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Wireless Service Provider Selection and Bandwidth
Resource Allocation in Multi-tier HCNs

Chao Xu, Min Sheng, Member, IEEE, Vineeth S. Varma, Tony Q.S. Quek, Senior Member, IEEE

Abstract—In this work, the inter-linked problems of wire-
less service provider (WSP) selection by users and bandwidth
allocation by WSPs in multi-tier heterogeneous cellular net-
works (HCNs) are addressed. This paper employs the approach
combining stochastic geometry and game theory to solve these
problems. Particularly, the expected average achievable rate for
each user is calculated by modeling the distributions of users and
base stations (BSs) as independent homogeneous Poisson Point
Process (PPP) and a hierarchical game framework is presented
to investigate the interactions between users and WSPs. In this
framework, the evolutionary game, non-cooperative game and
multi-leader multi-follower Stackelberg game models are adopted
to formulate the competition among users, competition among
WSPs and interaction among users and WSPs, respectively.
Moreover, for the formulated evolutionary game, the evolutionary
equilibrium (EE) was investigated and its asymptotically stability
was analyzed after deriving its closed form expression. Then,
conditioned on the obtained EE, a non-cooperative spectrum
bandwidth allocation game (N-BAG) has been formulated to
investigate the bandwidth allocation of WSPs. The existence of
Nash equilibrium (NE) for N-BAG has been proven and an
offline algorithm to achieve the equilibrium state was proposed.
Finally, simulation results verify the validity of the analysis and
demonstrate that a unique NE would be achieved by the HCNs
adopting the proposed scheme.

Index Terms—Heterogenous cellular networks (HCNs), oper-
ator selection, bandwidth allocation, evolutionary game, evolu-
tionary equilibrium (EE).

I. INTRODUCTION

A. Motivation

Heterogeneous cellular networks (HCNs) are regarded as
a promising approach to cater for the increased demand of
high-data-rate services and requirement of ubiquitous access.
Augmenting an existing macro-cell covered by a large BS by
deploying small coverage cellular networks with high density
can potentially dramatically increase the network capacity
without incurring a high operation cost [1]–[4]. In this light,
the muti-tier HCN is a novel network structure for the future.
Particularly, in contrast to the traditional pure macro cellular
network, the HCN would consist of high power macro BSs
(MBSs) as well as various classes of low power nodes, which
may include micro BSs (often called eNBs), pico BSs (PBS),
femto BSs (FBSs), and possibly future radiating elements [5].
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While deploying such an HCN, it is essential to analyze
the system-level performance and investigate the impact of
different system parameters to obtain some design insights.
Hence, analytically tractable models would be of great interest
in this scenario. In contrast to the hexagonal grid model widely
applied to evaluate traditional well-planned single-tier cellular
networks, an alternate approach based on stochastic geometry
was recently proposed, with which the transmitting nodes
(e.g., BSs) are modeled as randomly located points through a
Poisson point process (PPP) [5]. Compared to the femto-cells
which may be randomly deployed, it seems somewhat counter-
intuitive to model macro cellular networks as a PPP. However,
the accuracy of this tractable model has been verified through
empirical validation in recent works like [6]. To this end, based
on such a tractable, yet reasonable assumption that BSs are
distributed according to independent PPPs, the performance
of HCNs can be efficiently studied.

This work studies the interactions between the users and the
wireless service providers (WSPs) in an environment where
HCNs are deployed by different WSPs. Each WSP determines
the bandwidth allocation for each service while the users
decide which WSP to subscribe to. Naturally, as each user
and WSP are independent decision makers, this results in a
situation best modeled through game theory.

