Joint ASR and MT Features for Quality Estimation in Spoken Language Translation

Abstract : This paper aims to unravel the automatic quality assessment for spoken language translation (SLT). More precisely, we propose several effective estimators based on our estimation of transcription (ASR) quality, translation (MT) quality, or both (combined and joint features using ASR and MT information). Our experiments provide an important opportunity to advance the understanding of the prediction quality of words in a SLT output that were revealed by MT and ASR features. These results could be applied to interactive speech translation or computer-assisted translation of speeches and lectures. For reproducible experiments, the code allowing to call our WCE-LIG application and the corpora used are made available to the research community.
Type de document :
Communication dans un congrès
International Workshop on Spoken Language Translation, Dec 2016, Seattle, United States
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01408087
Contributeur : Laurent Besacier <>
Soumis le : samedi 3 décembre 2016 - 08:16:08
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03
Document(s) archivé(s) le : lundi 20 mars 2017 - 22:41:15

Fichier

iwslt2016-1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01408087, version 1

Collections

Citation

Ngoc-Tien Le, Benjamin Lecouteux, Laurent Besacier. Joint ASR and MT Features for Quality Estimation in Spoken Language Translation. International Workshop on Spoken Language Translation, Dec 2016, Seattle, United States. 〈hal-01408087〉

Partager

Métriques

Consultations de la notice

228

Téléchargements de fichiers

152