a publication set and does not find a valid canary, the 
client software alerts the User that their account has been 
compromised. Note that we avoid early termination of the 
verification sub-routine upon discovery of a valid canary as a 
matter of good security hygiene.  

In the extremely unlikely case of a key collision between a dummy 
canary and a User's public key, the client software successfully 
distinguishes the two by looking for its username in the first 16 
bytes of the unwrapped canary. 
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4.5 Client Binning 
To address the challenge of balancing client work with maintaining 
anonymity of the User's canary from the previous section, we 
propose a method we call client binning. 

A Service Provider should "bin" each User into a bin by means of 
a fast, randomized hash assignment. A cryptographically secure 
hash is not required, as the nonces produced in Section 4.2 are 
already cryptographically random. Accordingly, we are free to 
make use of the fastest random hash available, and suggest xxHash 
or t1ha, each of which runs at near-RAM speeds [48] [49]. Upon 
drawing of the random nonce and construction of the User's canary, 
a Service Provider passes the encrypted bundle as an argument to 
the hash function for hashing into a randomly assigned bin. 

Bins correspond to sub-trees of the Service Provider's Merkle tree. 
The leaf nodes of a sub-tree belonging to a given bin are composed 
of the canaries for each User in the bin, including dummy canaries. 
Thus, the interior node at the "root" of the bin is a Merkle root for 
the sub-tree whose leaves are the canaries of Users (or dummies) 
belonging to that bin.  

 
Figure 3. Bins for a single Service Provider, intermediate 

nodes omitted. 
We note that maximum entropy within a publication set is achieved 
when the probability that any canary belongs to a given User is 
uniformly distributed among the Users. That is, P(c, u) =!

"
, where 

P(c, u) is the probability of a given canary c belonging to a given 
User u, and U is the total number of Users [36].  

We can characterize the additional marginal anonymity benefit of 
expanding a User's bin explicitly: for each additional record added 
to the bin, the User's anonymity increases by a quantity directly 
proportional to the difference !

#
−	 !

#&!
, where N is the number of 

Users in the expanded bin.  

As the User must download the additional canary, we can cost this 
gain in anonymity in terms of the additional 32 bytes the User must 
download (ignoring for the moment additional overhead produced 
by encrypting the canaries and computing non-leaf Merkle nodes). 
Each additional canary in a bin purchases diminishingly fewer 
gains in anonymity. 

In the interests of balancing download size with anonymity, we 
declare a bin size of 100,000 to provide sufficient anonymity for a 
User. In this case, the total size of a bin downloaded by a User 
would be on the order of 3.2MB, or roughly the cost of one 
streamed song. We note that the probability a given canary in the 
bin belongs to a given User is at most !

!'','''
.  

"At most" because some Users in the bin may have already been 
compromised, in which case some nodes n ∈ N are actually 

dummy canaries. Additionally, in the event that a Service Provider 
is unable to fill a bin with 100,000 User canaries, dummy canaries 
may be used to fill the bin size, such that all Users receive the 
minimum anonymity measure through equivalent bin sizes. 

We note that a Service Provider should randomize bin assignment 
at the start of each new publication generation, so that a given 
User's bin does not become a stable identifier across publication 
generations. We cover bin assignment in more detail in Section 4.7, 
"Communicating Bin Assignments to Users." 

4.6 Client Canary Lockers 
Where should the client software live? Our ideal solution is 
automated and device agnostic, working across both laptops and 
mobile, as many Users, particularly those in emerging markets, are 
mobile-first. The solution we propose is largely workable on 
mobile, though some subtleties (timing of data access, scheduling 
compute around battery life and network reliability) are omitted for 
brevity. We assume deployment on desktop/laptop for the 
remainder of this paper. 

We propose that the major browsers implement a standardized 
Aviary Canary Locker. Periodically, the Canary Locker retrieves 
the appropriate canary sub-trees, or bins. The browser then handles 
querying the User's operating system's keystore for User's private 
key, unwraps the nodes, and checks for presence of a live canary. 
In the event that no canary is found for a Service Provider 
publication period, the browser can present a persistent banner 
warning at the top of the browsing window, advising the User that 
their account with the given Service Provider may be subject to 
secret government spying. All operations can be handled 
automatically, without need for User intervention. 

The advantage of implementing through the browser is three-fold. 
First, browsers are well-tested pieces of software that invest heavily 
in sandboxing and other security measures. Second, most non-IoT 
devices a User has ship with a browser: laptops, phones, tablets, 
and even some e-readers. Finally, browsers are already engineered 
for cross-platform compatibility. 

Service Providers must tag their published canaries with expiration 
dates, so that the Canary Locker can validate whether or not a given 
device has checked against the latest available generation (see 
Section 5.1 "Tree Publications"). This also permits a Canary Locker 
to notify a User for how long their canary has been tripped.  

Finally, we note that Canary Lockers continue to download and 
process bins for a given Service Provider even after a canary trips. 
Accordingly, Service Provider must assign bins each publication 
period not just to Users with live canaries, but to all Users. This has 
the benefit of strengthening the auditing of the tree, and also 
prevents a third-party network snooper from divining that the User 
is aware their canary has been triggered, as network access patterns 
do not change post-trigger. 

4.7 Communicating Bin Assignments to Users 
Service Providers publish three bundles each time they publish a 
full set of canaries. The first bundle consists of a signed Merkle tree 
root for the canary tree, along with the leaf nodes for that tree. For 
a large Service Provider this bundle has O(1 billion) leaf nodes, for 
a total size of ~32GB. We include a rapid indexing bundle to avoid 
downloading the entire canary tree (and to avoid Service Providers 
persisting the map of canary to User, per Section 4.4). This second 
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bundle consists of a secondary Merkle tree we call the "key tree."1 
Service Providers publish the key tree's signed root and its leaf 
nodes. The third bundle, the tree of record, is explored in Section 
5.1. 

The key tree has as many leaf nodes as there are bins for the canary 
tree. This is given by dividing the total number of canaries 
published by the bin size, which in our working example evaluates 
to 1 billion/100,000 = 10,000. The payload for each leaf in the key 
tree is a list of 32-bit integer offsets. Half of each integer is available 
for enumerating bins. The length of the list is equivalent to the 
number of canaries in each bin, and each entry is encrypted with 
the public key of one of the Users (or dummies) in that bin. 

Each offset acts as the bin identifier for the canary tree. For 
example, a 0 corresponds to the canary sub-tree composed of 
canary leaves in the range [0, 9,999]. A 1 corresponds to the next 
bin, composed of canary leaves [10,000, 19,999]. A 2 corresponds 
to the bin [20,000, 29,999] and in general an n corresponds to the 
bin [n*bin_size, (n+1)*bin_size-1]. 

