
HAL Id: hal-01408456
https://hal.science/hal-01408456

Preprint submitted on 5 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Aviary: Distributed, Tamper-Proof, Per-User Warrant
Canaries

Abhishek Bose-Kolanu

To cite this version:
Abhishek Bose-Kolanu. Aviary: Distributed, Tamper-Proof, Per-User Warrant Canaries. 2016. �hal-
01408456�

https://hal.science/hal-01408456
https://hal.archives-ouvertes.fr

 1

Aviary: Distributed, Tamper-Proof, Per-User Warrant
Canaries

 Abhishek Bose-Kolanu
Duke University

the.bobo@duke.edu

DISCLAIMER
This paper is a working draft. Cites, arguments and data may
be incomplete or incorrect.

ABSTRACT
Governments routinely claim the power to subject individuals to
secret investigation, forcing technology Service Providers to
divulge User data without notification. Warrant canaries invert the
notification problem by telling a User each time a Service Provider
has not received a secret request for their data. Current canaries
suffer from non-standardization, poor granularity, and brittleness in
the face of attacks, leading the Electronic Frontier Foundation and
Berkman Center to discontinue their Canary Watch service, which
previously aggregated and monitored Service Provider warrant
canaries, in May 2016.

Aviary is a distributed, tamper-proof, per-user warrant canary
system intended to automate and replace obsolete canary practices.
Aviary provides confidential, private, and secure warrant canaries
with massively distributed auditing. This paper presents the Aviary
system, analyzes it in the context of a threat model assuming a
government-level adversary, and presents several mitigation
strategies that inform the design of our distributed architecture.

To our knowledge, Aviary is the first scheme for global, distributed,
confidential per-user warrant canaries, and among the first works
to model a distributed system explicitly against the pervasive
adversary outlined in the Internet Architecture Board's RFC 7624,
"Confidentiality in the Face of Pervasive Surveillance: A Threat
Model and Problem Statement."

1. INTRODUCTION
Research has quantified direct effects on Users from the threat of
government incursion on privacy. Considered broadly, we might
interpret such effects as part of a social "threat model" the present
work attempts to address. In particular, it is troubling that mass
surveillance effectively chills citizen research on precisely the
issues given as necessitating more mass surveillance. A recent
study found that views of Wikipedia articles related to terrorism
dropped in a statistically significant fashion following the Snowden
disclosures, both in the short term and over the long run, suggesting
that internet users feared being flagged for secret government watch
lists [25].

It is impossible for a free society to rationally debate policy
tradeoffs when, as Glenn Greenwald writes, "1 in 6 writers [curb]
their content out of fear of surveillance…Scholars in Europe [are]
accused of being terrorist supporters by virtue of possessing
research materials on extremist groups, [and] the British Library
refuse[s] to house any material on the Taliban for fear of being
prosecuted for material support of terrorism" [26] [27]. More
recently, Google's automated account alerts triggered in a wave of
suspected State-hacking attempts, many of which targeted

journalists and professors in the wake of a contentious presidential
election in the United States [17] [18] [19] [20] [21] [22] [23] [24].

However, political will among technology companies for
protecting User privacy exists, and appears to be growing. The
Electronic Frontier Foundation (EFF) and Berkman noted that the
adoption of warrant canaries has increased by an order of
magnitude, claiming that "[t]he last year has, without a doubt, been
a banner year for the awareness of warrant canaries" [7]. We note
that Facebook made its social network available over Tor, with over
1 million people making use of it [10] [11], Microsoft's President
and General Counsel Brad Smith repeatedly challenges the legality
of secret spying [12] [13] [14], Twitter wants to avoid the image of
being cozy with secret police, as evinced by their efforts to reduce
information leakage to the CIA [15], and Apple's CEO Tim Cook
famously refused to hack into the company's own phones in the
wake of the San Bernardino shootings [16].

Politically, from the perspective of technology Service Providers,
will exists to protect User privacy and to adopt canaries. Notably,
canaries are the only option available for companies wishing to
notify Users of secret spy requests. Current law appears to support
secret gag orders, forbidding companies from explicitly notifying
subjects of secret government investigation. Warrant canaries
invert this problem by having Service Providers instead notify
Users whenever they are not a subject of a secret information
request [1]. Canaries have additionally been at the forefront of legal
challenges that have begun to question gag authority, placing some
limits on gag duration and enforcement by allowing recipients to
challenge gags and requiring the FBI to affirmatively prove the
national security interest of each gag when challenged [89].

However, current canaries are reaching their strategic limits, and
advances are needed. While previous warrant canary notices were
high profile and numerous—including firms such as Reddit [2],
Twitter [3], Lavabit [4], and the
Google/Yahoo/Microsoft/LinkedIn/Facebook lawsuit resulting in
the ability to publish ranges for secret requests received [5] [6]—
current canaries face a strategic deployment problem. The EFF and
Berkman Center shutdown their joint warrant canary aggregator in
May of 2016, citing several challenges, including a lack of standard
canary format, difficulty interpreting canaries, irregular tracking,
and non-definitive information provided by canaries [7]. Absent an
automated solution to these problems, the ability of canaries to
scale is in doubt.

In this paper, we aim to create a new canary architecture, Aviary,
that addresses these problems. Aviary provides a standardized,
confidential and secure per-user distributed canary system. We
wish to provide confidential (only the designated User knows if
their canary is present), private (only the designated User can read
their canary), secure (the User trusts the value of their canary) per-
user warrant canaries. We further desire that the User's canary be
anonymous, in the sense that attributing any given published canary
to a given User is equally as likely as any other attribution.

 2

Our traditional technical goals are to: (1) rule out passive pervasive
surveillance as a successful strategy for determining if a User is
aware of a secret spy request; (2) provide some safeguards against
active network manipulation attacks targeting the Aviary system
and Users of interest; and (3) harden the system against brute force
active attacks, e.g. State-level DDoS. We have an additional goal
we expand on momentarily, that of (4) limiting opportunities for
transparent collusion between technology Service Providers and
government agents. Our design architecture balances these privacy
goals against the necessity of providing a performant solution for
Service Providers and Users alike.

Here "performant" refers not only to standard engineering systems
measures (computational cost, bandwidth expenditure, etc.) but
also to designing a system that avoids inconveniencing Users as
much as possible. Indeed, Users only interact with Aviary twice:
once during key registration (Section 4.9), and in the event that their
canary dies (Section 4.6). In these respects, Aviary advances the
state of the art in massively distributed, government-resistant, and
user-friendly privacy.

Our design avoids traffic fingerprinting to the extent possible while
maintaining authentication to safeguard against active
manipulation attacks, and uses smart addressing to frustrate
common DDoS techniques, thereby addressing goals (1) through
(3) above. Goal (4) bears some explanation. Per RFC 7258,
"Pervasive Monitoring is an Attack," the general methodology to
mitigate pervasive secret spying is to make it significantly more
expensive and/or infeasible to perform without active
collaboration, which risks detection and accompanying legal or
business consequences [9]. Put plainly, secret spying is no longer
secret when it becomes known. Under Aviary a government entity
would not be able to request User data without Aviary alerting the
User to the fact of the request. Accordingly, the government is left
to attempt forcing the company to comply, in which case the
constitutionality of its gag orders can be challenged in court (an
outcome the government consistently avoids, see [89]). Otherwise,
the government must find sympathetic or vulnerable entities within
the Service Provider that they can successfully coerce into
subverting Aviary.

This scenario has already played out, with disastrous consequences
for the Service Provider in question. Recent revelations confirmed
that executives at Yahoo actively circumvented their own security
team to install a government backdoor into their email service. The
backdoor was so poorly configured that: A) in a massive Fourth
Amendment violation all Yahoo emails were intercepted and
queried, not just investigative targets; B) it left the door wide open
for external hackers to read all incoming Yahoo email; and C) in
the words of a former Yahoo security engineer, when the security
team found it, "they immediately assumed it had been installed by
malicious hackers, rather than Yahoo's own mail team. (This says
something about what the backdoor code may have looked like.)"
[8].

The consequences were grave, with security engineers bleeding
away to join rival firms, Yahoo's own Chief Security Officer Alex
Stamos quitting to join in the same role at Facebook, and a massive
public relations hit with two Congressmen voicing their
displeasure, all at a particularly acute time as Yahoo attempted to
close a sale to Verizon [90] [91].

Absent a system like Aviary, vulnerable individuals within a
Service Provider face intense government pressure to facilitate
mass privacy violations without any counterweight to protect them.
In this regard, Aviary protects not only Users, but also Service

Providers. It is worth noting that Aviary, like all warrant canaries,
depends upon a Service Provider acting in the interests of
disclosing secret spy requests to Users. Accordingly, nothing in
Aviary's design prevents a rogue element within a Service Provider
from disregarding it.

We argue that the existence of Aviary accomplishes three important
goals in this regard. First, it offers a stable target for internal
security teams to evaluate external delivery of User data against,
raising the likelihood of discovery. Second, it changes the calculus
for rogue elements and government agents alike, who must factor
in the capacity for a User to be alerted to a secret spy request
properly administered, or else hack the company. Finally, as live
Aviary canaries constitute non-repudiable speech from Service
Provider to User, in the event that a Service Provider lies about a
secret search that becomes known, that lie is documented without
the ability of the Service Provider to challenge it (see Section 5.5
"Cooperative Hosting and Archiving" for more).

We note that any implementation of a warrant canary mechanism
remains at the forefront of legal precedent, with arguments on both
sides regarding the legality of the practice [28]. Some legal scholars
even suggest that widespread, granular warrant canaries may
effectively 'flip' the legal debate, calling into question the legality
of secret government gag orders within the United States [29].
While laws vary globally [30], current privacy advocates hold that
the government cannot compel false speech, and as a result
recommend the use of warrant canaries [1]. Noting that legal advice
is well outside the scope of this paper, we nonetheless maintain that
it behooves technology Service Providers to continue advocating
strongly on behalf of Users, as it is providers who will be asked to
implement policy and legal enforcement in cooperation with
governments.

The remainder of this paper introduces our Threat Model and
Design Goals in Section 3, provides a detailed explanation of our
Canary Format and client software in Section 4, describes
Distribution of Canaries in Section 5, and addresses some specific
implementation details in Sections 6 and 7. An appendix addresses
our choice of anonymizing network substrate.

2. RELATED WORK
Technical work on the deployment of warrant canaries appears
almost non-existent. To our knowledge, Aviary is the first global,
distributed, confidential and secure per-user warrant canary system
in the literature.

However, there is a wealth of related work in the context of privacy
enhancing technologies and hardening distributed systems, both
against pervasive surveillance and provider interference. We draw
on many of the mitigation strategies and attacks in the literature,
citing related work throughout. Tor [31], i2p [32], and Tahoe-LAFS
[33] provide principled ways of deploying secure distributed
systems, such as minimizing metadata and data persistence and
engineering with awareness of a pervasive network adversary,
while work such as [34] shows how unthinking adoption of
cryptographic pseudonyms alone does not guarantee privacy.

Specific work we draw inspiration from includes Google's
Certificate Transparency efforts [35], a system using Merkle trees
to monitor the Certificate Authority system for abuse, as well as
work on measuring anonymity, e.g. thinking with anonymity sets
and metrics [36]. Related work for hardening systems against the
attack vectors defined in our threat model includes Octopus, an
anonymizing DHT [37], Crosby-Wallach audit trees [38], and
general DDoS mitigation tactics [39].

 3

Our contributions include novel techniques specific to
anonymizing warrant canary production and consumption (Section
4), hardening a distribution channel in a hybrid peer-to-peer and
client/server approach (Section 5), and engineering a robust system
that requires the absolute minimum of User interaction, all under
the threat of a pervasive adversary with long-term passive and
active capabilities.

3. SYSTEM OVERVIEW AND THREAT
MODEL
Below we offer brief overviews characterizing Merkle trees, the
actors in our distributed system, and the canary lifecycle before
introducing our threat model.

3.1.1 Merkle Tree Properties
Merkle trees are hash trees that permit auditable, tamper-proof
distribution of information over untrusted channels. Data is
chunked into payloads associated with leaf nodes, whose hashes are
computed. The term "leaf" is alternately used to refer to the leaf
node or the data node, with context clarifying.

In the figure below, data nodes are designated d0, d1, …, d6. Their
corresponding leaf nodes are a, b, …f, and j, whose values are
simply a cryptographic hash of the corresponding data node.
Successive intermediate nodes are built "bottom up" by applying
the hash function to the concatenation of the two child nodes. For
example, intermediate node g has a value of H(H(a) || H(b)), where
H is our cryptographic hash function and || denotes concatenation.
The Merkle root, also known as the "tree head," is the resulting of
this recursive hash procedure, and must be signed by the distributor.
A recipient with a signed tree head and accompanying data nodes
can reconstruct the hash tree to verify that data has not been
changed or corrupted in transit. If the root cannot be reached, one
or more leaf nodes has been corrupted.