B. Related works
The signal-to-interference-plus-noise-ratio (SINR) as well

as other system key performance indexes (KPIs), e.g., coverage
probability and throughput, have been analyzed in studies [7]–
[9]. On top of such stochastic geometry based performance
analysis, some efficient spectrum resource allocation strategy
have be proposed for heterogenous wireless networks with the
dedicated-channel deployment [10]–[13]. Specifically, in [10],
[11] a two-tier heterogeneous network was considered where
the disjoint spectrum resources were allocated to different tiers
to eliminate cross-tier interference and its optimal spectrum
allocation strategy was investigated. Authors in [12] focused
on the HCN consisting of macrocells and femtocells, and
studied the optimal spectrum allocation strategy for both the
open and closed access modes. Although only the specific
case of two-tier was studied, some analysis results obtained in
[12] can also be generalized to multi-tier HCNs. The spectrum
partition and user association were jointly studied for multi-
iter HCNs in [13], where the cell range expansion scheme was
adopted for load balancing. Besides these works, the service
selection as well as bandwidth allocation for the two-tier
femtocell network has also been studied from the economic
perspective in [14].
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In all the above mentioned works [10]–[14], they have the
common point in that they only consider the case where there
only exist one WSP deploying all the tiers of networks, i.e.,
a monopoly. However, in practice there are generally multiple
WSPs coexisting, who would deploy their own individual
HCNs and hence have to compete with each other to attract
more users for higher revenue. As a mathematical tool for
analyzing the the conflict and cooperation among autonomous
agents, game theory [15] has been widely adopted to formulate
and study the interactions among service operators [16]–[22].
Wherein, some of these works have also focused on the HCN
based scenarios [20]–[22]. Nevertheless, the major differences
between these studies and ours are two fold: (i) the type of
HCN considered in [20]–[22] is different to that studied in
ours and previous studies [7]–[13]. Specifically, different tiers
have been deployed by different WSPs and each WSP only
provides one service to users. Hence, their main concerns are
spectrum leasing among different WSPs. Our work however
jointly studies the WSP selection of users and spectrum
allocation of WSPs. (ii) Beside game theory, the tools from
stochastic geometry have also been applied in our work to
study the behavior of users as well as WSPs. Compared with
the pure game theory based methodology focusing on the
deterministic model [20]–[22], the analysis combining game
theory and stochastic geometry would provide more design
insights to system designers or WSPs. A similar idea has also
been adopted by recent reseraches [18] and [23], where the
distributed power control and sub-channel selection have been
addressed, respectively.

C. Contributions

In order to avoid the cross-tier interference in HCNs, a
dedicated-channel deployment can be adopted, with which
the orthogonal radio resource will be allocated to different
tiers. Though this deployment is sub-optimal from the spectral
efficiency standpoint, it is a relative simple approach that can
be conveniently implemented in practice [24], [25]. In this
case, how to properly split the the precious but scarce spectrum
bandwidth resources1 and allocate them to different tiers is
one fundamental and important issue directly faced by the
WSPs [24], [25]. With a better allocation strategy, the WSP
can provide a better quality of service, attract more subscribers
(i.e., gain a larger market share) and finally achieve higher
revenue.

Here, we consider the scenario consisting of multiple HCNs
deployed by different WSPs and each tier favored by a certain
population of the users. We think this scenario is practical
because, on one hand, competition among multiple WSPs is
common in many countries, for instance, Sprint, Verizon as
well as AT&T are coexisting in the US. On the other hand, the
number of users in the market is large and may change, so from
the system-level perspective, it is more sensible to treat them
using a statistical method. Furthermore, while a stationary

1Electromagnetic spectrum is typically divided into a number of bands by
regulatory agencies such as the FCC or the European Commission. Then,
each WSP can obtain some bands by executive fiat or auction. Therefore, the
spectrum resource is previous and limited for each WSP [26].

user will prefer to connect to a femto-cell nearby, a highly
mobile user would connect to a macro-cell in order to avoid
frequent handovers. Thus, on average the total population of
users can be divided into parts that prefer each tier of the
heterogenous network; each user can select the best WSP
for any tier. Besides that, to attract more users and further
obtain higher revenue, each WSP needs to decide how to
allocate his own available spectrum resource to different tiers
by fully considering both the behavior of users and other
WSPs. For this reason, there are two levels of competitions
and a cyclic dependency having to be addressed, i.e., the
competition among users, the competition among WSPs, and
the coupling between the behavior of populations of users and
WSPs. This makes the spectrum resource partition problem
nontrivial.

The main contributions of this work can be summarized as
follows.

1) We systematically analyze the average achievable rate
can be provided by WSPs with the stochastic geometry
based approach. Moreover, we present a hierarchical
game framework to investigate the interactions in the
multi-tier HCNs. Particularly, in the lower level of the
framework we formulate the WSP selection of users as
an evolutionary game [27] and meanwhile, in the upper
level the competition among different WSPs is modeled
as a Non-cooperative spectrum Bandwidth Allocation
Game (N-BAG). Additionally, the cyclic dependency
between the users and WSPs is studied by applying
the multi-leader multi-follower Stackelberg game theory.
With the proposed framework, WSPs can capture the
equilibrium of users and further guide the deployment
of HCNs.