The size of each leaf in the key tree for a Service Provider with 
100,000 Users per bin is ~400KB, ignoring encryption overheads. 
The total size of the key tree in this scenario would be 4GB. While 
certainly less than the 32GB canary tree, this size is still unwieldy.  
Fortunately, Users have a method for determining which key leaf 
contains their bin identifier, and may download only it instead. 
User and Service Provider both use a known random hashing 
algorithm (e.g. xxHash) to determine the mapping of key leaf to 
User. They both hash on the concatenation of User's public key and 
a client-supplied salt to derive the mapping. We explain our method 
for secure communication of the salt momentarily, focusing for 
now on how the salt is used. 

The User-submitted salt acts as a bin identifier hash salt, such that 
math.floor(xxHash(UPK || CLS) % B) yields the index 
of the key tree leaf for that User, where || denotes concatenation, 
UPK is User's public key, CLS is the Canary Locker salt, and B is 
the total number of bins for that Service Provider. Unpacking the 
payload of the designated key tree leaf reveals the list of 32-bit 
integer offsets. The Canary Locker iterates through the list and 
decrypts each entry with the User's private key until the bin 
identifier is found. Valid bin identifiers have a 16-bit prefix of 
leading zeroes, leaving the remaining 16 bits for enumerating bins.  

Notably, the User need not know B ahead of time, as that 
information is recoverable from the number of leaves in the key 
tree, itself part of the signed tree head for the key tree (see Section 
5.1 for a description of the tree head format). This also permits 
Service Provider to change bin size or number of bins without prior 
coordination with Users, as the User will compute their mapping to 
the key tree when Service Provider publishes it. 

The leaf nodes in the key tree provide a stable, secret place to house 
the randomized bin assignment for each User. As the Service 
Provider randomizes bin assignment each time they publish their 
set of canaries, User needs a known location to investigate to find 
their new bin assignment. Randomization of bin assignments is 
necessary to avoid artificially restricting the search space, and thus 
the anonymity measure, for a given canary. While strictly speaking 
a canary has at most entropy proportional to !

#
 where N is the 

number of canaries in its bin, we realize an additional entropy 

                                                                    
1 "The 🔑	is	to	have	every	🔑"	[87].	

advantage as the placement of a canary into a bin is unknown by an 
adversary.  

In so doing we attempt to recover a system-wide maximal entropy 
of !

"
 where U is the total number of canaries published by the 

Service Provider, or O(1 billion) in the case of our largest Service 
Providers. This represents a theoretical strengthening of an 
individual canary's anonymity by four orders of magnitude. 

As User and Service Provider are the only ones in possession of the 
User-submitted salt, the bin identifier is secure. Because the nonces 
in Section 4.2 need not be computed until the canaries are being 
populated, Service Provider does not persist the mapping of canary 
to User, nor User to bin. The key tree mapping for a User remains 
stable until their Canary Locker submits a new salt, which can be 
done at any time by submitting an appropriate salt pinning message. 
We recommend that salts rotate regularly, approximately once per 
publication period. 

4.8 Salt Pin Messages 
Salt pin messages consist of the private key encrypted 
concatenation of the first 16-bytes of User's username and a client-
specified cryptographically random salt. When Service Provider 
decrypts the message with User's public key, it checks for the 
username to ensure validity. Service Provider can validate User's 
public key by checking a Key Service to find an identity proof for 
User's ownership of the keypair. 

 
Figure 4. Salt Pin Message format 

In this section we detail two attack classes focused on salt pins, a 
naïve implementation that permits exploitation of these attacks, and 
our solution. 
Given our passive pervasive listener with ad-hoc active 
capabilities, two attack vectors stand out. First, if salt pin exchanges 
can be easily fingerprinted, they may be harvested from long term 
recordings for post-hoc analysis, or actively intercepted and 
modified or degraded. Second, an active government-level attacker 
may seek to down a Service Provider's canary system by DDoS. 
We note that the distributed nature of the canary and key tree 
distribution mechanism (explored in full in Section 5, "Distributed 
Merkle Tree Format") preclude simple methods for a DDoS to 
render canary information unreachable. However, salt pin servers 
must be DDoS-impervious as well, or Users will be unable to locate 
the appropriate canary bin without, in the worst case, downloading 
~32GB of data per publication event for an O(1 billion) Service 
Provider. 

We adopt a "defense in depth" approach to mitigating these attacks. 
We note that in accordance with our desire to recover a maximal 
entropy distribution of !

"
, network accesses to communicate salt 

pins must be obfuscated. Thus, in both the naïve solution and our 
proposed modification, we require Canary Lockers and Service 
Provider salt servers to communicate over an anonymizing mixnet, 
such that key tree information – which corresponds to identifying 
the User's bin – is not easily tied to an IP address.  
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We note that use of an anonymizing mixnet is also required for 
distributed lookup and fulfillment of canary and key tree 
distribution, as detailed in Section 5. We recommend the mixnet 
i2p [32], noting in Section 9 Appendix A that it offers several 
advantages for our threat model and system architecture over Tor, 
chief among them its capability for handling large peer-to-peer 
traffic.  

The naïve solution to processing salt pins is to send them directly 
over i2p. For example, having a User directly submit an encrypted 
salt pin, along with their username and public key, to 
salt.providername.i2p. This approach is particularly vulnerable to 
a targeted DDoS attack, as the server must decrypt the salt pin to 
ensure the username matches (thus establishing ownership over the 
keypair), and possibly query a third-party Key Service to evaluate 
an identity proof tying the keypair to the User. Public key 
decryption is CPU intensive, and a remote network access 
consumes an open socket for the duration of the round trip, 
magnifying the utility of a DDoS attack on the salt server. An 
attacker could conceivably issue many such requests as a reflection 
attack on the Key Server's infrastructure as well. 

Salt servers could require User authentication (e.g. using TLS over 
i2p) before permitting a salt pin message. In this case, the Canary 
Locker might have to request the User to enter their login 
credentials each time a salt rotation is required. This creates poor 
security education as Users are conditioned to enter their 
credentials into a login page that is not clearly related to or hosted 
by their Service Provider, providing a lowered threshold for 
credentials exfiltration. Alternatively, the Canary Locker could 
perform a kind of "shadow login" to the Service Provider, making 
use of login credentials stored in the browser's password manager.  

In this scenario the User would only have to supply their private 
key encrypted salt pin message to the salt server, as it would already 
know the username to match against and, by virtue of 
authentication, know which keypair identity proof to request from 
the Key Service. However, this design requires that Users store 
account credentials in the browser's password manager, which may 
not be the case. Absent this assumption this scenario reverts to the 
poor security conditioning of the first scenario. 

Even assuming all Users store their credentials in the browser 
password manager, this design may mix operational security 
burdens in a way that makes both Users and Service Providers 
uncomfortable. Users would be required to trust an additional 
browser component, the Canary Locker, with login credentials that 
are normally only under the purview of the password manager. 
Service Providers would have to expose a login listener over an 
unfamiliar network architecture that aims to produce near-
untraceable communications, thereby opening their login 
infrastructure to sustained and difficult to trace DDoS. 

Our solution solves both problems, allowing only authenticated 
Users to submit salts and permitting internal separation of security 
concerns for both Users and Service Providers. 