Figure 1. Sample binary Merkle tree with seven leaves.

Adapted from Example 2.1.3 of [35].
Merkle trees also permit sparse verification, in which only a data
node, signed tree head, and co-path are needed. Co-paths, or audit
paths, are the hash values necessary to verify a node's presence in
the tree. For example, in the tree above the co-path for d6 is [i, k],
while the co-path for d3 is [c, g, l]. This property is the key insight
behind our "binning" procedure detailed in Section 4.5. It also
permits an interested auditor to begin auditing a Service Provider's
published Merkle tree in an online fashion, without requiring a full
download before verification can begin. Finally, Merkle trees also

provide historically tamper-proof records, as node deletion or
removal is not possible without altering the hash tree. Note that
some subtleties regarding implementing Merkle trees are addressed
in Section 7.1, "Choosing a Cryptographic Hash Function."

3.1.2 System Overview
The following sub-section identifies key players in the distributed
systems architecture of Aviary. Users are end-users of a technology
service, e.g. webmail, a social networking service, etc. Service
Providers are technology companies providing services, from ISP's
to social networks or backup and storage companies. Service
Providers publish Merkle trees communicating canary information
to Users once each publication period (e.g. once a month).
Remarkably, Merkle trees permit anyone to audit them without
endangering the privacy and confidentiality requirements set out
above. Aviary trees are subject to repeated and automatic system-
wide audits at the hands of the Users.

Tree Hosts, run by Service Providers and interested volunteers, are
seed peers in an anonymized BitTorrent swarm acting as a
distribution mechanism. A Key Service is a third-party service
providing identity proofs for User ownership of public keys, which
Service Providers use when constructing canaries. i2p is an
anonymizing mixnet over which the Aviary architecture runs.

Wherever TLS certificates are mentioned, we follow RFC 7624
Section 5.2, "Attacker Costs," and recommend implementation of
RFC 6962, Certificate Transparency, to strengthen the TLS
certificate chain [40] [35].
Finally, we note that the system, device, and region diversity of
large Service Provider userbases (i.e. O(1 billion Users))
proportionally increases the strength of auditing for their canary
trees. While concerns over backdoored hardware, operating
systems, and supply chains exceed the focus of this paper, it is
worth noting that the massively distributed nature of the Merkle
audits being performed lends higher credibility to the integrity of
Aviary warrant canaries.

3.1.3 Canary Lifecycle
We present a brief overview of the canary construction, publication,
distribution, and consumption lifecycle. Canaries are tied to
specific Users and come in one of two states: live, or dead. Since
canaries cannot constitute additional speech under current law,
dead canaries are simply absent, or missing, canaries [47]. Thus,
under Aviary, a dead canary is one that is not published. Service
Providers also publish a second kind of canary, "dummy canaries,"
which are not tied to any User and are explored in Section 4.
We do not assume any special security literacy or action on the part
of the User, and the vast majority of their interaction with Aviary
is automated. Once the User registers a public/private keypair with
an attestation service (a third-party Key Service that provides
identity proofs for key ownership), their subsequent responsibilities
are nil. A Canary Locker (Section 4.6) component in their web
browser automatically handles updating a client salt with the
Service Provider (a key component for randomization of canary
placement in the Service Provider's Merkle tree) and pulling new
canaries each publication period. These network transactions occur
over i2p, an anonymizing mixnet with end-to-end encryption that
severs IP addresses from routable destinations and frustrates
passive fingerprinting.

Service Providers publish three Merkle trees each publication
period: a canary tree, a key tree, and a tree of record. The canary
tree contains User canaries, while the key tree is a rapid indexing
tree that solves some scaling challenges as well as providing extra
anonymization benefits, as the Service Provider does not persist a

 4

mapping of canary to User, and thus minimizes risk of User de-
anonymization (Sections 4.4, 4.7). The tree of record provides
contiguity between each publication period's canary and key trees,
providing non-repudiability across time (Section 5.4).

This tree material is distributed via an anonymized and
authenticated BitTorrent swarm running over i2p (Section 5.2.1).
User Canary Lockers coordinate participation in a multi-Service
Provider DHT (distributed hash table), while volunteer or Service
Provider-run Tree Hosts act as full seed peers on the swarm,
bootstrapping tree distribution (Section 5). Users' Canary Lockers
unpack the canaries they have downloaded to search for a valid
canary belonging to their User, and in the process audit the Merkle
tree to verify that tree material (canaries) have not been
manipulated. In the event that a User's Canary Locker cannot find
a valid canary for a given Service Provider, the browser displays a
persistent banner warning alerting the User that their account for
that Service Provider may be subject to secret investigation.
Many details concerning implementation, DDoS-hardening, and
specific tricks involved in realizing anonymity and privacy gains
are omitted, but we hope this bird's eye view helps orient the reader
for the work ahead. We now proceed to introduce our threat model.

3.1.4 Threat Model and Design Considerations
We follow the language of RFC 7624, "Confidentiality in the Face
of Pervasive Surveillance: A Threat Model and Problem
Statement" [40]. We assume an adversary with the following three
capabilities and interests. First, massive pervasive passive
monitoring of the entire internet, including post-hoc analysis of
recorded data. Second, active monitoring of some portion of the
internet, including ad-hoc manipulation, deletion, or injection of
messages, and/or impersonation, particularly in the case of targeted
Users. For example, a State actor may wish to know if a target of a
secret government investigation has successfully been alerted
through the use of an Aviary canary. Third, State-level DDoS
against core infrastructure items of the Aviary system. We assume
that the communication endpoints, in other words Users and
Service Providers (or, at a minimum, the internal security teams of
Service Providers), do not collude with the adversary, but do permit
the adversary to present malicious "user" nodes.

We assume an adversary without quantum computing capability,
though we note throughout the text where this assumption may be
worrisome and offer some mitigating strategies. Our approach
consists of a "defense in depth" model, the combination of
cryptographically sound primitives, and targeted usage of
distributed systems architectures engineered for security and
privacy.
We wish to provide confidential (only the designated User knows
if their canary is present), private (only the designated User can
read their canary), secure (the User trusts the value of their canary)
per-user warrant canaries. We further desire that the User's canary
be anonymous, where we define anonymity as the maximally
entropic distribution over elements in a set (e.g. random uniform
distribution). Hence, we seek to expand the User's anonymity set
(the number of canaries her canary mingles with) wherever
possible, while balancing this goal against the engineering tradeoffs
involved.

We assume trust in the Service Provider's intentions, and weakly
assume trust in the integrity of their TLS connection, though this
trust is as minimal as possible (see the salt pin message in Section
4.7 "Communicating Bins to Users").
Passive attacks are by definition not detectable at either endpoint of
the communication medium (assuming neither endpoint is a

collaborator), but permit an attacker with sufficient resources to
record communication for later analysis, e.g. when an investigation
indicates a particular individual of interest, when a new analysis
technique permits fingerprinting an exchange that was previously
not easily detected, or when the advent of a quantum computer
permits cracking TLS keys previously assumed safe against
classical attacks.

Per RFC 7624 we assume the adversary has the capacity and
capability to observe all packets sent in the internet and observe all
data at rest in any intermediate devices between endpoints. We
further assume the possibility of an active pervasive attacker in the
case of Users or popular Service Providers subject to secret
government investigation. We restrict our interest in this active
scenario to the integrity of security guarantees only insofar as the
warrant canary system is concerned.

While we note that such Users and Service Providers are likely to
be subjects of advanced persistent threats, or so called "network
investigative techniques" (NIT's) as what appear to be at work in a
case of the FBI allegedly mass hacking users of TorMail without
regard to the scope of their warrant (over 8,000 users in 120
countries on the basis of a single warrant [41], [42], [43] and [44]),
we do not address such ancillary threats in this work, treating the
security of internal systems for both Users and Service Providers
as outside the scope of our analysis. In general, our method assumes
an untrusted core and pushes security competency to the edge as
much as possible, with analysis restricted to the case of a global,
trustworthy, per-user, confidential, and private warrant canary
system.

4. WARRANT CANARY FORMAT
4.1 Current Challenges
Current warrant canaries face three significant challenges. Their
format is not standardized, leaving Users and Service Providers to
reinvent the wheel each time a warrant canary is deployed. Some
examples of current canaries include automated postings to Twitter
accounts, color schemes for Service Provider logos, and statements
in regular corporate reports, such as Annual or Transparency
Reports. Since there is no standard canary, adoption and user
literacy are both hampered.

Second, canaries tend to be extraordinarily coarse. For example,
Reddit has over 10M monthly unique visitors in 2016, but its
warrant canary provided no information on which accounts might
be affected when it sprang earlier this year [45] [46]. Coarse
canaries are not informative. Once the canary is triggered no User
has a good idea if they were caught up in the dragnet or not, and the
canary becomes unusable for future requests. This scenario also
incentivizes a government agency burning a coarse canary on a
dummy request and then sending legitimate requests after the
Service Provider loses the ability to meaningfully signal the
occurrence of subsequent snooping attempts.

Finally, canaries are both centralized – in the sense that they are
generally hosted on a single page – and fragmented, in the sense
that no Service Provider benefits from the existence of other
Service Providers' canaries.

These design decisions minimize canaries' utility, as Users are left
to interpret changes in a canary status on their own, without a
reliable audit trail (was that logo always blue or did it change? Did
it actually change or was that a momentary bug?), and Service
Providers are unable to offer independent proof-of-record of a
canary's status over time, nor are they able to easily insure a canary
against a determined DDoS attack.

 5

4.2 Aviary Canary Format
Warrant canaries in Aviary are formatted as leaf nodes in a Service
Provider's canary tree. Aviary canaries must be easy for client
software to interpret, private such that only the User can read their
own canary, and confidential such that only a User can know if
there exists a canary corresponding to their account. In addition, we
want to satisfy these conditions within a tractable engineering
design space, and in a cryptographically secure fashion. Finally, to
comply with current law, "dead" or "tripped" canaries cannot
constitute additional speech to notify their owners of a secret
government request. Dead canaries must be silent.
We accomplish privacy through the use of public-key
cryptography, as described in Sections 4.4 and 4.5. We now
proceed to describe our standardized Aviary canary format.
An Aviary canary is 32 bytes long. The first half consists of 16
bytes for the first 16 characters of the User's username. If the
username is shorter than 16 bytes, a pad of length (16-h) where h is
the length in bytes of the username is appended. The second half
consists of a 16-byte cryptographically secure nonce, unique
(random) within a Service Provider's publication set. Canaries are
encrypted with the User's public key.

Figure 2. Aviary Canary Format

Constant length canaries are a requirement to avoid leaking
information about which usernames do or do not have current
canaries published. The nonce is a requirement to ensure that a
given User's canary status cannot be tracked. Without a nonce an
interested third party could retrieve the User's public key and
encrypt their (username + pad) combinations until finding a match
among the canary tree's leaf nodes.

Beyond de-anonymization of the canary, repeated publication of
the same encrypted canary across publication cycles would also
constitute a beacon, allowing an interested third party to know if a
canary is still live, along with when a Service Provider has nullified
a specific canary. Combining this information with the above de-
anonymization attack, or with private information an interested
third party may be privy to (e.g. timeline of a secret government
request to Service Provider), could permit de-anonymization of the
canary, and consequently knowledge of the User's knowledge or
lack thereof of a secret spy request for their information. Thus, we
require nonces that are random across publication cycles.

4.3 Dummy Canaries
What should a canary do when it "trips" for a given User? For our
purposes it is sufficient to permit Service Provider to effectively
notify User so long as Service Provider can do so without
producing any additional speech that causes this effect.

Accordingly, when a given User's canary trips, the Service
Provider simply stops publishing a canary for them. However,
government desires to obfuscate the true number of secret spy
requests made annually require Service Providers to avoid
disclosing an exact count of NSL/FISA requests received, instead
publishing ranges like "0-249" or "1000-1999" [47].

If a Service Provider simply refused to publish canaries for
compromised Users, an interested observer could subtract the size
of a Service Provider's Merkle tree from one publication cycle to
the next to derive the count of compromised Users, assuming no

growth or churn in the Service Provider's userbase, or equivalently,
a good enough estimate of Service Provider's net userbase growth
between publication cycles (see Section 6 for a full treatment).