2) For the formulated evolutionary service selection game,
we consider the evolutionary equilibrium (EE) as the
solution, investigate the uniqueness and get the close
form expression of the interior EE. Furthermore, we
prove that the interior EE is also the evolutionary stable
strategy (ESS) which is asymptotical stable, i.e., when
ESS is achieved in the population, a small amount of
invaders adopting other strategies instead of the ESS can
finally be eliminated.

3) Simulation results show that, compared with the solution
brought by other three approaches, when WSPs allocate
their own spectrum resources by adopting our proposed
strategy, an efficient and fair equilibrium solution can be
achieved.

The outline of this paper is as follows. In Section II, the de-
scription of system model and formulation of the hierarchical
game framework are given. Subsequently, Section III presents
the evolutionary WSP selection game and studies its solutions.
In Section IV, we present the N-BAG, analyze the existence
of Nash equilibrium (NE), and develop an algorithm to obtain
the NE for this game. Some numerical simulation results are
presented and analyzed in Section V and finally, conclusions
are drawn in Section VI.
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Fig. 1. Illustration of a 3-tier HCN, which consists of the macrocell, picocells
and femtocells.

II. SYSTEM MODEL AND THE HIERARCHICAL GAME
FRAMEWORK

In this work, we consider an area of interest where a
total of K different service would be provided to users (e.g.,
the macrocell service, picocell service and femtocell service)
by N different WSPs having deployed N different HCNs.
Additionally, for each HCN n, there are Kn tiers, each of
which has the BSs of a particular class, such as macrocell BSs
(MBSs) or picocell BSs (PBSs). Note that the BSs in different
tiers may be differ among each other due to differences in the
transmit power, coverage area and spatial density [7], [8]. An
illustration of a 3-tier HCN is shown in Fig. 1, where there are
three classes of BSs. Also note that the MBS has the largest
coverage (i.e., highest transmit power) but the lowest density.

A. Network deployment model

For notational simplicity, we denote the set of WSPs as
N = {1, 2, · · · , N} and meanwhile, for each WSP n, we
denote the set of the Kn tiers of networks as Kn. Without loss
of generality, we consider that Kn ⊆ K = {1, 2 · · ·K}, which
means different WSPs may like to provide different services
to users. For instance, some WSPs may provide macrocell
service, picocell service and femtocell service, but some WSPs
may only provide the macrocell service. Here, for each HCN
n, we assume that the BSs in the k-th tier are spatially
distributed as a two dimensional independent homogeneous
Poisson Point Process (PPP) Ψn,k of density λn,k and transmit
at power Pn,k per unit of bandwidth, where k ∈ Kn. Moreover,
we consider that the potential users of each service k are
located according to a homogeneous PPP Ψu

k with intensity
λuk where k ∈ K [10]–[12]. The above assumption indicates
that each service is associated to a certain user density. This
is explained by the preferences of different kinds of users to
different services. For example a highly mobile user population
will prefer the macro-cell service in order to avoid regular
hand-overs. Of course in practice, the same user can jump
from one population set to another, but on an average the
population of each set of user types can be assumed to be a
constant.

HCNs are operating on the orthogonal spectrum and mean-
while, each WSP n has to properly allocate the available

spectrum bandwidth Bn to different tiers, i.e., the WSP
deployment framework is adopted [14], [25]. For the HCN
operated by WSP n, we denote the spectrum bandwidth allo-
cated to tier k by Bn,k and the spectrum allocation profile by
Bn = (Bn,1, Bn,2, · · · , Bn,Kn). With the dedicated-channel
deployment, there is no cross-tier interference in the HCN,
only co-tire interference. In each HCN, the downlink trans-
mission is considered and in the k-th tier network deployed by
WSP n, the signal from each BS to each user experience path
loss with the path loss exponent αn,k > 2, Rayleigh fading
with average power of unity, as well as lognormal shadow
fading with mean µn,k and standard deviation σn,k in dB.

When providing services to users, let us denote the price
charged by WSP n for service k as Cn,k which is the fixed
access fee having units $ per unit of time. We note that
pricing for services should consider the combination of many
complex factors in practice, e.g., the operation investment of
WSPs, the management made by the government, the real
consumption level of the concerning country, etc. For easy of
exposition, we will set services prices as fixed and focus on the
interaction between service selection and resource allocation
in the following. On the other hand, each user in a certain
population type, picks one out of the N WSPs to get his
service. Following previous studies [16], [17], [19], [21], we
assume, for simplicity, that each user would churn from one
provider to another without incurring any additional cost. In
addition, each user is only able to transmit data through one
HCN at each time (i.e., the concurrent transmission is not
considered) and meanwhile, he will communicate with the BS
bringing his the maximum received power [6], [8]. We note
that the choice of each user is determined by the data rates
and prices offered by WSPs, and finally results in a population
share of xn,k associated to each WSP n and service k, i.e.,∑
n∈Nk

xn,k = 1, ∀k ∈ K, where Nk denotes the set of WSPs

supporting service k.