We recommend implementing a bootstrapping phase for salt pin 
messages as a TLS extension. In this method, when User navigates 
to a known Service Provider login page, the User's web browser 
would query its Canary Locker to determine the TTL (time to live) 
of the salt associated with that Service Provider. If the salt is valid 
                                                                    
2 "Designers and implementers should be aware of the fact that until 

the handshake has been authenticated, active attackers can 
modify messages and insert, remove, or replace extensions," from 
Section 7.4.1.4, "Hello Extensions." See also, "Allow the client 
and server to verify that their peer has calculated the same 

no action would be taken and the TLS handshake would proceed 
normally. If the salt is expired, the ClientHello message would be 
modified to include an AviarySaltPin extension per RFC 5246 
Section 7.4.1.4, "Hello Extensions" [50]. We recommend that 
Service Providers require Users to login again when receiving an 
AviarySaltPin in the ClientHello on TLS session resumption 
requests, thereby requiring the initiation of a new TLS session (and 
protecting against session identifier exfiltration attacks). 

We note that the browser must cache an expired salt until two 
conditions have both been met: it has received an ACK from 
Service Provider for the new salt rotation, and the next round of 
canaries that post-date the ACK has been pulled. This is necessary 
because a Service Provider may have already prepared a round of 
upcoming canaries before receiving the new salt. Accordingly, we 
recommend that Canary Lockers maintain current_salt and 
previous_salt values, querying the sub-tree related to the 
current_salt for its canary first, and then querying the bin 
associated with the previous_salt value if the canary is not found 
initially. If the canary is not found at both locations, it should be 
considered tripped.  

To maintain separation of operational security concerns while 
decreasing the attack effectiveness of a DDoS on the salt pin 
servers, we propose the following scheme. On successful handling 
of the AviarySaltPin enhanced ClientHello during a login to a given 
Service Provider, the browser passes an encrypted copy of the 48-
byte TLS master_secret to the Canary Locker. This copy, which we 
call the "masterhash," is encrypted with the User's public key, and 
thus never leaves the TLS space in plain form. Simultaneously, the 
Service Provider adds a route at their salt server corresponding to 
the masterhash, for example: salt.providername.i2p/masterhash. 
Service Provider additionally stores the masterhash in a tuple 
<username, masterhash> at the salt server. 

User then posts their salt pin message to 
salt.serviceprovider.i2p/masterhash, over i2p, via the Canary 
Locker. The Service Provider then uses User's public key to 
decrypt the salt pin message, checks to see the first 16 bytes of the 
username match the associated User in the <username, 
masterhash> tuple, and then pins the client salt for use in the 
binning algorithm. Because the masterhash is encrypted with the 
User's public key, no bits of the shared TLS master_secret are 
recoverable from it. Furthermore, because peers participating in 
routing in i2p only decrypt next-hop information, and because the 
salt server is hosted internal to i2p, the masterhash value is never 
revealed to anyone but User and Service Provider. 

Note that we should only consider this master_secret to be safe to 
use after the handshake messages have been authenticated.2 Note 
further that the Service Provider's salt server should not honor the 
salt.serviceprovider.i2p/masterhash route unless the User 
successfully finishes the login process and authenticates. The TLS 
master_secret persists for the lifetime of the TLS session and exists 
regardless of key exchange algorithm (e.g. RSA or Diffie-Hellman) 
used (see Section 8.1 "Computing the Master Secret" of [50]). 
Accordingly, it is readily available and robust across TLS 
implementations. 

The salt server discards any messages that are not posted to a valid 
/masterhash route, greatly decreasing the utility of a "spray and 

security parameters and that the handshake occurred without 
tampering by an attacker," from Section 7.3 "Handshake Protocol 
Overview" [50]. 
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pray" DDoS attack. Routes and tuples can be flushed regularly and 
relatively quickly, say O(5 min), to avoid the need for large caches. 
Service Providers may communicate /masterhash routes and tuples 
to salt servers over direct TLS-encrypted persistent TCP 
connections instead of routing through i2p to avoid added latency 
and convergence times, while Canary Lockers implement a 
mandatory 60 second wait-time after receiving an authenticated 
masterhash before posting their salt pin messages via i2p. We note 
that these connections must be properly encrypted, preferably in a 
post-quantum secure fashion, given NSA's MUSCULAR program, 
which specifically targets cables connecting the datacenter-
datacenter networks of major providers for persistent taps [51].  

Since the masterhash value could only be known to an 
authenticated User, and could only come from a Service Provider 
who passes a successful TLS certificate, both User and Service 
Provider benefit from traditional authentication mechanisms 
without mixing security burdens with untrusted and untested new 
components or endpoints. 

The naïve solution is also sub-optimal against an ad-hoc active 
attacker impersonating a User. Consider an attacker who mints a 
new public/private keypair, using their private key to encrypt a salt 
pin message. In the naïve scenario the attacker could send this 
message along with the public key, and the salt server would 
happily decrypt it and find the associated username. If the salt 
server declined to query the Key Service to verify the public key's 
association with the User, or if the attacker had a specific persistent 
threat spoofing results on the Key Service for this User in particular, 
then the attacker could successfully pin a salt that the User is 
unaware of, thus making it much harder for the User to know their 
key leaf and thus find their canary. In our scheme even if the salt 
server is lazily verifying the User and the attacker has successfully 
compromised the Key Server, the attacker would need to 
additionally impersonate the User to the Service Provider for login 
authentication in order to generate a valid masterhash. Our solution 
adds an extra layer of defensive depth, in the form of login 
credentials, to a successful execution of this attack. 
We note that an attacker compromising the User's login credentials 
would be able to rotate their salt at will, rendering Aviary unusable 
for that User. To some extent this outcome renders a warrant canary 
meaningless, as the adversary would already have access to User's 
data. One possible extension to mitigate this vector would require 
a User rotating a salt to provide in the first field of the salt pin 
message the 16 bytes of their previous salt, as opposed to their 
username, which Service Provider could then validate before ACK-
ing and applying the rotation. In this fashion, valid salt rotation 
would require the control not only of account credentials and the 
attested public key, but also control of (or content exfiltration of) 
the Canary Locker. 
We note as well that passing salt messages, as well as canary and 
key tree retrieval, through i2p frustrates traditional passive 
fingerprinting methods. In the case of salt pins in particular, there 
are no message headers to identify this traffic as unique from 
traditional i2p traffic, and even the destination is ad-hoc, 
temporary, and known only to Service Provider and User. As salt 
pins are a crucial aspect to making Aviary a tractable solution for 
clients, preventing their passive fingerprinting is particularly 
useful. See Section 9, "Appendix A: Choosing i2p over Tor" for 
more. 
Finally, we note that the AviarySaltPin extension to the User's 
Client Hello message permits post-hoc fingerprinting of recorded 
data. Canary Lockers could randomly embed AviarySaltPin 
requests in their ClientHello messages, even when the TTL of the 

current_salt is still valid, in order to frustrate post-hoc analysis. By 
simply not submitting a new salt to the 
salt.providername.i2p/masterhash route, the User can avoid 
registering unnecessary salts and obfuscate which AviarySaltPin 
messages are legitimate. 