Consequently, Service Providers must publish dummy canaries to
replace any dead canaries of Users. A dummy canary has the same
format as described in Section 4.2, with the exception that the
canary is composed of two 16-byte nonces. In place of the User's
public key, a random public key must be used to encrypt the canary.
Note that the requirement for a random public key is necessary, as
using the User's public key might constitute speech notifying a
subject of a secret government investigation.

4.4 Client Verification of an Aviary Canary
The most client-optimal strategy, in terms of minimizing the
amount of work a User must perform, would have the Service
Provider send the User their canary node directly. This solution
violates our security guarantee of auditability, as a User's canary no
longer forms part of a public Merkle tree that leaves the control of
the Service Provider. It also raises the attack profile for the Service
Provider, as it would require the Service Provider to persistently
associate wrapped canaries with Users instead of processing them
as a one-time pass-through service (e.g. nonces never leave RAM,
and are immediately wiped after processing). Additionally,
transmitting the wrapped canary to client software would provide
another vector for re-personalizing the canary, as a passive third-
party listener on the network would see only one wrapped canary
passing from Service Provider to a given User. In the event of a
tripped canary, if the Service Provider sent a dummy canary
directly to the User to avoid passive detection, this may violate law
by constituting speech notifying a User of a secret request.

At the opposite extreme, a maximally agnostic strategy would
involve the User downloading the entirety of the canary tree. With
a Service Provider that serves 1 billion users, at 32 bytes per canary,
this would correspond to at least 32GB of data, an unwieldy amount
for many home internet data plans and end-user devices. We
present our solution shortly, in Section 4.5, "Client Binning." For
now, we describe how client software verifies a canary.

Algorithm 1: Client Canary Verification

Given a set S of candidate nodes.

1: canary_flag = False

2: while S is non-empty:

2: select some node s from S

3: msg = s.decrypt(UserPrivateKey)

4: if msg[0-15] == first16CharsofUserName

5: canary_flag = True

A client function receives a node. It decrypts the node using the
User's private key. If the first 16 bytes correspond to the first 16
characters of its username, the canary is valid. If a User processes
all nodes in a publication set and does not find a valid canary, the
client software alerts the User that their account has been
compromised. Note that we avoid early termination of the
verification sub-routine upon discovery of a valid canary as a
matter of good security hygiene.

In the extremely unlikely case of a key collision between a dummy
canary and a User's public key, the client software successfully
distinguishes the two by looking for its username in the first 16
bytes of the unwrapped canary.

 6

4.5 Client Binning
To address the challenge of balancing client work with maintaining
anonymity of the User's canary from the previous section, we
propose a method we call client binning.

A Service Provider should "bin" each User into a bin by means of
a fast, randomized hash assignment. A cryptographically secure
hash is not required, as the nonces produced in Section 4.2 are
already cryptographically random. Accordingly, we are free to
make use of the fastest random hash available, and suggest xxHash
or t1ha, each of which runs at near-RAM speeds [48] [49]. Upon
drawing of the random nonce and construction of the User's canary,
a Service Provider passes the encrypted bundle as an argument to
the hash function for hashing into a randomly assigned bin.

Bins correspond to sub-trees of the Service Provider's Merkle tree.
The leaf nodes of a sub-tree belonging to a given bin are composed
of the canaries for each User in the bin, including dummy canaries.
Thus, the interior node at the "root" of the bin is a Merkle root for
the sub-tree whose leaves are the canaries of Users (or dummies)
belonging to that bin.

Figure 3. Bins for a single Service Provider, intermediate

nodes omitted.
We note that maximum entropy within a publication set is achieved
when the probability that any canary belongs to a given User is
uniformly distributed among the Users. That is, P(c, u) =!

"
, where

P(c, u) is the probability of a given canary c belonging to a given
User u, and U is the total number of Users [36].

We can characterize the additional marginal anonymity benefit of
expanding a User's bin explicitly: for each additional record added
to the bin, the User's anonymity increases by a quantity directly
proportional to the difference !

#
−	 !

#&!
, where N is the number of

Users in the expanded bin.

As the User must download the additional canary, we can cost this
gain in anonymity in terms of the additional 32 bytes the User must
download (ignoring for the moment additional overhead produced
by encrypting the canaries and computing non-leaf Merkle nodes).
Each additional canary in a bin purchases diminishingly fewer
gains in anonymity.

In the interests of balancing download size with anonymity, we
declare a bin size of 100,000 to provide sufficient anonymity for a
User. In this case, the total size of a bin downloaded by a User
would be on the order of 3.2MB, or roughly the cost of one
streamed song. We note that the probability a given canary in the
bin belongs to a given User is at most !

!'','''
.

"At most" because some Users in the bin may have already been
compromised, in which case some nodes n ∈ N are actually

dummy canaries. Additionally, in the event that a Service Provider
is unable to fill a bin with 100,000 User canaries, dummy canaries
may be used to fill the bin size, such that all Users receive the
minimum anonymity measure through equivalent bin sizes.

We note that a Service Provider should randomize bin assignment
at the start of each new publication generation, so that a given
User's bin does not become a stable identifier across publication
generations. We cover bin assignment in more detail in Section 4.7,
"Communicating Bin Assignments to Users."

4.6 Client Canary Lockers
Where should the client software live? Our ideal solution is
automated and device agnostic, working across both laptops and
mobile, as many Users, particularly those in emerging markets, are
mobile-first. The solution we propose is largely workable on
mobile, though some subtleties (timing of data access, scheduling
compute around battery life and network reliability) are omitted for
brevity. We assume deployment on desktop/laptop for the
remainder of this paper.

We propose that the major browsers implement a standardized
Aviary Canary Locker. Periodically, the Canary Locker retrieves
the appropriate canary sub-trees, or bins. The browser then handles
querying the User's operating system's keystore for User's private
key, unwraps the nodes, and checks for presence of a live canary.
In the event that no canary is found for a Service Provider
publication period, the browser can present a persistent banner
warning at the top of the browsing window, advising the User that
their account with the given Service Provider may be subject to
secret government spying. All operations can be handled
automatically, without need for User intervention.

The advantage of implementing through the browser is three-fold.
First, browsers are well-tested pieces of software that invest heavily
in sandboxing and other security measures. Second, most non-IoT
devices a User has ship with a browser: laptops, phones, tablets,
and even some e-readers. Finally, browsers are already engineered
for cross-platform compatibility.

Service Providers must tag their published canaries with expiration
dates, so that the Canary Locker can validate whether or not a given
device has checked against the latest available generation (see
Section 5.1 "Tree Publications"). This also permits a Canary Locker
to notify a User for how long their canary has been tripped.

Finally, we note that Canary Lockers continue to download and
process bins for a given Service Provider even after a canary trips.
Accordingly, Service Provider must assign bins each publication
period not just to Users with live canaries, but to all Users. This has
the benefit of strengthening the auditing of the tree, and also
prevents a third-party network snooper from divining that the User
is aware their canary has been triggered, as network access patterns
do not change post-trigger.

4.7 Communicating Bin Assignments to Users
Service Providers publish three bundles each time they publish a
full set of canaries. The first bundle consists of a signed Merkle tree
root for the canary tree, along with the leaf nodes for that tree. For
a large Service Provider this bundle has O(1 billion) leaf nodes, for
a total size of ~32GB. We include a rapid indexing bundle to avoid
downloading the entire canary tree (and to avoid Service Providers
persisting the map of canary to User, per Section 4.4). This second

 7

bundle consists of a secondary Merkle tree we call the "key tree."1
Service Providers publish the key tree's signed root and its leaf
nodes. The third bundle, the tree of record, is explored in Section
5.1.

The key tree has as many leaf nodes as there are bins for the canary
tree. This is given by dividing the total number of canaries
published by the bin size, which in our working example evaluates
to 1 billion/100,000 = 10,000. The payload for each leaf in the key
tree is a list of 32-bit integer offsets. Half of each integer is available
for enumerating bins. The length of the list is equivalent to the
number of canaries in each bin, and each entry is encrypted with
the public key of one of the Users (or dummies) in that bin.

Each offset acts as the bin identifier for the canary tree. For
example, a 0 corresponds to the canary sub-tree composed of
canary leaves in the range [0, 9,999]. A 1 corresponds to the next
bin, composed of canary leaves [10,000, 19,999]. A 2 corresponds
to the bin [20,000, 29,999] and in general an n corresponds to the
bin [n*bin_size, (n+1)*bin_size-1].

The size of each leaf in the key tree for a Service Provider with
100,000 Users per bin is ~400KB, ignoring encryption overheads.
The total size of the key tree in this scenario would be 4GB. While
certainly less than the 32GB canary tree, this size is still unwieldy.
Fortunately, Users have a method for determining which key leaf
contains their bin identifier, and may download only it instead.
User and Service Provider both use a known random hashing
algorithm (e.g. xxHash) to determine the mapping of key leaf to
User. They both hash on the concatenation of User's public key and
a client-supplied salt to derive the mapping. We explain our method
for secure communication of the salt momentarily, focusing for
now on how the salt is used.

The User-submitted salt acts as a bin identifier hash salt, such that
math.floor(xxHash(UPK || CLS) % B) yields the index
of the key tree leaf for that User, where || denotes concatenation,
UPK is User's public key, CLS is the Canary Locker salt, and B is
the total number of bins for that Service Provider. Unpacking the
payload of the designated key tree leaf reveals the list of 32-bit
integer offsets. The Canary Locker iterates through the list and
decrypts each entry with the User's private key until the bin
identifier is found. Valid bin identifiers have a 16-bit prefix of
leading zeroes, leaving the remaining 16 bits for enumerating bins.

Notably, the User need not know B ahead of time, as that
information is recoverable from the number of leaves in the key
tree, itself part of the signed tree head for the key tree (see Section
5.1 for a description of the tree head format). This also permits
Service Provider to change bin size or number of bins without prior
coordination with Users, as the User will compute their mapping to
the key tree when Service Provider publishes it.

The leaf nodes in the key tree provide a stable, secret place to house
the randomized bin assignment for each User. As the Service
Provider randomizes bin assignment each time they publish their
set of canaries, User needs a known location to investigate to find
their new bin assignment. Randomization of bin assignments is
necessary to avoid artificially restricting the search space, and thus
the anonymity measure, for a given canary. While strictly speaking
a canary has at most entropy proportional to !

#
 where N is the

number of canaries in its bin, we realize an additional entropy

1 "The 🔑	is	to	have	every	🔑"	[87].	

advantage as the placement of a canary into a bin is unknown by an
adversary.

In so doing we attempt to recover a system-wide maximal entropy
of !

"
 where U is the total number of canaries published by the

Service Provider, or O(1 billion) in the case of our largest Service
Providers. This represents a theoretical strengthening of an
individual canary's anonymity by four orders of magnitude.

As User and Service Provider are the only ones in possession of the
User-submitted salt, the bin identifier is secure. Because the nonces
in Section 4.2 need not be computed until the canaries are being
populated, Service Provider does not persist the mapping of canary
to User, nor User to bin. The key tree mapping for a User remains
stable until their Canary Locker submits a new salt, which can be
done at any time by submitting an appropriate salt pinning message.
We recommend that salts rotate regularly, approximately once per
publication period.

4.8 Salt Pin Messages
Salt pin messages consist of the private key encrypted
concatenation of the first 16-bytes of User's username and a client-
specified cryptographically random salt. When Service Provider
decrypts the message with User's public key, it checks for the
username to ensure validity. Service Provider can validate User's
public key by checking a Key Service to find an identity proof for
User's ownership of the keypair.

Figure 4. Salt Pin Message format

In this section we detail two attack classes focused on salt pins, a
naïve implementation that permits exploitation of these attacks, and
our solution.
Given our passive pervasive listener with ad-hoc active
capabilities, two attack vectors stand out. First, if salt pin exchanges
can be easily fingerprinted, they may be harvested from long term
recordings for post-hoc analysis, or actively intercepted and
modified or degraded. Second, an active government-level attacker
may seek to down a Service Provider's canary system by DDoS.
We note that the distributed nature of the canary and key tree
distribution mechanism (explored in full in Section 5, "Distributed
Merkle Tree Format") preclude simple methods for a DDoS to
render canary information unreachable. However, salt pin servers
must be DDoS-impervious as well, or Users will be unable to locate
the appropriate canary bin without, in the worst case, downloading
~32GB of data per publication event for an O(1 billion) Service
Provider.

We adopt a "defense in depth" approach to mitigating these attacks.
We note that in accordance with our desire to recover a maximal
entropy distribution of !

"
, network accesses to communicate salt

pins must be obfuscated. Thus, in both the naïve solution and our
proposed modification, we require Canary Lockers and Service
Provider salt servers to communicate over an anonymizing mixnet,
such that key tree information – which corresponds to identifying
the User's bin – is not easily tied to an IP address.