4.9 Client Keys 
Users must provide Service Providers a public key for which they 
own the private key, a classic example of the key distribution 
problem. We note an elegant solution that meets our requirements 
for usability in brief, and proceed to elaborate two passive 
surveillance attacks that Service Providers implementing Aviary 
must guard against.  

As the vast majority of Users do not possess sufficient security 
literacy to manage keys themselves, key distribution must be 
automated by a third-party Key Service providing attestation 
services. At no point should private keys leave the device of a User. 
Remote Key Services like keybase.io can simply the problems of 
key generation and identity attestation [52]. This third-party service 
maintains a database where Users claim ownership of public keys. 
These ownership claims are buttressed by identity claims, where a 
User identifies themselves with signed posts on keybase.io and on 
another service simultaneously, e.g. Twitter.  

Keybase.io additionally submits the root of their own Merkle tree 
(which manages the signed identity statements among other 
attestation documents managed by their service) into the Bitcoin 
blockchain, providing further safeguards against compromised 
servers promoting fake identity claims. 

A Service Provider should implement two defenses against leaking 
information in its queries to a third-party Key Service. First, it 
should flip a randomly weighted coin each time it uses the User's 
public key to determine if it should query the Key Service to re-
authenticate ownership of the key. For example, draw some k from 
the interval [0, 1], and then draw some y also from [0, 1]. If y ≥ k, 
submit a request to the Key Service for the latest ownership 
information. 

Second, even after a Service Provider has declared a given User's 
warrant canary dead, it should still submit requests for User's key 
ownership information to the Key Service to avoid leaking the fact 
that User's warrant canary has triggered to a third party network 
listener. Accordingly, Users without live canaries should be joined 
to a group from which the Service Provider randomly polls the Key 
Service with each publication update. In this fashion neither the Key 
Service nor a passive listener on the network can distinguish 
between authentic and inauthentic requests to the Key Service for 
client key authentication.  
If the User wishes to rotate their public/private keypair, they must 
register the rotation with the Key Service in order to provide a valid 
identity proof for the new keypair, and must send a message (via 
Canary Locker) to the appropriate Service Providers to notify them 
of the change. We do not specify this message exchange explicitly. 

5. DISTRIBUTED MERKLE TREE 
FORMAT 
In this section we describe distributed, co-hosted operation of 
Aviary canary trees. 

5.1 Tree Publications 
Service Providers publish three trees each publication event: 
canary, key, and record. Each tree includes a signed tree head, a 
signed structure enclosing the Merkle hash of the tree root, a date 
range for which the tree is valid, and the size in number of leaves 



 10 

of the tree. Signed tree heads and tree data along with the associated 
magnet/.torrent files constitute a package, described in Section 
5.2.5. We now describe the third tree, the tree of record. 

In order to preserve contiguity between archived trees and currently 
hosted trees, Service Providers should maintain a third Merkle tree, 
the "tree of record," that records the root nodes of their canary and 
key trees. As this tree only grows at the rate of three nodes (the 
signed root nodes for the canary and key trees, along with their 
signed parent hash) per publication event, it does not contribute a 
significant storage burden. Note that the individual canary and key 
tree roots should still be signed by the Service Provider.  

5.2 Distributed Tree Hosting 
There are at least two strategies for hosting the canary trees: 
traditional servers or peer-to-peer. We note that unlike Bitcoin [53], 
there exists no decentralized incentive for peers to maintain canary 
tree data, as there are no coins to mine.3 On the other hand, 
centralized hosting places cost directly on the Service Providers, 
and may present a brittle target for State-level DDoS.  

We propose an Aviary DHT similar to the BitTorrent Mainline 
DHT. The Aviary DHT is a BitTorrent DHT with Peer Exchange 
(PEX) enabled, running over i2p, with an additional announce 
mechanism in which peers advertise signed magnet links to the 
latest Aviary trees available. Further nuances are explored below. 

In this section we consider three classes of attacks against the 
Aviary DHT and detail our approach to solving them, along with 
hardening the DHT against DDoS. We are indebted to the excellent 
paper by Urdaneta et al for their comprehensive overview [54].  

5.2.1 Mitigating Sybil Attacks  
Sybil attacks involve an adversary registering a sufficient number 
of false nodes in the DHT, either to disrupt communications (e.g. 
by refusing to return key query results or returning junk data, or by 
poisoning honest nodes' routing tables as in Eclipse attacks) or to 
manipulate them (e.g. by gaining control of a specific key k and 
returning subverted data for it). Traditional verification 
mechanisms [55] require hashing node identifiers on the basis of an 
IP address. As our Users will participate in the DHT over i2p, it is 
i2p Destinations rather than IP addresses that would need to be 
hashed. However, since i2p aims to be pseudonymous, provides no 
limit on the number of Destinations an adversary could populate, 
and rotates Destinations regularly, such a defense is unlikely to 
succeed. For the same reason, we discard approaches like the 
otherwise promising Peruze, in which suspicious Sybil nodes are 
identified by programmatically scanning the DHT to find nodes 
with high numbers (thousands) of associated IP's [56].  

Castro et al. [57] propose a centralized registration authority that 
creates signed certificates binding a random node identifier to a 
public key that corresponds to that node, along with its IP address. 
In their solution a node wishing to register with the DHT mints a 
public/private keypair and proves ownership of the keypair by 
unwrapping a server-provided nonce. In return, the registration 
server creates a signed certificate attesting ownership of the public 
key to the IP address and the random node identifier, tying the 
cryptographic identity to a single routable destination within the 
DHT (node identifier) and a routable destination on the internet (IP 
address). 

                                                                    
3 Implementation of a blockchain-derived coin architected to meet 

the needs of Aviary is an interesting strategy the author is 
presently considering. 

Aviary can utilize a similar system with slight modifications, noting 
again that any Service Provider signing certificate used in Aviary 
should be present in a valid Certificate Transparency log per RFC 
6962. Recall that valid nodes have a client salt known only to the 
User and Service Provider. Users also have public keys with 
attestation proofs, per the third-party Key Service. To register it is 
sufficient for a User to submit a request enclosing their i2p 
Destination4 to register.serviceprovider.i2p/route, where route == 
UPK(client salt). In so doing, Users prove identity to the Service 
Provider, while Service Providers' registration servers maintain 
some level of DDoS protection as they can discard any message 
sent to an invalid route (Destination rotation is addressed in 5.2.3).  

We note that in order to avoid an adversary trawling all possible 
/route extensions, the Service Provider should require some 
validation beyond knowledge of the /route extension (otherwise, a 
sufficiently resourced adversary could register false Destinations 
by trying random routes). This validation could take the form of 
providing the first 16 bytes of the username associated with the 
client salt found at UPK(client salt). Much like the salt pin, this 
message should be encrypted with the User's private key. We note 
that registration servers should avoid sending any NACK's in the 
event of incorrect routes or packets failing validation sent to 
legitimate routes. These serve only to identify valid DDoS targets 
for adversaries. 