 8

We note that use of an anonymizing mixnet is also required for
distributed lookup and fulfillment of canary and key tree
distribution, as detailed in Section 5. We recommend the mixnet
i2p [32], noting in Section 9 Appendix A that it offers several
advantages for our threat model and system architecture over Tor,
chief among them its capability for handling large peer-to-peer
traffic.

The naïve solution to processing salt pins is to send them directly
over i2p. For example, having a User directly submit an encrypted
salt pin, along with their username and public key, to
salt.providername.i2p. This approach is particularly vulnerable to
a targeted DDoS attack, as the server must decrypt the salt pin to
ensure the username matches (thus establishing ownership over the
keypair), and possibly query a third-party Key Service to evaluate
an identity proof tying the keypair to the User. Public key
decryption is CPU intensive, and a remote network access
consumes an open socket for the duration of the round trip,
magnifying the utility of a DDoS attack on the salt server. An
attacker could conceivably issue many such requests as a reflection
attack on the Key Server's infrastructure as well.

Salt servers could require User authentication (e.g. using TLS over
i2p) before permitting a salt pin message. In this case, the Canary
Locker might have to request the User to enter their login
credentials each time a salt rotation is required. This creates poor
security education as Users are conditioned to enter their
credentials into a login page that is not clearly related to or hosted
by their Service Provider, providing a lowered threshold for
credentials exfiltration. Alternatively, the Canary Locker could
perform a kind of "shadow login" to the Service Provider, making
use of login credentials stored in the browser's password manager.

In this scenario the User would only have to supply their private
key encrypted salt pin message to the salt server, as it would already
know the username to match against and, by virtue of
authentication, know which keypair identity proof to request from
the Key Service. However, this design requires that Users store
account credentials in the browser's password manager, which may
not be the case. Absent this assumption this scenario reverts to the
poor security conditioning of the first scenario.

Even assuming all Users store their credentials in the browser
password manager, this design may mix operational security
burdens in a way that makes both Users and Service Providers
uncomfortable. Users would be required to trust an additional
browser component, the Canary Locker, with login credentials that
are normally only under the purview of the password manager.
Service Providers would have to expose a login listener over an
unfamiliar network architecture that aims to produce near-
untraceable communications, thereby opening their login
infrastructure to sustained and difficult to trace DDoS.

Our solution solves both problems, allowing only authenticated
Users to submit salts and permitting internal separation of security
concerns for both Users and Service Providers.

We recommend implementing a bootstrapping phase for salt pin
messages as a TLS extension. In this method, when User navigates
to a known Service Provider login page, the User's web browser
would query its Canary Locker to determine the TTL (time to live)
of the salt associated with that Service Provider. If the salt is valid

2 "Designers and implementers should be aware of the fact that until

the handshake has been authenticated, active attackers can
modify messages and insert, remove, or replace extensions," from
Section 7.4.1.4, "Hello Extensions." See also, "Allow the client
and server to verify that their peer has calculated the same

no action would be taken and the TLS handshake would proceed
normally. If the salt is expired, the ClientHello message would be
modified to include an AviarySaltPin extension per RFC 5246
Section 7.4.1.4, "Hello Extensions" [50]. We recommend that
Service Providers require Users to login again when receiving an
AviarySaltPin in the ClientHello on TLS session resumption
requests, thereby requiring the initiation of a new TLS session (and
protecting against session identifier exfiltration attacks).

We note that the browser must cache an expired salt until two
conditions have both been met: it has received an ACK from
Service Provider for the new salt rotation, and the next round of
canaries that post-date the ACK has been pulled. This is necessary
because a Service Provider may have already prepared a round of
upcoming canaries before receiving the new salt. Accordingly, we
recommend that Canary Lockers maintain current_salt and
previous_salt values, querying the sub-tree related to the
current_salt for its canary first, and then querying the bin
associated with the previous_salt value if the canary is not found
initially. If the canary is not found at both locations, it should be
considered tripped.

To maintain separation of operational security concerns while
decreasing the attack effectiveness of a DDoS on the salt pin
servers, we propose the following scheme. On successful handling
of the AviarySaltPin enhanced ClientHello during a login to a given
Service Provider, the browser passes an encrypted copy of the 48-
byte TLS master_secret to the Canary Locker. This copy, which we
call the "masterhash," is encrypted with the User's public key, and
thus never leaves the TLS space in plain form. Simultaneously, the
Service Provider adds a route at their salt server corresponding to
the masterhash, for example: salt.providername.i2p/masterhash.
Service Provider additionally stores the masterhash in a tuple
<username, masterhash> at the salt server.

User then posts their salt pin message to
salt.serviceprovider.i2p/masterhash, over i2p, via the Canary
Locker. The Service Provider then uses User's public key to
decrypt the salt pin message, checks to see the first 16 bytes of the
username match the associated User in the <username,
masterhash> tuple, and then pins the client salt for use in the
binning algorithm. Because the masterhash is encrypted with the
User's public key, no bits of the shared TLS master_secret are
recoverable from it. Furthermore, because peers participating in
routing in i2p only decrypt next-hop information, and because the
salt server is hosted internal to i2p, the masterhash value is never
revealed to anyone but User and Service Provider.

Note that we should only consider this master_secret to be safe to
use after the handshake messages have been authenticated.2 Note
further that the Service Provider's salt server should not honor the
salt.serviceprovider.i2p/masterhash route unless the User
successfully finishes the login process and authenticates. The TLS
master_secret persists for the lifetime of the TLS session and exists
regardless of key exchange algorithm (e.g. RSA or Diffie-Hellman)
used (see Section 8.1 "Computing the Master Secret" of [50]).
Accordingly, it is readily available and robust across TLS
implementations.

The salt server discards any messages that are not posted to a valid
/masterhash route, greatly decreasing the utility of a "spray and

security parameters and that the handshake occurred without
tampering by an attacker," from Section 7.3 "Handshake Protocol
Overview" [50].

 9

pray" DDoS attack. Routes and tuples can be flushed regularly and
relatively quickly, say O(5 min), to avoid the need for large caches.
Service Providers may communicate /masterhash routes and tuples
to salt servers over direct TLS-encrypted persistent TCP
connections instead of routing through i2p to avoid added latency
and convergence times, while Canary Lockers implement a
mandatory 60 second wait-time after receiving an authenticated
masterhash before posting their salt pin messages via i2p. We note
that these connections must be properly encrypted, preferably in a
post-quantum secure fashion, given NSA's MUSCULAR program,
which specifically targets cables connecting the datacenter-
datacenter networks of major providers for persistent taps [51].

Since the masterhash value could only be known to an
authenticated User, and could only come from a Service Provider
who passes a successful TLS certificate, both User and Service
Provider benefit from traditional authentication mechanisms
without mixing security burdens with untrusted and untested new
components or endpoints.

The naïve solution is also sub-optimal against an ad-hoc active
attacker impersonating a User. Consider an attacker who mints a
new public/private keypair, using their private key to encrypt a salt
pin message. In the naïve scenario the attacker could send this
message along with the public key, and the salt server would
happily decrypt it and find the associated username. If the salt
server declined to query the Key Service to verify the public key's
association with the User, or if the attacker had a specific persistent
threat spoofing results on the Key Service for this User in particular,
then the attacker could successfully pin a salt that the User is
unaware of, thus making it much harder for the User to know their
key leaf and thus find their canary. In our scheme even if the salt
server is lazily verifying the User and the attacker has successfully
compromised the Key Server, the attacker would need to
additionally impersonate the User to the Service Provider for login
authentication in order to generate a valid masterhash. Our solution
adds an extra layer of defensive depth, in the form of login
credentials, to a successful execution of this attack.
We note that an attacker compromising the User's login credentials
would be able to rotate their salt at will, rendering Aviary unusable
for that User. To some extent this outcome renders a warrant canary
meaningless, as the adversary would already have access to User's
data. One possible extension to mitigate this vector would require
a User rotating a salt to provide in the first field of the salt pin
message the 16 bytes of their previous salt, as opposed to their
username, which Service Provider could then validate before ACK-
ing and applying the rotation. In this fashion, valid salt rotation
would require the control not only of account credentials and the
attested public key, but also control of (or content exfiltration of)
the Canary Locker.
We note as well that passing salt messages, as well as canary and
key tree retrieval, through i2p frustrates traditional passive
fingerprinting methods. In the case of salt pins in particular, there
are no message headers to identify this traffic as unique from
traditional i2p traffic, and even the destination is ad-hoc,
temporary, and known only to Service Provider and User. As salt
pins are a crucial aspect to making Aviary a tractable solution for
clients, preventing their passive fingerprinting is particularly
useful. See Section 9, "Appendix A: Choosing i2p over Tor" for
more.
Finally, we note that the AviarySaltPin extension to the User's
Client Hello message permits post-hoc fingerprinting of recorded
data. Canary Lockers could randomly embed AviarySaltPin
requests in their ClientHello messages, even when the TTL of the

current_salt is still valid, in order to frustrate post-hoc analysis. By
simply not submitting a new salt to the
salt.providername.i2p/masterhash route, the User can avoid
registering unnecessary salts and obfuscate which AviarySaltPin
messages are legitimate.

4.9 Client Keys
Users must provide Service Providers a public key for which they
own the private key, a classic example of the key distribution
problem. We note an elegant solution that meets our requirements
for usability in brief, and proceed to elaborate two passive
surveillance attacks that Service Providers implementing Aviary
must guard against.

As the vast majority of Users do not possess sufficient security
literacy to manage keys themselves, key distribution must be
automated by a third-party Key Service providing attestation
services. At no point should private keys leave the device of a User.
Remote Key Services like keybase.io can simply the problems of
key generation and identity attestation [52]. This third-party service
maintains a database where Users claim ownership of public keys.
These ownership claims are buttressed by identity claims, where a
User identifies themselves with signed posts on keybase.io and on
another service simultaneously, e.g. Twitter.

Keybase.io additionally submits the root of their own Merkle tree
(which manages the signed identity statements among other
attestation documents managed by their service) into the Bitcoin
blockchain, providing further safeguards against compromised
servers promoting fake identity claims.

A Service Provider should implement two defenses against leaking
information in its queries to a third-party Key Service. First, it
should flip a randomly weighted coin each time it uses the User's
public key to determine if it should query the Key Service to re-
authenticate ownership of the key. For example, draw some k from
the interval [0, 1], and then draw some y also from [0, 1]. If y ≥ k,
submit a request to the Key Service for the latest ownership
information.

Second, even after a Service Provider has declared a given User's
warrant canary dead, it should still submit requests for User's key
ownership information to the Key Service to avoid leaking the fact
that User's warrant canary has triggered to a third party network
listener. Accordingly, Users without live canaries should be joined
to a group from which the Service Provider randomly polls the Key
Service with each publication update. In this fashion neither the Key
Service nor a passive listener on the network can distinguish
between authentic and inauthentic requests to the Key Service for
client key authentication.
If the User wishes to rotate their public/private keypair, they must
register the rotation with the Key Service in order to provide a valid
identity proof for the new keypair, and must send a message (via
Canary Locker) to the appropriate Service Providers to notify them
of the change. We do not specify this message exchange explicitly.

5. DISTRIBUTED MERKLE TREE
FORMAT
In this section we describe distributed, co-hosted operation of
Aviary canary trees.

5.1 Tree Publications
Service Providers publish three trees each publication event:
canary, key, and record. Each tree includes a signed tree head, a
signed structure enclosing the Merkle hash of the tree root, a date
range for which the tree is valid, and the size in number of leaves

 10

of the tree. Signed tree heads and tree data along with the associated
magnet/.torrent files constitute a package, described in Section
5.2.5. We now describe the third tree, the tree of record.

In order to preserve contiguity between archived trees and currently
hosted trees, Service Providers should maintain a third Merkle tree,
the "tree of record," that records the root nodes of their canary and
key trees. As this tree only grows at the rate of three nodes (the
signed root nodes for the canary and key trees, along with their
signed parent hash) per publication event, it does not contribute a
significant storage burden. Note that the individual canary and key
tree roots should still be signed by the Service Provider.

5.2 Distributed Tree Hosting
There are at least two strategies for hosting the canary trees:
traditional servers or peer-to-peer. We note that unlike Bitcoin [53],
there exists no decentralized incentive for peers to maintain canary
tree data, as there are no coins to mine.3 On the other hand,
centralized hosting places cost directly on the Service Providers,
and may present a brittle target for State-level DDoS.

We propose an Aviary DHT similar to the BitTorrent Mainline
DHT. The Aviary DHT is a BitTorrent DHT with Peer Exchange
(PEX) enabled, running over i2p, with an additional announce
mechanism in which peers advertise signed magnet links to the
latest Aviary trees available. Further nuances are explored below.