We discard other Sybil mitigation methods as impractical for our 
deployment scenario, as they rely either on out-of-band social 
graph information (SybilGuard [58], SybilLimit [59] [60]) or 
network topology measurements (netprint [61]) that will be 
unreliable under an anonymizing mixnet like i2p [62] [63]. We note 
that computational puzzles as proposed in [64] [65] may optionally 
be included to increase the computational cost for systemic 
perversion of the DHT, at the expense of potentially foreclosing 
mobile-only Users from meaningful participation, as battery 
drainage likely increases under these conditions. We also note that 
the hierarchical verification in [65] exposes a new attack vector, in 
which an adversary seeks to force nodes higher in the hierarchy to 
lose network reachability. Disgraceful exits cause all child nodes to 
re-authenticate, potentially providing high-payoff disruption for the 
cost of isolating or DDoS-ing a small set of User nodes, as opposed 
to higher-resourced Service Provider infrastructure. For these 
reasons we prefer the authenticated registration mechanism above. 

5.2.2 Mitigating Eclipse Attacks 
In an Eclipse attack an adversary attempts to poison the routes of a 
specific node in the DHT by occupying the nodes proximal to it. 
Such an attack may occur on Aviary if an adversary is targeting a 
User of interest in order to degrade their ability to retrieve their 
warrant canary. Following [57], with DHT's employing proximity 
metrics it is sufficient to create two routing tables, a trusted and 
non-optimized table, and an untrusted but route-optimized table. 

The untrusted table assumes the proximity metric of the DHT is not 
compromised. In case of failures (bad data, unreachable routes, 
etc.) incurred in the use of the optimized table, the trusted table 
forms a non-optimized but correct fallback. The worst-case 
scenario involves a fully poisoned optimized table, in which a 
constant overhead is imposed on all lookup operations as they try 
and fail the optimized table before falling back to the verified table. 
Sufficiently intelligent client software could detect when an 

4 This client Destination would be the application-specific 
Destination the User advertises in a LeaseSet in the network 
database, e.g., the Destination(s) of their i2p BitTorrent client. 
See https://geti2p.net/en/docs/how/network-database for more.  
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optimized table is failing more often than not, and react 
appropriately to avoid this result. 

We note that given the strong protection against Sybil attacks noted 
above, an adversary interested in perverting the Aviary DHT would 
need to control a number of fake accounts with the Service Provider 
equal to the number of malicious nodes required for their attack. 
We note that in the instance that all Aviary nodes join a single DHT 
connecting Users of multiple Service Providers (in which case 
nodes would accept results from each other if a signed certificate 
from any of the Service Providers is present), the difficulty of this 
vector reduces to the weakest signup mechanism in place. A simple 
workaround would be for Service Providers to require user 
accounts to have some minimum length of use before being eligible 
for inclusion in the warrant canary scheme. Fingerprinting-over-
time could also be used to distinguish between true use and 
programmatically generated accounts, though this is outside the 
scope of this paper. 

5.2.3 Mitigating Routing and Storage Attacks 
Finally, we consider routing or storage attacks, in which data 
distribution within a DHT is disrupted. In these attacks malicious 
nodes refuse to serve content or serve junk data. We note that the 
effectiveness of such attacks is strictly gated by the ability of an 
adversary to join malicious nodes to the DHT. Given our 
authentication procedures, the difficulty of such an attack is 
equivalent to the weakness of the User sign-up procedure for the 
weakest Service Provider whose Users are party to the swarm. 
Otherwise, BitTorrent already provides data integrity checks 
(including its own proposed Merkle tree implementation [66]) and 
provides widespread data replication by design. 

We note that i2p presents a unique challenge for the registration 
mechanism, as i2p Destinations rotate every 10 minutes. 
Accordingly, we recommend that Service Providers actually issue 
time-stamped signing certificates to nodes that pass registration. 
Nodes would then use these signing certificates to re-sign new 
Destinations. Expirations could be enforced directly, in which case 
an expired signing certificate would cause peers in the DHT to 
reject the expired node until it produced a new certificate. 
Distributed enforcement could also occur with computational 
pressure, in which case peers of an expired node might challenge it 
with increasing frequency as the time past expiration increases, 
fielding computational puzzles for the expired node to solve before 
serving its requests. Such a scenario (along with relaxed 
frequencies when applicable) might be desirable in the event that 
Service Provider registration servers are downed by an adversary's 
attack, a fact participating nodes in the DHT can verify 
independently. In this manner, the swarm could flexibly self-
enforce until the registration authorities are able to resume 
operation. 

We note that use of a signing certificate permits tracking of a node's 
i2p Destinations across time, as the expiration time of the certificate 
is likely to be longer than the 10-minute Destination rotation 
schedule of i2p. Canary Lockers can react intelligently to limit this 
fingerprinting by registering new signing certificates from distinct 
Service Providers in a round robin fashion. Alternatively, re-
registration can simply be required for each new Destination, in 
which case Service Provider registration infrastructure represents a 

                                                                    
5 We note that Certificate Transparency log lookups should be 

performed against a log hosted on i2p, so as to avoid leaking 
certificate verification requests to a passive network listener, 
which would de-anonymize which Service Provider a User is 
interested in verifying a canary for, as well as the time at which 

critical element for continued operation of the DHT. However, 
given the relatively small amounts of data a User must download, 
we do not anticipate download of a single Service Provider's canary 
data to require more than one to two i2p Destination rotations (see 
Section 7.2, "Total Client Cost"). Accordingly, a strong re-
registration policy in combination with round-robin registration 
policy (with randomized round robin order to avoid repeated cycles 
of certificate rotation) on the client should suffice. 

5.2.4 Mitigating Passive Fingerprinting 
Running Canary Locker operations as a jailed i2p sub-engine of the 
browser solves multiple passive fingerprinting strategies, provided 
that the implementation rejects leaks to non-.i2p domains. This 
guarantee may be achieved by enforcing a policy that the Canary 
Locker auto-kills any connection request it would send that is not a 
request over .i2p. Likewise, the process implementing the Canary 
Locker should not accept connections from any non-i2p origin. 

Accordingly, per RFC 7624 Section 3.1 "Information Subject to 
Direct Observation," we avoid the following attacks: DNS leaks, 
cookie tracking across rotated IP's, ISP collusion with governments 
to identify IP address ownership (routing in i2p is based on the 
severing the relationship between an IP address and routable 
destination within the mixnet), username & IP address correlation 
(where an observer infers a username belongs to an IP by viewing 
unencrypted IMAP, POP3, SMTP, or SIP traffic), mixed-element 
HTTP/HTTPS de-anonymization where an HTTPS cookie exposed 
over HTTP ties a username to HTTP traffic, and TLS session 
identifier leaks (note our proviso in Section 4.8, "Salt Pin 
Messages", regarding proper handling of AviarySaltPin requests on 
TLS session resumption). 