In this section we consider three classes of attacks against the
Aviary DHT and detail our approach to solving them, along with
hardening the DHT against DDoS. We are indebted to the excellent
paper by Urdaneta et al for their comprehensive overview [54].

5.2.1 Mitigating Sybil Attacks
Sybil attacks involve an adversary registering a sufficient number
of false nodes in the DHT, either to disrupt communications (e.g.
by refusing to return key query results or returning junk data, or by
poisoning honest nodes' routing tables as in Eclipse attacks) or to
manipulate them (e.g. by gaining control of a specific key k and
returning subverted data for it). Traditional verification
mechanisms [55] require hashing node identifiers on the basis of an
IP address. As our Users will participate in the DHT over i2p, it is
i2p Destinations rather than IP addresses that would need to be
hashed. However, since i2p aims to be pseudonymous, provides no
limit on the number of Destinations an adversary could populate,
and rotates Destinations regularly, such a defense is unlikely to
succeed. For the same reason, we discard approaches like the
otherwise promising Peruze, in which suspicious Sybil nodes are
identified by programmatically scanning the DHT to find nodes
with high numbers (thousands) of associated IP's [56].

Castro et al. [57] propose a centralized registration authority that
creates signed certificates binding a random node identifier to a
public key that corresponds to that node, along with its IP address.
In their solution a node wishing to register with the DHT mints a
public/private keypair and proves ownership of the keypair by
unwrapping a server-provided nonce. In return, the registration
server creates a signed certificate attesting ownership of the public
key to the IP address and the random node identifier, tying the
cryptographic identity to a single routable destination within the
DHT (node identifier) and a routable destination on the internet (IP
address).

3 Implementation of a blockchain-derived coin architected to meet

the needs of Aviary is an interesting strategy the author is
presently considering.

Aviary can utilize a similar system with slight modifications, noting
again that any Service Provider signing certificate used in Aviary
should be present in a valid Certificate Transparency log per RFC
6962. Recall that valid nodes have a client salt known only to the
User and Service Provider. Users also have public keys with
attestation proofs, per the third-party Key Service. To register it is
sufficient for a User to submit a request enclosing their i2p
Destination4 to register.serviceprovider.i2p/route, where route ==
UPK(client salt). In so doing, Users prove identity to the Service
Provider, while Service Providers' registration servers maintain
some level of DDoS protection as they can discard any message
sent to an invalid route (Destination rotation is addressed in 5.2.3).

We note that in order to avoid an adversary trawling all possible
/route extensions, the Service Provider should require some
validation beyond knowledge of the /route extension (otherwise, a
sufficiently resourced adversary could register false Destinations
by trying random routes). This validation could take the form of
providing the first 16 bytes of the username associated with the
client salt found at UPK(client salt). Much like the salt pin, this
message should be encrypted with the User's private key. We note
that registration servers should avoid sending any NACK's in the
event of incorrect routes or packets failing validation sent to
legitimate routes. These serve only to identify valid DDoS targets
for adversaries.

We discard other Sybil mitigation methods as impractical for our
deployment scenario, as they rely either on out-of-band social
graph information (SybilGuard [58], SybilLimit [59] [60]) or
network topology measurements (netprint [61]) that will be
unreliable under an anonymizing mixnet like i2p [62] [63]. We note
that computational puzzles as proposed in [64] [65] may optionally
be included to increase the computational cost for systemic
perversion of the DHT, at the expense of potentially foreclosing
mobile-only Users from meaningful participation, as battery
drainage likely increases under these conditions. We also note that
the hierarchical verification in [65] exposes a new attack vector, in
which an adversary seeks to force nodes higher in the hierarchy to
lose network reachability. Disgraceful exits cause all child nodes to
re-authenticate, potentially providing high-payoff disruption for the
cost of isolating or DDoS-ing a small set of User nodes, as opposed
to higher-resourced Service Provider infrastructure. For these
reasons we prefer the authenticated registration mechanism above.

5.2.2 Mitigating Eclipse Attacks
In an Eclipse attack an adversary attempts to poison the routes of a
specific node in the DHT by occupying the nodes proximal to it.
Such an attack may occur on Aviary if an adversary is targeting a
User of interest in order to degrade their ability to retrieve their
warrant canary. Following [57], with DHT's employing proximity
metrics it is sufficient to create two routing tables, a trusted and
non-optimized table, and an untrusted but route-optimized table.

The untrusted table assumes the proximity metric of the DHT is not
compromised. In case of failures (bad data, unreachable routes,
etc.) incurred in the use of the optimized table, the trusted table
forms a non-optimized but correct fallback. The worst-case
scenario involves a fully poisoned optimized table, in which a
constant overhead is imposed on all lookup operations as they try
and fail the optimized table before falling back to the verified table.
Sufficiently intelligent client software could detect when an

4 This client Destination would be the application-specific
Destination the User advertises in a LeaseSet in the network
database, e.g., the Destination(s) of their i2p BitTorrent client.
See https://geti2p.net/en/docs/how/network-database for more.

 11

optimized table is failing more often than not, and react
appropriately to avoid this result.

We note that given the strong protection against Sybil attacks noted
above, an adversary interested in perverting the Aviary DHT would
need to control a number of fake accounts with the Service Provider
equal to the number of malicious nodes required for their attack.
We note that in the instance that all Aviary nodes join a single DHT
connecting Users of multiple Service Providers (in which case
nodes would accept results from each other if a signed certificate
from any of the Service Providers is present), the difficulty of this
vector reduces to the weakest signup mechanism in place. A simple
workaround would be for Service Providers to require user
accounts to have some minimum length of use before being eligible
for inclusion in the warrant canary scheme. Fingerprinting-over-
time could also be used to distinguish between true use and
programmatically generated accounts, though this is outside the
scope of this paper.

5.2.3 Mitigating Routing and Storage Attacks
Finally, we consider routing or storage attacks, in which data
distribution within a DHT is disrupted. In these attacks malicious
nodes refuse to serve content or serve junk data. We note that the
effectiveness of such attacks is strictly gated by the ability of an
adversary to join malicious nodes to the DHT. Given our
authentication procedures, the difficulty of such an attack is
equivalent to the weakness of the User sign-up procedure for the
weakest Service Provider whose Users are party to the swarm.
Otherwise, BitTorrent already provides data integrity checks
(including its own proposed Merkle tree implementation [66]) and
provides widespread data replication by design.

We note that i2p presents a unique challenge for the registration
mechanism, as i2p Destinations rotate every 10 minutes.
Accordingly, we recommend that Service Providers actually issue
time-stamped signing certificates to nodes that pass registration.
Nodes would then use these signing certificates to re-sign new
Destinations. Expirations could be enforced directly, in which case
an expired signing certificate would cause peers in the DHT to
reject the expired node until it produced a new certificate.
Distributed enforcement could also occur with computational
pressure, in which case peers of an expired node might challenge it
with increasing frequency as the time past expiration increases,
fielding computational puzzles for the expired node to solve before
serving its requests. Such a scenario (along with relaxed
frequencies when applicable) might be desirable in the event that
Service Provider registration servers are downed by an adversary's
attack, a fact participating nodes in the DHT can verify
independently. In this manner, the swarm could flexibly self-
enforce until the registration authorities are able to resume
operation.

We note that use of a signing certificate permits tracking of a node's
i2p Destinations across time, as the expiration time of the certificate
is likely to be longer than the 10-minute Destination rotation
schedule of i2p. Canary Lockers can react intelligently to limit this
fingerprinting by registering new signing certificates from distinct
Service Providers in a round robin fashion. Alternatively, re-
registration can simply be required for each new Destination, in
which case Service Provider registration infrastructure represents a

5 We note that Certificate Transparency log lookups should be

performed against a log hosted on i2p, so as to avoid leaking
certificate verification requests to a passive network listener,
which would de-anonymize which Service Provider a User is
interested in verifying a canary for, as well as the time at which

critical element for continued operation of the DHT. However,
given the relatively small amounts of data a User must download,
we do not anticipate download of a single Service Provider's canary
data to require more than one to two i2p Destination rotations (see
Section 7.2, "Total Client Cost"). Accordingly, a strong re-
registration policy in combination with round-robin registration
policy (with randomized round robin order to avoid repeated cycles
of certificate rotation) on the client should suffice.

5.2.4 Mitigating Passive Fingerprinting
Running Canary Locker operations as a jailed i2p sub-engine of the
browser solves multiple passive fingerprinting strategies, provided
that the implementation rejects leaks to non-.i2p domains. This
guarantee may be achieved by enforcing a policy that the Canary
Locker auto-kills any connection request it would send that is not a
request over .i2p. Likewise, the process implementing the Canary
Locker should not accept connections from any non-i2p origin.

Accordingly, per RFC 7624 Section 3.1 "Information Subject to
Direct Observation," we avoid the following attacks: DNS leaks,
cookie tracking across rotated IP's, ISP collusion with governments
to identify IP address ownership (routing in i2p is based on the
severing the relationship between an IP address and routable
destination within the mixnet), username & IP address correlation
(where an observer infers a username belongs to an IP by viewing
unencrypted IMAP, POP3, SMTP, or SIP traffic), mixed-element
HTTP/HTTPS de-anonymization where an HTTPS cookie exposed
over HTTP ties a username to HTTP traffic, and TLS session
identifier leaks (note our proviso in Section 4.8, "Salt Pin
Messages", regarding proper handling of AviarySaltPin requests on
TLS session resumption).

5.2.5 Hardening Aviary DHT against DDoS
Given the above DHT-specific defenses, we must now consider a
State-level DDoS against the centralized portion of the distribution
mechanism, which is the Service Provider servers hosting .torrent
files (or publishing their magnet links) for canary trees, as well as
their tree of record and key trees.

We specify the following scheme: a package should contain the key
tree, canary tree, and tree of record for a given publication event
from a given Service Provider. The User's client software should
first download the key tree and tree of record, which can be
accomplished by downloading the .torrent file for the package and
automatically de-selecting all other files for download, thereby
ignoring them. After verifying the signed tree head of the key tree
with the tree of record, and verifying the signatures with a
Certificate Transparency log,5 the User can lookup their bin per the
appropriate key tree leaf. At this point the User can re-select for
download the file in the torrent corresponding to the appropriate
canary bin and download only their own bin. Note that the file
corresponding to a canary bin must include the co-path from bin
root to signed tree head, otherwise client verification of leaf nodes
in the bin is impossible. The file corresponding to a key tree leaf
must similarly contain co-path from leaf to key tree root.
Our first defense against State-level DDoS on the Service Provider
distribution infrastructure is the completeness of the package. The
heartbeat (e.g. "stabilize" function in Chord [67]) of the Aviary
DHT can be modified to include the latest known package magnet

the request is sent. Such information, combined with statistical
analysis on DHT lookup requests over i2p, might de-anonymize
the User on i2p, permitting linking their i2p identity and IP
address.

 12

links for all packages known to that peer, or its "manifest."6 Peers
are verified given their possession of a Service Provider-issued
certificate, which the receiving peer can validate, and thus received
manifests are assumed correct if the sending peer passes validation.

Even if manifests are incorrect, invalid data distribution is
impossible due to the signed tree heads in the Merkle trees each
Service Provider distributes. The risk of "manifest poisoning" is not
distinct from the poisoning attacks considered above, and our
mitigation strategy is the same. We note that a peer should
promiscuously add package magnet links to its manifest as it learns
them to avoid correlating a peer identity with a set of Service
Providers to which that User belongs.

Additionally, deploying over i2p provides non-negligible
protection against DDoS attacks-for-hire. DDoS-for-hire relies on
botnet infrastructure comprised of thousands to millions of
compromised hosts in the wild. These hosts tend to be of two types,
either end-user devices such as laptops compromised through
advertising network-injected malware, or, compromised "headless"
devices and their ilk, such as the Mirai IoT botnet.
In both cases, though the argument is particularly acute in the Mirai
case, botnet infrastructure is not easily redeployed to attack a target
over i2p. Attacking an i2p target requires the host systems to have
i2p installed and running. While some malware certainly could be
repurposed to include an i2p service as part of its payload, this
represents a significant engineering effort and in the case of IoT
devices may simply be unworkable without extensive engineering
efforts.

These factors conspire to increase the "non-recoverable
engineering" (NRE) costs of a DDoS on Aviary infrastructure, dis-
incentivizing market-motivated actors (or, equivalently, raising the
price of a one-off solution). As a result, it is likely that the decision
to deploy over i2p may help narrow the set of likely DDoS attackers
to State-level actors only, who may find it difficult to mask their
operations without the cover of a criminal botnet. In turn, this
decreased cover raises the likelihood that the State actor is
identified, increasing the risk of undertaking an attack.