5.2.5 Hardening Aviary DHT against DDoS 
Given the above DHT-specific defenses, we must now consider a 
State-level DDoS against the centralized portion of the distribution 
mechanism, which is the Service Provider servers hosting .torrent 
files (or publishing their magnet links) for canary trees, as well as 
their tree of record and key trees.  

We specify the following scheme: a package should contain the key 
tree, canary tree, and tree of record for a given publication event 
from a given Service Provider. The User's client software should 
first download the key tree and tree of record, which can be 
accomplished by downloading the .torrent file for the package and 
automatically de-selecting all other files for download, thereby 
ignoring them. After verifying the signed tree head of the key tree 
with the tree of record, and verifying the signatures with a 
Certificate Transparency log,5 the User can lookup their bin per the 
appropriate key tree leaf. At this point the User can re-select for 
download the file in the torrent corresponding to the appropriate 
canary bin and download only their own bin. Note that the file 
corresponding to a canary bin must include the co-path from bin 
root to signed tree head, otherwise client verification of leaf nodes 
in the bin is impossible. The file corresponding to a key tree leaf 
must similarly contain co-path from leaf to key tree root. 
Our first defense against State-level DDoS on the Service Provider 
distribution infrastructure is the completeness of the package. The 
heartbeat (e.g. "stabilize" function in Chord [67]) of the Aviary 
DHT can be modified to include the latest known package magnet 

the request is sent. Such information, combined with statistical 
analysis on DHT lookup requests over i2p, might de-anonymize 
the User on i2p, permitting linking their i2p identity and IP 
address. 
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links for all packages known to that peer, or its "manifest."6 Peers 
are verified given their possession of a Service Provider-issued 
certificate, which the receiving peer can validate, and thus received 
manifests are assumed correct if the sending peer passes validation.  

Even if manifests are incorrect, invalid data distribution is 
impossible due to the signed tree heads in the Merkle trees each 
Service Provider distributes. The risk of "manifest poisoning" is not 
distinct from the poisoning attacks considered above, and our 
mitigation strategy is the same. We note that a peer should 
promiscuously add package magnet links to its manifest as it learns 
them to avoid correlating a peer identity with a set of Service 
Providers to which that User belongs. 

Additionally, deploying over i2p provides non-negligible 
protection against DDoS attacks-for-hire. DDoS-for-hire relies on 
botnet infrastructure comprised of thousands to millions of 
compromised hosts in the wild. These hosts tend to be of two types, 
either end-user devices such as laptops compromised through 
advertising network-injected malware, or, compromised "headless" 
devices and their ilk, such as the Mirai IoT botnet.  
In both cases, though the argument is particularly acute in the Mirai 
case, botnet infrastructure is not easily redeployed to attack a target 
over i2p. Attacking an i2p target requires the host systems to have 
i2p installed and running. While some malware certainly could be 
repurposed to include an i2p service as part of its payload, this 
represents a significant engineering effort and in the case of IoT 
devices may simply be unworkable without extensive engineering 
efforts.  

These factors conspire to increase the "non-recoverable 
engineering" (NRE) costs of a DDoS on Aviary infrastructure, dis-
incentivizing market-motivated actors (or, equivalently, raising the 
price of a one-off solution). As a result, it is likely that the decision 
to deploy over i2p may help narrow the set of likely DDoS attackers 
to State-level actors only, who may find it difficult to mask their 
operations without the cover of a criminal botnet. In turn, this 
decreased cover raises the likelihood that the State actor is 
identified, increasing the risk of undertaking an attack. 

Finally, Service Providers should implement i2p multihoming, in 
which multiple servers can co-host a single hidden service (or 
eepsite), in conjunction with an appropriate load balancer [92]. In 
the event that a DDoS attack is detected, e.g. on a salt server or 
DHT registration server, the Service Provider can spin up 
additional i2p routers and multihome them on-demand, letting the 
load balancer redistribute the incoming requests. In the event that 
service is interrupted distribution should continue for Users who 
have already passed DHT registration, with registration returning 
once the DDoS subsides. Note as well that peers can validate each 
other's certificates in the absence of functioning Service Provider 
i2p infrastructure, so long as a Certificate Transparency log 
containing the Service Provider's signing certificate remains 
reachable, and might decide to relax the frequency of their 
computational puzzle challenges in cases of extended outages. 

5.3 Publishing New Packages 
When a Service Provider is ready to publish a magnet link for a 
new package it signs the magnet link and publishes it via its Tree 
Hosts to all known peers in the DHT. When a peer receives a new 
magnet link it verifies the signature and begins propagating the 
signed link via its heartbeat messages as part of its manifest. The 
key advantage of a magnet link is that it avoids the need for a 
                                                                    
6 Note that "manifest" is used here in a sense independent from its 

meaning as a "manifest topic" in the Magnet URI scheme. 

centralized repository of .torrent files, enabling peers to directly 
bootstrap a swarm around a new file [88].  

Several strategies are available to bootstrap initial announcements 
of new packages: Tree Hosts may optionally maintain larger peer 
lists so that their initial announce reaches more peers; responses to 
the BitTorrent DHT's get_peers request can be modified to include 
the peer's Aviary manifest (list of packages) [68]; and as discussed 
previously, nodes in the Aviary DHT announce new packages to 
each other via heartbeat. Note that we avoid BEP 44's extension for 
storing mutable data as a format for announcing new trees, as it A) 
requires the node in the DHT listing the entry to be honest and B) 
provides no simple way for old tree publications to be indexed by 
magnet link [69].  

New packages and their magnet links should also be made available 
on the Service Provider's "archive of longest and last resort," 
explained in the following section. Finally, Users' requests for key 
trees (and subsequently their canary bins) should be staggered so as 
not to overwhelm Tree Hosts with a distributed thundering herd. 
Each Canary Locker might add a random fuzz factor of up to 24 
hours to the expiration date of the most recent canary root node in 
the User's possession, so as to allow both Tree Hosts and peers to 
propagate data throughout the swarm. 

5.4 Cooperative Hosting and Archiving 
Service Providers should operate Tree Hosts and co-host each 
other's Aviary trees. Volunteers such as academic institutions, 
libraries, maker and hacker-spaces, and individuals can also operate 
independent Tree Hosts. Merkle tree root signatures protect 
distributed tree material from malicious hosts, as tampering is 
facilely evident to any User, and Service Provider-signed magnet 
links provide checksums for tree material via BitTorrent. A Tree 
Host is any host seeding a full copy of one or more Service 
Provider's "packages," as defined above, including previously 
published copies.  

Our recommendation is for server-side delivery mechanisms 
(HTTPS, FTPS) to operate as archives of "last and longest resort." 
These direct connections can facilitate new Tree Hosts who desire 
to join the BitTorrent swarm as a full seed, as well as providing a 
last resort for peers who cannot complete their downloads from the 
swarm due to poor peer availability. Long-term maintenance of 
these archival hosts is best performed by organizations with 
funding and incentive to maintain, e.g. Service Providers. Direct 
i2p URL's may be included within the Canary Locker as a 
hardcoded bootstrapping mechanism, with throttling on the 
HTTPS/FTPS delivery mechanism to protect Service Provider 
resources. In the event of a viable DHT, such resources are 
expected to be minimally used.  

As trees are large, O(32GB) uncompressed for an O(1 billion) 
Service Provider, we recommend a two-tier archiving strategy. 
Tree Hosts should expect to cache at least the previous 3 months of 
tree publications. Trees older than 3 months should be published 
with The Internet Archive, a long-term archival project aimed at 
archiving the internet (which is presently building a Canadian 
branch, specifically for the purposes of combatting US internet 
surveillance [70] [89]). Service Providers should contribute modest 
recurring funds towards the provisioning of additional storage for 
this purpose. Alternatively, as canary and key trees older than 12 
months are almost certainly useless, they can be deleted. Users 
interested in preserving their own canaries for evidentiary reasons 
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can preserve key leaves with co-path and signed key root, along 
with their individual canary and its co-path to the signed canary 
root. This collection together with the tree of record constitutes 
authenticated, non-repudiable evidence of a canary publication for 
the User from the Service Provider. 

6. OBFUSCATING AVIARY CANARY 
COUNTS WITH HIDDEN NUMBERS 
We describe a scheme for Service Providers to publish Aviary 
canaries to the distributed Merkle tree without revealing precise 
canary counts. We first explore a naïve implementation that does 
not work, refining it to meet both legal and competitive pressures. 

6.1 Motivating the Hidden Number Problem 
Per Section 4.3, "Dummy Canaries," a Service Provider is not 
permitted to provide an exact count of the number of secret 
government requests they have fielded for spying on their Users, 
hence the numeric reporting ranges. If the Service Provider simply 
refused to publish a node for each User the government was 
snooping on, this could provide a near-exact count (assuming tight 
estimates for churn and user growth between tree publications) of 
the number of secret orders served.  

Second, publishing exact user counts repeatedly over time 
generates competitive knowledge that may be exploitable by 
corporate adversaries, e.g., granting insight into user growth and 
churn, seasonality, etc. Thus, for both economic and legal reasons, 
firms are incentivized to mask the true number of Users they are 
serving, and a successful distributed warrant canary scheme must 
take this into account. We term this problem the "hidden number 
problem," as the goal is to obfuscate both number of tripped 
canaries and number of Users. 

6.2 Solving the Hidden Number Problem 
Given a Service Provider with n true Users, we desire a publishing 
strategy that meets the requirements specified in the rest of the 
paper while obfuscating the number n of true Users, as well as the 
number t of tripped canaries. We note that naively publishing (n-t)i 
canaries for each interval i ∈ I where I is the set of publication 
periods, exposes t, per our analysis in Section 6.1. The solution is 
to introduce t many dummy canaries each publication period, such 
that the number of nodes published is (n –t +t) = n.  

We can refine this strategy to publish (n + δ) many nodes, where δ 
is some random number of dummy nodes, in order to obfuscate the 
number n. We suggest that δ be a number drawn at random from 
the uniform distribution U(m_min, m_max), where m_min, m_max 
are some non-zero m ∈ ℕ+, with m_max > m_min. We further 
require that a new U(m_min, m_max) is specified for each 
publication event. 
We note that n remains recoverable only if an observer has 
sufficient information to specify the uniform distribution from 
which δ is drawn. Imagine a Service Provider (with an unchanging 
n) who uses the same uniform distribution across canary tree 
publication events. An observer can establish a recorded_min and 
recorded_max, which respectively are approximately equal to (n + 
m_min) and (n + m_max). Subtracting recorded_min from 
recorded_max yields the length of the uniform distribution. If the 
observer knows one of the endpoints, then the center of the 
distribution is recoverable. As the expectation of multiple draws 
from a uniform random distribution is its center, subtracting the 
center from each of the recorded canary leaf counts and averaging 
the result recovers the hidden number n, with greater precision as 
the number of publication events recorded increases. 

Absent the information needed to specify the uniform distribution, 
the observer is unable to produce the center of the uniform 
distribution, and thus unable to recover n. Specifying a uniform 
distribution U(a, b) requires knowing (a AND b) OR (a XOR b 
AND length), where length is the length of the distribution. We note 
that repeated publication with δ drawn from the same uniform 
distribution exposes length after a long enough set of samples, 
while failing to properly randomize either m_min or m_max to be a 
non-zero positive integer may inadvertently leak the center of the 
distribution, e.g. if a == 0, or is otherwise known (or b is), then 
knowledge of length alone is sufficient to recover the center. 

Accordingly, we recommend m_min and m_max be non-zero 
randomly selected positive integers, and that the range (m_min, 
m_max) from which δ is drawn change with each publication event. 
We note that relying on churn and user growth alone to obfuscate n 
from publication to publication is insufficient, and in itself may 
constitute economically competitive knowledge a Service Provider 
seeks to deny their competitors. With the addition of δ as specified, 
statistical estimates of the user growth and churn exhibited by 
changes in n over time are frustrated. 

7. IMPLEMENTATION 
CONSIDERATIONS 
In the following section, we discuss some implementation 
considerations for Aviary. Specifically, Merkle tree 
implementation details and client costs for Users. 

7.1 Choosing a Cryptographic Hash Function 
Merkle trees are binary hash trees whose leaf nodes are composed 
of hashes of the input data nodes. For Aviary's canary tree, each 
data node corresponds to a single canary. While this section 
analyzes canary trees, similar reasoning applies for key and record 
trees, with their data nodes defined as previously specified. 

 
Figure 5. First two tree levels for a naïve Aviary Merkle tree. 

In the above diagram, the data nodes refer to the individual 
canaries, a, b, c, and d. The leaf nodes refer to the hashes of the data 
nodes, H(a), H(b), etc. The intermediate nodes shown are the first 
non-leaf nodes of the Merkle tree, where H(H(a) || H(b)) is the hash 
of the concatenation of the hashes of data nodes a and b.  

We note that the hash function chosen must be a cryptographically 
strong hash, which we specify to mean a hash function exhibiting 
the following properties: pre-image resistance (also known as a 
"one-way" hash function), second pre-image resistance, and 
collision resistance. See [71] for a detailed discussion of these 
properties. 
For our purposes we now specify a trivial attack the naïve 
formulation of a Merkle tree exposes, as well as how to mitigate it. 
This attack, known as a trivial second pre-image attack on a Merkle 
tree, involves the inability of an auditor to definitively claim the 
presence or absence of a given data block within the tree. Note that 
while an individual cryptographically secure hash function 
possesses second pre-image resistance, its utilization within a naïve 
Merkle tree does not extend this property to the tree as a whole. 
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Consider some data block e whose value is defined as H(H(a) || 
H(b)). Asked to verify that a hash representing e is in the naïve tree 
above, an auditor finds a valid chain linking our first intermediate 
node to the root node, and reports e is present. Unintended data has 
now been verified as part of the tree. Or, if the format of the data 
nodes is such that a data node with e's format is forbidden, an 
auditor might report that corrupted data is present in the tree. Or, if 
an auditor is asked to prove that nodes a and b are in the tree, she 
will be unable to confirm their presence, as the second pre-image e 
is not ruled out, since the auditor cannot claim that e is not in the 
tree.  