Finally, Service Providers should implement i2p multihoming, in
which multiple servers can co-host a single hidden service (or
eepsite), in conjunction with an appropriate load balancer [92]. In
the event that a DDoS attack is detected, e.g. on a salt server or
DHT registration server, the Service Provider can spin up
additional i2p routers and multihome them on-demand, letting the
load balancer redistribute the incoming requests. In the event that
service is interrupted distribution should continue for Users who
have already passed DHT registration, with registration returning
once the DDoS subsides. Note as well that peers can validate each
other's certificates in the absence of functioning Service Provider
i2p infrastructure, so long as a Certificate Transparency log
containing the Service Provider's signing certificate remains
reachable, and might decide to relax the frequency of their
computational puzzle challenges in cases of extended outages.

5.3 Publishing New Packages
When a Service Provider is ready to publish a magnet link for a
new package it signs the magnet link and publishes it via its Tree
Hosts to all known peers in the DHT. When a peer receives a new
magnet link it verifies the signature and begins propagating the
signed link via its heartbeat messages as part of its manifest. The
key advantage of a magnet link is that it avoids the need for a

6 Note that "manifest" is used here in a sense independent from its

meaning as a "manifest topic" in the Magnet URI scheme.

centralized repository of .torrent files, enabling peers to directly
bootstrap a swarm around a new file [88].

Several strategies are available to bootstrap initial announcements
of new packages: Tree Hosts may optionally maintain larger peer
lists so that their initial announce reaches more peers; responses to
the BitTorrent DHT's get_peers request can be modified to include
the peer's Aviary manifest (list of packages) [68]; and as discussed
previously, nodes in the Aviary DHT announce new packages to
each other via heartbeat. Note that we avoid BEP 44's extension for
storing mutable data as a format for announcing new trees, as it A)
requires the node in the DHT listing the entry to be honest and B)
provides no simple way for old tree publications to be indexed by
magnet link [69].

New packages and their magnet links should also be made available
on the Service Provider's "archive of longest and last resort,"
explained in the following section. Finally, Users' requests for key
trees (and subsequently their canary bins) should be staggered so as
not to overwhelm Tree Hosts with a distributed thundering herd.
Each Canary Locker might add a random fuzz factor of up to 24
hours to the expiration date of the most recent canary root node in
the User's possession, so as to allow both Tree Hosts and peers to
propagate data throughout the swarm.

5.4 Cooperative Hosting and Archiving
Service Providers should operate Tree Hosts and co-host each
other's Aviary trees. Volunteers such as academic institutions,
libraries, maker and hacker-spaces, and individuals can also operate
independent Tree Hosts. Merkle tree root signatures protect
distributed tree material from malicious hosts, as tampering is
facilely evident to any User, and Service Provider-signed magnet
links provide checksums for tree material via BitTorrent. A Tree
Host is any host seeding a full copy of one or more Service
Provider's "packages," as defined above, including previously
published copies.

Our recommendation is for server-side delivery mechanisms
(HTTPS, FTPS) to operate as archives of "last and longest resort."
These direct connections can facilitate new Tree Hosts who desire
to join the BitTorrent swarm as a full seed, as well as providing a
last resort for peers who cannot complete their downloads from the
swarm due to poor peer availability. Long-term maintenance of
these archival hosts is best performed by organizations with
funding and incentive to maintain, e.g. Service Providers. Direct
i2p URL's may be included within the Canary Locker as a
hardcoded bootstrapping mechanism, with throttling on the
HTTPS/FTPS delivery mechanism to protect Service Provider
resources. In the event of a viable DHT, such resources are
expected to be minimally used.

As trees are large, O(32GB) uncompressed for an O(1 billion)
Service Provider, we recommend a two-tier archiving strategy.
Tree Hosts should expect to cache at least the previous 3 months of
tree publications. Trees older than 3 months should be published
with The Internet Archive, a long-term archival project aimed at
archiving the internet (which is presently building a Canadian
branch, specifically for the purposes of combatting US internet
surveillance [70] [89]). Service Providers should contribute modest
recurring funds towards the provisioning of additional storage for
this purpose. Alternatively, as canary and key trees older than 12
months are almost certainly useless, they can be deleted. Users
interested in preserving their own canaries for evidentiary reasons

 13

can preserve key leaves with co-path and signed key root, along
with their individual canary and its co-path to the signed canary
root. This collection together with the tree of record constitutes
authenticated, non-repudiable evidence of a canary publication for
the User from the Service Provider.

6. OBFUSCATING AVIARY CANARY
COUNTS WITH HIDDEN NUMBERS
We describe a scheme for Service Providers to publish Aviary
canaries to the distributed Merkle tree without revealing precise
canary counts. We first explore a naïve implementation that does
not work, refining it to meet both legal and competitive pressures.

6.1 Motivating the Hidden Number Problem
Per Section 4.3, "Dummy Canaries," a Service Provider is not
permitted to provide an exact count of the number of secret
government requests they have fielded for spying on their Users,
hence the numeric reporting ranges. If the Service Provider simply
refused to publish a node for each User the government was
snooping on, this could provide a near-exact count (assuming tight
estimates for churn and user growth between tree publications) of
the number of secret orders served.

Second, publishing exact user counts repeatedly over time
generates competitive knowledge that may be exploitable by
corporate adversaries, e.g., granting insight into user growth and
churn, seasonality, etc. Thus, for both economic and legal reasons,
firms are incentivized to mask the true number of Users they are
serving, and a successful distributed warrant canary scheme must
take this into account. We term this problem the "hidden number
problem," as the goal is to obfuscate both number of tripped
canaries and number of Users.

6.2 Solving the Hidden Number Problem
Given a Service Provider with n true Users, we desire a publishing
strategy that meets the requirements specified in the rest of the
paper while obfuscating the number n of true Users, as well as the
number t of tripped canaries. We note that naively publishing (n-t)i
canaries for each interval i ∈ I where I is the set of publication
periods, exposes t, per our analysis in Section 6.1. The solution is
to introduce t many dummy canaries each publication period, such
that the number of nodes published is (n –t +t) = n.

We can refine this strategy to publish (n + δ) many nodes, where δ
is some random number of dummy nodes, in order to obfuscate the
number n. We suggest that δ be a number drawn at random from
the uniform distribution U(m_min, m_max), where m_min, m_max
are some non-zero m ∈ ℕ+, with m_max > m_min. We further
require that a new U(m_min, m_max) is specified for each
publication event.
We note that n remains recoverable only if an observer has
sufficient information to specify the uniform distribution from
which δ is drawn. Imagine a Service Provider (with an unchanging
n) who uses the same uniform distribution across canary tree
publication events. An observer can establish a recorded_min and
recorded_max, which respectively are approximately equal to (n +
m_min) and (n + m_max). Subtracting recorded_min from
recorded_max yields the length of the uniform distribution. If the
observer knows one of the endpoints, then the center of the
distribution is recoverable. As the expectation of multiple draws
from a uniform random distribution is its center, subtracting the
center from each of the recorded canary leaf counts and averaging
the result recovers the hidden number n, with greater precision as
the number of publication events recorded increases.

Absent the information needed to specify the uniform distribution,
the observer is unable to produce the center of the uniform
distribution, and thus unable to recover n. Specifying a uniform
distribution U(a, b) requires knowing (a AND b) OR (a XOR b
AND length), where length is the length of the distribution. We note
that repeated publication with δ drawn from the same uniform
distribution exposes length after a long enough set of samples,
while failing to properly randomize either m_min or m_max to be a
non-zero positive integer may inadvertently leak the center of the
distribution, e.g. if a == 0, or is otherwise known (or b is), then
knowledge of length alone is sufficient to recover the center.

Accordingly, we recommend m_min and m_max be non-zero
randomly selected positive integers, and that the range (m_min,
m_max) from which δ is drawn change with each publication event.
We note that relying on churn and user growth alone to obfuscate n
from publication to publication is insufficient, and in itself may
constitute economically competitive knowledge a Service Provider
seeks to deny their competitors. With the addition of δ as specified,
statistical estimates of the user growth and churn exhibited by
changes in n over time are frustrated.

7. IMPLEMENTATION
CONSIDERATIONS
In the following section, we discuss some implementation
considerations for Aviary. Specifically, Merkle tree
implementation details and client costs for Users.

7.1 Choosing a Cryptographic Hash Function
Merkle trees are binary hash trees whose leaf nodes are composed
of hashes of the input data nodes. For Aviary's canary tree, each
data node corresponds to a single canary. While this section
analyzes canary trees, similar reasoning applies for key and record
trees, with their data nodes defined as previously specified.

Figure 5. First two tree levels for a naïve Aviary Merkle tree.

In the above diagram, the data nodes refer to the individual
canaries, a, b, c, and d. The leaf nodes refer to the hashes of the data
nodes, H(a), H(b), etc. The intermediate nodes shown are the first
non-leaf nodes of the Merkle tree, where H(H(a) || H(b)) is the hash
of the concatenation of the hashes of data nodes a and b.

We note that the hash function chosen must be a cryptographically
strong hash, which we specify to mean a hash function exhibiting
the following properties: pre-image resistance (also known as a
"one-way" hash function), second pre-image resistance, and
collision resistance. See [71] for a detailed discussion of these
properties.
For our purposes we now specify a trivial attack the naïve
formulation of a Merkle tree exposes, as well as how to mitigate it.
This attack, known as a trivial second pre-image attack on a Merkle
tree, involves the inability of an auditor to definitively claim the
presence or absence of a given data block within the tree. Note that
while an individual cryptographically secure hash function
possesses second pre-image resistance, its utilization within a naïve
Merkle tree does not extend this property to the tree as a whole.

 14

Consider some data block e whose value is defined as H(H(a) ||
H(b)). Asked to verify that a hash representing e is in the naïve tree
above, an auditor finds a valid chain linking our first intermediate
node to the root node, and reports e is present. Unintended data has
now been verified as part of the tree. Or, if the format of the data
nodes is such that a data node with e's format is forbidden, an
auditor might report that corrupted data is present in the tree. Or, if
an auditor is asked to prove that nodes a and b are in the tree, she
will be unable to confirm their presence, as the second pre-image e
is not ruled out, since the auditor cannot claim that e is not in the
tree.

Two options present themselves for mitigating this attack. First, the
signed tree head at the root of the Merkle tree must include the size
of the tree. As the tree is a binary tree, a size (in number of leaf
nodes) uniquely specifies the shape of a given tree, even if that tree
is unbalanced, provided that trees are filled uniformly (e.g. always
from left to right). Given an index and rank, or level, of a candidate
node, combined with the size of the tree, one can determine if that
node is a leaf or intermediate.

Second, distinct hashing algorithms should be used for computing
leaf nodes and computing intermediate nodes. In such a fashion, no
possibility for confusing a second pre-image with a valid data node
is possible. Though Certificate Transparency uses SHA-256 for all
hashes, it implements a similar separation between leaf and
intermediate nodes, hashing leaves with an additional 0x00 byte,
while intermediate nodes are hashed with an additional 0x01 byte
(see Section 2.1, "Merkle Hash Trees", of [35]).

As canary nodes in Aviary are 32 bytes long, many
cryptographically secure hash algorithms can process a canary node
in one hash invocation. Since canary leaf nodes form the majority
of the cryptographic computational workload for a publication set,
the fastest hashing algorithm should be used at the leaf level, with
the next fastest used above it. We note that some high-performing
hash algorithms evaluated cross-platform on 64-byte payloads
include SKEIN-512-256 [72], BLAKE-512 [73], and SHA3-512
[74]. Results are available at [75]. A discussion of their relative
security trade-offs is outside the scope of this paper.

7.2 Total Client Cost
We note that Canary Lockers may restrict total i2p bandwidth usage
to minimize data costs for Users. Such a limit may be necessary, as
in i2p all peers are also mixnet routers, and engage in network
traffic unrelated to an individual User's applications. Additionally,
the bandwidth speed available to i2p can be tuned to avoid
impacting performance of other User applications. We note that
such tuning should be uniform. Lowering the speed available to i2p
when not downloading Aviary material may leak timing of canary
downloads to an adversary listening on the network, as a significant
jump in i2p traffic may occur as speed limits are relaxed.

The current default speed limit is 32KBps, yielding an expected
BitTorrent bandwidth of roughly 15KBps [76]. Assuming the
default speed and a canary tree of 100,000 32-byte nodes, we note
that a User would download the 3.2MB of tree data in roughly three
and a half minutes. While this estimate does not include the
overhead introduced by encrypting the canary nodes, as this
overhead varies with selection of encryption algorithms, it should
serve as a rough approximation. Key trees (~400KB) and record
trees (≪20KB) do not contribute significantly to the data budget,
and compression across the 100,000 node bins may be able to
recover some of the overhead introduced by encryption.

8. CONCLUSION
We have presented the first scheme for a global, distributed,
confidential, user-friendly per-user warrant canary system.
Through a layered approach of distributed Merkle trees, we have
increased the anonymity set of a User to match the total population
for a Service Provider. Additionally, we have specified
implementation details both client and server side, as well as tactics
for hardening Aviary systems against multiple types of attacks,
both passive and active, including User impersonation and State-
level DDoS. Finally, these techniques are orchestrated in a fully
automated manner requiring close to zero User interaction.

We note that future research on this question should include post-
quantum security of Aviary canaries, with "hybrid forward secrecy"
providing one option [77]. Indeed, Google is already experimenting
with NewHope implementations within Chrome [78], and NIST is
sponsoring an upcoming post-quantum competition in 2017 [79].

Readers may rightly opine that implementing such a system will
not be simple, but defending global civil society from the world's
most powerful governments is not a trivial task. Fortunately,
technology Service Providers possess both the political will and
technical expertise to realize such a system, and additional
complexity reductions may reveal themselves upon further study.

[x – Insert Acknowledgements]

9. Appendix A: Choosing i2p over Tor
Given our threat model's assumption of a state-level actor with
massive pervasive surveillance and ad-hoc active attacks on
targeted Users, we believe i2p to be a superior choice to Tor.

i2p is architected in a fashion that is peer-to-peer friendly, whereas
Tor explicitly suffers from congestion with increased p2p traffic
[80] [81], as well as not supporting UDP-based protocols [82],
which can be used to cut traffic to a Service Provider tracker by
roughly half compared to HTTP. It is worth noting no i2p torrent
trackers/clients currently support UDP announcements, though
differences from BEP standards are published to enable UDP
client/tracker development for i2p [83] [84]. This difference is a
consequence of design philosophy. i2p as a network provides
increased anonymity with increased traffic, and is architected for
the benefit of "hidden service" operation, e.g. services hosted
within the darknet, whereas Tor attempts to provide a proxy service
via mixnet to communicate with the clearnet.

It is also worth noting in [80] above, that Users using Tor to browse
the web and access a BitTorrent swarm were at increased risk of
providing specific cross-correlation of those streams, thereby de-
anonymizing not only their BitTorrent traffic but also their web
traffic. As Tor is more widely used as a general purpose browser,
given the TorBrowser bundle and its stated design goal of browsing
the clearnet anonymously, we believe it is best to avoid mixing
burdens and deploy i2p for Aviary purposes instead.

Additional reasons to prefer i2p include i2p's decentralized and
distributed address resolution mechanism, as opposed to Tor's
centralized directory services , which impact DDoS resilience; i2p's
use of short-lived unidirectional tunnels, as opposed to Tor's long-
lived bidirectional tunnels, which halve the number of nodes an
attacker needs to compromise to recover the same information on a
message sender or recipient (hardening against targeted ad-hoc
active surveillance); and an increased relative anonymity set, as all
peers participate in routing in i2p.
Furthermore, while the fact that an internet user is participating in
i2p is not hidden, the nature of their participation is, since all peers

 15

act as routers, carrying several message and traffic types that are
not distinguishable. Thus, passive fingerprinting to disentangle "i2p
usage" from "i2p usage for Aviary" is frustrated.

The primary technical challenge for i2p relates to scaling the
network database backend to support a massive increase in users,
as would occur under a successful Aviary deployment. The i2p dev
team has already specified bounties for this work, with two of the
three preliminary bounties being fulfilled [85]. Moreover, scaling
distributed systems is exactly the kind of expertise the tech industry
is well-positioned to provide. A more in-depth comparison between
Tor and i2p may be viewed at [86].

10. REFERENCES
[1] Opsahl, Kurt. 2014. "Warrant Canary Frequently Asked

Questions." Electronic Frontier Foundation. April 10, 2014.
https://www.eff.org/deeplinks/2014/04/warrant-canary-faq.

[2] Farivar, Cyrus. 2016. " Reddit removes 'warrant canary' from
its latest transparency report." Ars Technica. March 31, 2016.
http://arstechnica.com/tech-policy/2016/03/reddit-removes-
warrant-canary-from-its-latest-transparency-report/.

[3] Kaufman, Brett. 2015. "US Government Makes Slight
Concession in Twitter’s Warrant-Canary Suit." Just Security.
March 9, 2015.
https://www.justsecurity.org/20850/government-slight-
concession-twitters-warrant-canary-suit/.

[4] Levison, Ladar. 2013. "My Fellow Users." Lavabit.com.
August 8, 2013. https://lavabit.com/.

[5] Canary Watch. 2016. "Frequently Asked Questions."
Electronic Frontier Foundation, Berkman Center et al. May
25, 2016. https://canarywatch.org/faq.html.

[6] "Deputy Attorney General Transparency Reporting Letter."
2014. Letter to Facebook, Google, LinkedIn, Microsoft, and
Yahoo! outlining how companies can publicly report national
security requests. Electronic Frontier Foundation. January
27, 2014. https://www.eff.org/document/deputy-attorney-
general-transparency-reporting-letter.

[7] Quintin, Cooper. "Canary Watch – One Year Later." 2016.
Electronic Frontier Foundation. May 25, 2016.
https://www.eff.org/deeplinks/2016/05/canary-watch-one-
year-later.

[8] Zhu, Yan. 2016. "surveillance, whistleblowing, and security
engineering." DiracDeltas. October 5, 2016.
https://diracdeltas.github.io/blog/surveillance/.

[9] Farrell, S. et al. 2014. RFC 7258 "Pervasive Monitoring Is
An Attack." Internet Engineering Task Force: Best Current
Practice. May 2014. https://tools.ietf.org/html/rfc7258.

[10] Muffett, Alec. 2014. "Making Connections to Facebook
more Secure." Facebook. October 31, 2014.
https://www.facebook.com/notes/protect-the-graph/making-
connections-to-facebook-more-secure/1526085754298237/.

[11] Muffett, Alec. 2016. "1 Million People use Facebook over
Tor." Facebook. April 22, 2016.
https://www.facebook.com/notes/facebook-over-tor/1-
million-people-use-facebook-over-tor/865624066877648/.

[12] Gagliordi, Natalie. 2016. "Microsoft's Brad Smith: 'The path
to hell starts at the backdoor.'" ZDNet. March 1, 2016.
http://www.zdnet.com/article/microsofts-brad-smith-the-
path-to-hell-starts-at-the-backdoor/.

[13] Smith, Brad. 2015. "Our legal challenge to a US government
search warrant." Microsoft On the Issues. April 9, 2015.
https://blogs.microsoft.com/on-the-issues/2015/04/09/our-
legal-challenge-to-a-us-government-search-warrant/.

[14] Smith, Brad. 2016. "Written Testimony of Brad Smith
President and Chief Legal Officer, Microsoft Corporation,"
before the House Judiciary Committee Hearing on
International Conflicts of Law Concerning Cross Border
Data Flow and Law Enforcement Requests. United States
House of Representatives Judiciary Committee. February 25,
2016. https://judiciary.house.gov/wp-
content/uploads/2016/02/brad-smith-testimony.pdf.

[15] Brandom, Russell. " The FBI just got its hands on data that
Twitter wouldn’t give the CIA." The Verge. November 14,
2016. http://www.theverge.com/2016/11/14/13629248/fbi-
dataminr-twitter-surveillance-contract-scanning-police.

[16] Cook, Tim. 2016. "A Message to Our Customers." Apple.
February 16, 2016. https://www.apple.com/customer-letter/.

[17] Tech Wire Asia. 2016. "Google issues warnings to US
journalists, professors of 'govt-backed' hack attempts."
November 24, 2016.
http://techwireasia.com/2016/11/google-warnings-
journalists-professors-govt-backed-hack-attempts/.

[18] Ghosh, Agamoni. 2016. "Google sends state-sponsored hack
warnings to numerous journalists and professors."
International Business Times. November 24, 2016.
http://www.ibtimes.co.uk/google-sends-state-sponsored-
hack-warnings-numerous-journalists-professors-1593172.

[19] Krugman, Paul. 2016. "A number of liberal writers, me
included, seem to have gotten this notice yesterday."
@paulkrugman Twitter. November 23, 2016.
https://twitter.com/paulkrugman/status/80147341194392371
2.

[20] Chait, Jonathan. 2016. "Same. Also, I've been getting emails
from what is almost surely a hacker like the kind described
here: https://t.co/eYnG8061KY." @jonathanchait Twitter.
November 22, 2016.
https://twitter.com/jonathanchait/status/80123243363913318
4.

[21] Klein, Ezra. 2016. "Well, this is a scary message to get from
Google." @ezraklein Twitter. November 23, 2016.
https://twitter.com/ezraklein/status/801482484768796672.

[22] Ioffe, Julia. 2016. "And here we are." @juliaioffe Twitter.
November 23, 2016.
https://twitter.com/juliaioffe/status/801435745760186368.

[23] Olbermann, Keith. 2016. "Hacking vote? Trying to hack my
email and Krugman's? Hacking Twitter founder? Lines up
with Trump demonizing dissent." @KeithOlbermann
Twitter. November 22, 2016.
https://twitter.com/KeithOlbermann/status/80126560612116
4801.

[24] Franke-Ruta, Garance. 2016. "Google issues warnings to US
journalists, professors of 'govt-backed' hack attempts:
https://t.co/dN6rbImJ1J @TechWireAsia." @thegarance
Twitter. November 24, 2016.
https://twitter.com/thegarance/status/801799320479694848.

[25] Penney, Jon. 2016. "Chilling Effects: Online Surveillance
and Wikipedia Use." Berkeley Technology Law Journal Vol.
31, No. 1. 2016.

 16

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=276964
5.

[26] Greenwald, Glenn. 2016. "New Study Shows Mass
Surveillance Breeds Meekness, Fear and Self-Censorship."
The Intercept. April 28, 2016.
https://theintercept.com/2016/04/28/new-study-shows-mass-
surveillance-breeds-meekness-fear-and-self-censorship/.

[27] PEN American Center. 2013. "Chilling Effects: NSA
Surveillance Drives U.S. Writers to Self-Censor." PEN
American Center. November 12, 2013.
https://pen.org/sites/default/files/2014-08-
01_Full%20Report_Chilling%20Effects%20w%20Color%20
cover-UPDATED.pdf.

[28] Gilens, Naomi. 2015. "The NSA has not been here: warrant
canaries as tools for transparency in the wake of the
Snowden disclosures." Harvard Journal of Law &
Technology Vol. 28, No. 2. Spring 2015.
http://jolt.law.harvard.edu/articles/pdf/v28/28HarvJLTech52
5.pdf.

[29] Wexler, Rebecca. 2014. "Warrant Canaries and Disclosure
by Design: The Real Threat to National Security Letter Gag
Orders." Yale Law Journal Vol 124. December 19, 2014.
http://www.yalelawjournal.org/forum/warrant-canaries-and-
disclosure-by-design.

[30] Penney, Jon. 2014. "Warrant Canaries Beyond the First
Amendment: A Comment." In Internet Monitor 2014:
Reflections on the Digital World: Platforms, Policy, Privacy,
and Public Discourse, Berkman Klein Center for Internet &
Society. Harvard University 49 (2014). Berkman Center
Research Publication No. 2014-17.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=286958
3.

[31] Tor Project, Homepage. Accessed November 2016.
https://torproject.org.

[32] The Invisible Internet Project, Homepage. Accessed
November 2016. https://geti2p.net.

[33] Tahoe Least Authority File Store, Homepage. Accessed
November 2016. https://tahoe-lafs.org.

[34] Reid, Fergal and Harrigan, Martin. 2012. "An Analysis of
Anonymity in the Bitcoin System." In Security and Privacy
in Social Networks. Springer New York, 2013.
https://arxiv.org/abs/1107.4524.

[35] Laurie, B. et al. 2013. RFC 6962 "Certificate Transparency."
Internet Engineering Task Force: Experimental. June 2013.
https://tools.ietf.org/html/rfc6962.

[36] Serjantov, Andrei and Danezis, George. 2002. "Towards an
Information Theoretic Metric for Anonymity." Privacy
Enhancing Technologies PET '02. April 14-15 2002.
https://www.cs.ucsb.edu/~ravenben/classes/595n-
s07/papers/anon-serj.pdf.