Two options present themselves for mitigating this attack. First, the 
signed tree head at the root of the Merkle tree must include the size 
of the tree. As the tree is a binary tree, a size (in number of leaf 
nodes) uniquely specifies the shape of a given tree, even if that tree 
is unbalanced, provided that trees are filled uniformly (e.g. always 
from left to right). Given an index and rank, or level, of a candidate 
node, combined with the size of the tree, one can determine if that 
node is a leaf or intermediate.  

Second, distinct hashing algorithms should be used for computing 
leaf nodes and computing intermediate nodes. In such a fashion, no 
possibility for confusing a second pre-image with a valid data node 
is possible. Though Certificate Transparency uses SHA-256 for all 
hashes, it implements a similar separation between leaf and 
intermediate nodes, hashing leaves with an additional 0x00 byte, 
while intermediate nodes are hashed with an additional 0x01 byte 
(see Section 2.1, "Merkle Hash Trees", of [35]).  

As canary nodes in Aviary are 32 bytes long, many 
cryptographically secure hash algorithms can process a canary node 
in one hash invocation. Since canary leaf nodes form the majority 
of the cryptographic computational workload for a publication set, 
the fastest hashing algorithm should be used at the leaf level, with 
the next fastest used above it. We note that some high-performing 
hash algorithms evaluated cross-platform on 64-byte payloads 
include SKEIN-512-256 [72], BLAKE-512 [73], and SHA3-512 
[74]. Results are available at [75]. A discussion of their relative 
security trade-offs is outside the scope of this paper. 

7.2 Total Client Cost 
We note that Canary Lockers may restrict total i2p bandwidth usage 
to minimize data costs for Users. Such a limit may be necessary, as 
in i2p all peers are also mixnet routers, and engage in network 
traffic unrelated to an individual User's applications. Additionally, 
the bandwidth speed available to i2p can be tuned to avoid 
impacting performance of other User applications. We note that 
such tuning should be uniform. Lowering the speed available to i2p 
when not downloading Aviary material may leak timing of canary 
downloads to an adversary listening on the network, as a significant 
jump in i2p traffic may occur as speed limits are relaxed. 

The current default speed limit is 32KBps, yielding an expected 
BitTorrent bandwidth of roughly 15KBps [76]. Assuming the 
default speed and a canary tree of 100,000 32-byte nodes, we note 
that a User would download the 3.2MB of tree data in roughly three 
and a half minutes. While this estimate does not include the 
overhead introduced by encrypting the canary nodes, as this 
overhead varies with selection of encryption algorithms, it should 
serve as a rough approximation. Key trees (~400KB) and record 
trees (≪20KB) do not contribute significantly to the data budget, 
and compression across the 100,000 node bins may be able to 
recover some of the overhead introduced by encryption. 

8. CONCLUSION  
We have presented the first scheme for a global, distributed, 
confidential, user-friendly per-user warrant canary system. 
Through a layered approach of distributed Merkle trees, we have 
increased the anonymity set of a User to match the total population 
for a Service Provider. Additionally, we have specified 
implementation details both client and server side, as well as tactics 
for hardening Aviary systems against multiple types of attacks, 
both passive and active, including User impersonation and State-
level DDoS. Finally, these techniques are orchestrated in a fully 
automated manner requiring close to zero User interaction. 

We note that future research on this question should include post-
quantum security of Aviary canaries, with "hybrid forward secrecy" 
providing one option [77]. Indeed, Google is already experimenting 
with NewHope implementations within Chrome [78], and NIST is 
sponsoring an upcoming post-quantum competition in 2017 [79].  

Readers may rightly opine that implementing such a system will 
not be simple, but defending global civil society from the world's 
most powerful governments is not a trivial task. Fortunately, 
technology Service Providers possess both the political will and 
technical expertise to realize such a system, and additional 
complexity reductions may reveal themselves upon further study.  

[x – Insert Acknowledgements] 

9. Appendix A: Choosing i2p over Tor 
Given our threat model's assumption of a state-level actor with 
massive pervasive surveillance and ad-hoc active attacks on 
targeted Users, we believe i2p to be a superior choice to Tor. 

i2p is architected in a fashion that is peer-to-peer friendly, whereas 
Tor explicitly suffers from congestion with increased p2p traffic 
[80] [81], as well as not supporting UDP-based protocols [82], 
which can be used to cut traffic to a Service Provider tracker by 
roughly half compared to HTTP. It is worth noting no i2p torrent 
trackers/clients currently support UDP announcements, though 
differences from BEP standards are published to enable UDP 
client/tracker development for i2p [83] [84]. This difference is a 
consequence of design philosophy. i2p as a network provides 
increased anonymity with increased traffic, and is architected for 
the benefit of "hidden service" operation, e.g. services hosted 
within the darknet, whereas Tor attempts to provide a proxy service 
via mixnet to communicate with the clearnet.  

It is also worth noting in [80] above, that Users using Tor to browse 
the web and access a BitTorrent swarm were at increased risk of 
providing specific cross-correlation of those streams, thereby de-
anonymizing not only their BitTorrent traffic but also their web 
traffic. As Tor is more widely used as a general purpose browser, 
given the TorBrowser bundle and its stated design goal of browsing 
the clearnet anonymously, we believe it is best to avoid mixing 
burdens and deploy i2p for Aviary purposes instead. 

Additional reasons to prefer i2p include i2p's decentralized and 
distributed address resolution mechanism, as opposed to Tor's 
centralized directory services , which impact DDoS resilience; i2p's 
use of short-lived unidirectional tunnels, as opposed to Tor's long-
lived bidirectional tunnels, which halve the number of nodes an 
attacker needs to compromise to recover the same information on a 
message sender or recipient (hardening against targeted ad-hoc 
active surveillance);  and an increased relative anonymity set, as all 
peers participate in routing in i2p.  
Furthermore, while the fact that an internet user is participating in 
i2p is not hidden, the nature of their participation is, since all peers 
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act as routers, carrying several message and traffic types that are 
not distinguishable. Thus, passive fingerprinting to disentangle "i2p 
usage" from "i2p usage for Aviary" is frustrated.  

The primary technical challenge for i2p relates to scaling the 
network database backend to support a massive increase in users, 
as would occur under a successful Aviary deployment. The i2p dev 
team has already specified bounties for this work, with two of the 
three preliminary bounties being fulfilled [85]. Moreover, scaling 
distributed systems is exactly the kind of expertise the tech industry 
is well-positioned to provide. A more in-depth comparison between 
Tor and i2p may be viewed at [86].  
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