[37] Wang, Qiyan and Borisov, Nikita. 2012. "Octopus: A Secure
and Anonymous DHT Lookup."
https://arxiv.org/abs/1203.2668.

[38] Crosby, Scott A. and Wallach, Dan S. 2009. "Efficient Data
Structures for Tamper-Evident Logging." 18th USENIX
Security Symposium.
http://static.usenix.org/event/sec09/tech/full_papers/crosby.p
df.

[39] Cisco. No date given. "A Cisco Guide to Defending Against
Distributed Denial of Service Attacks." Cisco Security
Research & Operations. Accessed November 2016.
https://www.cisco.com/c/en/us/about/security-center/guide-
ddos-defense.html.

[40] Barnes, R. et al. 2015. RFC 7624 "Confidentiality in the Face
of Pervasive Surveillance: A Threat Model and Problem
Statement." Internet Architecture Board: Informational.
August 2015. https://tools.ietf.org/html/rfc7624.

[41] Cox, Joseph. 2016. "The FBI Hacked Over 8,000 Computers
In 120 Countries Based on One Warrant." Motherboard
(Vice). November 22, 2016.
https://motherboard.vice.com/read/fbi-hacked-over-8000-
computers-in-120-countries-based-on-one-warrant.

[42] Cox, Joseph. 2016. "Unsealed Court Docs Show FBI Used
Malware Like 'A Grenade'." Motherboard (Vice). November
7, 2016. https://motherboard.vice.com/read/unsealed-court-
docs-show-fbi-used-malware-like-a-grenade.

[43] FBI. 2013. "Affidavit in Support of Application for Search
Warrant." United States District Court for the District of
Maryland: In the matter of the search of computers that
access "Websites 1-23". Case No. 13-1744 WC. July 22,
2013. https://www.documentcloud.org/documents/3215133-
Freedom-Hosting-NIT-Affidavit.html.

[44] FBI. 2013. "Affidavit in Support of Application for Search
Warrant." United States District Court for the District of
Maryland: In the matter of the search of computers that
access the e-mail accounts described in Attachment A. Case
No. 13-1746 WC.
https://www.documentcloud.org/documents/3215129-
Affidavit-in-TorMail-NIT-Case.html.

[45] Reddit. 2016. "Traffic statistics for /r/AskReddit."
Reddit.com. Accessed November 2016.
https://www.reddit.com/r/AskReddit/about/traffic/.

[46] Schneier, Bruce. 2016. "Reddit's Warrant Canary Just Died."
Schneier on Security. April 1, 2016.
https://www.schneier.com/blog/archives/2016/04/reddits_wa
rrant.html.

[47] Epic.org. No date given. "National Security Letters."
Electronic Privacy Information Center. Accessed November
2016. https://epic.org/privacy/nsl/.

[48] Collet, Yann. 2016. "xxHash – Extremely fast hash
algorithm." Github. Accessed November 2016.
https://github.com/Cyan4973/xxHash.

[49] Yuriev, Leonid. 2016. "t1ha." Github. Accessed November
2016. https://github.com/PositiveTechnologies/t1ha.

[50] Dierks, T. and Rescorla, E. 2008. "The Transport Layer
Security (TLS) Protocol Version 1.2." Network Working
Group: Standards Track. August 2008.
https://tools.ietf.org/html/rfc5246.

[51] Rushe, Dominic et al. 2013. "Reports that NSA taps into
Google and Yahoo data hubs infuriate tech giants." The
Guardian. October 31, 2013.
https://www.theguardian.com/technology/2013/oct/30/google
-reports-nsa-secretly-intercepts-data-links.

[52] Keybase. No date given. Docs > Server Security. Keybase.io.
Accessed November, 2016.
https://keybase.io/docs/server_security.

 17

[53] Nakamoto, Satoshi. 2008. "Bitcoin: A Peer-to-Peer
Electronic Cash System." https://bitcoin.org/bitcoin.pdf

[54] Urdaneta et al. 2011. "A Survey of DHT Security
Techniques." ACM Computing Surveys, Vol. 43 No. 2. June
2011. https://www.distributed-systems.net/papers/2011.acm-
cs.pdf.

[55] Dinger, J. and Hartenstein, H. 2006. "Defending the Sybil
Attack in P2P Networks: Taxonomy, Challenges, and a
Proposal for Self-Registration." In Proc. 1st International
Conference on Availability, Reliability and Security (Vienna,
Austria). IEEE Computer Society Press, Los Alamitos, CA.,
756–763.

[56] Wolchok, Scott et al. 2010. "Defeating Vanish with Low-
Cost Sybil Attacks Against Large DHTs." In Proc. 17th
Network and Distributed System Security Symposium (NDSS
2010). February-March 2010.
https://jhalderm.com/pub/papers/unvanish-ndss10-web.pdf.

[57] Castro et al. 2002. "Secure Routing for Structured Peer-to-
Peer Overlay Networks." In Proc. 5th Symposium on
Operating System Design and Implementation (Boston, MA).
http://www.cs.rice.edu/~dwallach/pub/osdi2002.pdf

[58] Yu et al. 2006. "SybilGuard: Defending Against Sybil
Attacks via Social Networks." In Proc. SIGCOMM (Pisa,
Italy). ACM Press, New York, NY, 267–278.

[59] Yu et al. 2008. "SybilLimit: A Near-Optimal Social Network
Defense against Sybil Attacks." In Proc. International
Symposium on Security and Privacy. IEEE Computer Society
Press, Los Alamitos, CA., 3–17.

[60] Danezis et al. 2005. "Sybil-Resistant DHT Routing." In Proc.
10th European Symposium on Research in Computer
Security. Lecture Notes on Computer Science. Springer-
Verlag, Berlin, 305–318.

[61] Wang et al. 2005. "An Efficient and Secure Peer-to-Peer
Overlay Network." In Proc. 30th Local Computer Networks.
IEEE Computer Society Press, Los Alamitos, CA., 764–771

[62] Bazzi, R. A. and Konjevod, G. 2005. "On the Establishment
of Distinct Identities in Overlay Networks." In Proc. 24th
Symposium on Principles of Distributed Computing (Las
Vegas, NV). ACM Press, New York, NY,312–320

[63] Bazzi et al. 2006. "Hop Chains: Secure Routing and the
Establishment of Distinct Identities." In Proc. 10th
International Conference on Principles of Distributed
Systems (Bordeaux, France). Lecture Notes on Computer
Science, Vol. 4305. Springer-Verlag, Berlin, 365–379

[64] Borisov, N. 2006. "Computational Puzzles as Sybil
Defenses." In Proc. 6th International Conference on Peer-to-
Peer Computing. IEEE Computer Society Press, Los
Alamitos, CA., 171–176.

[65] Rowaihy, H. et al. 2007. "Limiting Sybil Attacks in
Structured Peer-to-Peer Networks." In Proc. 26th INFOCOM
Conference (St. Louis, MO). IEEE Computer Society Press,
Los Alamitos, CA., 2596–2600.

[66] Bakker, Arno. 2009. BEP 30 "Merkle hash torrent
extension." BitTorrent.org Standards Track. March 11, 2009.
http://bittorrent.org/beps/bep_0030.html.

[67] Stoica, Ion et al. 2001. "Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications." SIGCOMM '01.
August 27-31, 2001 (San Diego, California).

https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sig
comm.pdf.

[68] Loewenstern, Andrew and Norberg, Arvid. 2008. BEP 5
"DHT Protocol." BitTorrent.org Standards Track. January
31, 2008 (last updated March 22, 2013).
http://www.bittorrent.org/beps/bep_0005.html.

[69] Norberg, Arvid and Siloti, Steven. 2014. BEP 44 "Storing
arbitrary data in the DHT." December 19, 2014 (last updated
August 6, 2016). http://bittorrent.org/beps/bep_0044.html.

[70] Kahle, Brewster. 2016. "Help Us Keep the Archive Free,
Accessible, and Reader Private." Internet Archive Blogs.
November 29, 2016.
https://blog.archive.org/2016/11/29/help-us-keep-the-
archive-free-accessible-and-private/.

[71] Menezes, Alfred et al. 2001. "Chapter 9: Hash Functions and
Data Integrity." Handbook of Applied Cryptography. p. 324.
http://cacr.uwaterloo.ca/hac/.

[72] Ferguson, Niels et al. No date given. "The Skein Hash
Function Family." Schneier on Security. Accessed November
2016. https://www.schneier.com/academic/skein/.

[73] Aumasson, Jean-Philippe et al. No date given. "SHA-3
proposal BLAKE." https://131002.net/blake/.

[74] FIPS PUB 202. 2015. "SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions." National Institute
of Standards and Technology. August 2015.
https://dx.doi.org/10.6028/NIST.FIPS.202.

[75] ECRYPT Benchmarking of All Submitted Hashes. 2016.
"Measurements of SHA-3 finalists, indexed by machine."
VAMPIRE (Virtual Applications and Implementations
Research Lab). October 26, 2016 (see watermark on graph
image "crypto_sha3 64 bytes"). https://bench.cr.yp.to/results-
sha3.html.

[76] The Invisible Internet Project. No date given. "Why is I2P so
slow?". Frequently Asked Questions.
https://geti2p.net/en/faq#slow.

[77] Weatherly, Rhys. 2016. "Noise Extension: Hybrid Forward
Secrecy." Github. October 8, 2016.
https://github.com/rweather/noise_spec/blob/forward_secrec
y/extensions/ext_hybrid_forward_secrecy.md.

[78] Braithwaite, Matt. 2016. "Experimenting with Post-Quantum
Cryptography." Google Security Blog. July 7, 2016.
https://security.googleblog.com/2016/07/experimenting-
with-post-quantum.html.

[79] National Institute of Standards and Technology. 2016.
"Proposed Submission Requirements and Evaluation Criteria
for the Post-Quantum Cryptography Standardization
Process." August 1, 2016.
http://csrc.nist.gov/groups/ST/post-quantum-
crypto/documents/call-for-proposals-draft-aug-2016.pdf.

[80] The Tor Project. 2010. "Bittorrent over Tor isn't a good
idea." April 30, 2010.
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-
idea.

[81] The Tor Project. 2009. "Why Tor is slow and what we're
going to do about it." March 13, 2009.
https://blog.torproject.org/blog/why-tor-is-slow.

 18

[82] proper. 2012. "UDP over Tor." Tor Bug Tracker & Wiki.
December 30, 2012.
https://trac.torproject.org/projects/tor/ticket/7830.

[83] Van der Spek, Olaf. 2008. BEP 15 "UDP Tracker Protocol
for BitTorrent." BitTorrent.org Standards Track. February
13, 2008 (last updated March 25, 2015).
http://www.bittorrent.org/beps/bep_0015.html.

[84] The Invisible Internet Project. 2014. "Bittorrent Over I2P."
Last updated May 2014. Accessed November 2016.
https://geti2p.net/en/docs/applications/bittorrent.

[85] The Invisible Internet Project. No date given. "NetDB
Backend." Accessed November 2016.
https://geti2p.net/en/get-involved/bounties/netdb.

[86] The Invisible Internet Project. 2016. "I2P Compared to Tor."
Last updated November 2016. Accessed November 2016.
https://geti2p.net/en/comparison/tor.

[87] DJ Khaled. No date given. Quoted in
TheyDontWantYouTo.Win. Accessed November 2016.
http://www.theydontwantyouto.win/.

[88] Hazel, Greg and Norberg, Arvid. 2008. BEP 9 "Extension for
Peers to Send Metadata Files." BitTorrent.org Standards
Track. January 31, 2008 (last modified May 16, 2016).
http://bittorrent.org/beps/bep_0009.html.

[89] Zetter, Kim. 2016. "Internet Archive Successfully Fends Off
Secret FBI Order." The Intercept. December 1, 2016.
https://theintercept.com/2016/12/01/internet-archive-fends-
off-secret-fbi-order-in-latest-victory-against-nsls/.

[90] Farivar, Cyrus. 2016. "Yahoo's CISO resigned in 2015 over
secret e-mail search tool ordered by feds." Ars Tehnica.
October 4, 2016. http://arstechnica.com/tech-
policy/2016/10/report-fbi-andor-nsa-ordered-yahoo-to-build-
secret-e-mail-search-tool/.

[91] Perlroth, Nicole and Goel, Vindu. 2016. "Defending Against
Hackers Took a Back Seat at Yahoo, Insiders Say." New
York Times. September 28, 2016.
http://www.nytimes.com/2016/09/29/technology/yahoo-data-
breach-hacking.html?_r=0.

[92] The Invisible Internet Project. 2016. "The Network
Database." Last updated February 2016. Accessed November
2016. https://geti2p.net/en/docs/how/network-database.