B. Hierarchical game framework

Here, we consider that all the WSPs and users are selfish,
i.e., each individual user wants to maximize his payoff by
selecting the best WSP and meanwhile, each WSP wants to
attract more users and further improve his own revenue by
properly allocating the spectrum resource to different tiers.
To be more specific, after selecting the service provided by a
particular WSP, each user will obtain some payoff determined
by both the service price and expected transmission rate.
Intuitively, the expected rate of each user will be determined
by both the number of users choosing the same network (i.e.,
the effects of other users’ actions) and the available spectrum
bandwidth of the network (i.e., the effect of WSPs’ actions).
Meanwhile, to attract more users, each WSP also need to make
his own decision on the spectrum partition by fully considering
the behavior of other WSPs and of users. The scenario under
investigation therefore allows two levels of competition and
meanwhile one cyclic dependency as described above.2

2The derivation of expected rate of each user as well as the definitions for
both the use’s payoff function and WSP’s revenue will be sequentially given
in the following two sections.
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Fig. 2. Illustration of the hierarchical game framework.

These competitions and cyclic dependency can be illus-
trated with the hierarchical framework shown Fig. 2, where
three different game formulation are adopted to investigate
the concerned problem. Specifically, in the lower level we
formulate the WSP selection of users as an evolutionary game,
with which the long-term equilibrium behavior of users can be
captured. Meanwhile, in the upper level we have formulated a
non-cooperative game to depict the competition among WSPs.
In addition, the cyclic dependency interaction between the
users and WSPs is modeled by applying the multi-leader multi-
follower Stackelberg game theory, where the WSPs are the
leaders and the populations of users are the followers.

We note that the formulated Stackelberg game can be
solved with backward induction, i.e., the leaders (WSPs)
can make their responses (i.e., B∗) by fully considering the
followers’ (users’) equilibrium reactions (i.e., x∗(B∗)) [17],
[20]. The mapping x∗(B∗) denotes the equilibrium behaviour
of users, when given the WSPs’ strategy profile B∗. Here,
x = (x1,x2, · · · ,xK) where ∀k ∈ K, xk = (xak,k; ak ∈ Nk)
represents the population state, which will be formally defined
in next section. Hence, for each WSP n, the key problem
becomes how to accurately estimate the equilibrium behavior
of users and thus make an informed decision. In the following,
the evolutionary game modelling the user reaction to the WSP
bandwidth allocation is studied first in Section IV. Then, the
WSPs compete for the higher revenue assuming the user
population to stabilize at the proposed EE based on their
bandwidth allocation, which is investigated in Section V.

III. WSP SELECTION EVOLUTIONARY GAME

When given the resource allocation profiles of WSPs B =
(B1,B2, · · · ,BN ) where Bn = (Bn,k)k∈Kn

and Bn,k > 0,
∀n ∈ N , the expected transmission rate of each user is
determined by which WSP he get service from and how
many users selecting the same WSP as him. In this section,
we formulate the users’ WSP selection behavior as an evo-
lutionary game which is initially used in biology to study
the evolution of animal populations, and then later applied
in economics to model human behavior [27]. Recently, this
mathematical tool has also been adopted to study engineering
problems in wireless communications, see [28] and [29] for

an example. The main advantage of this tool is that it can
be efficient applied to study the dynamics of a large amount
of users active for a long duration. Meanwhile, in contrast
to some traditional game models [15], [20], [30], there is no
requirement that each player in the game is fully rational or
that he has global information on the other players. This is
the primary motivation behind the use of the evolutionary
game formulation in this context. Next, we will first analyze
the expected average rate of each user with the stochastic
geometry based approach and then, present the formulation
of the WSP selection game as well as the investigation of the
solutions for the formulated game.

A. Expected average user rate

Since different HCNs and tiers operate on orthogonal spec-
trum bands, we can equally consider the N multi-tier HCNs as∑
n∈N

Kn different single-tier cellular networks when analyzing

the quality of provided services. For natational simplicity, we
denote these equivalent one-tier cellular networks by set

S = {(n, k) |n ∈ N , k ∈ Kn } (1)

where the network with index s = (n, k) ∈ S represents the
k-th tier of cells deployed by WSP n. In this subsection, we
would briefly call one tier of a HCN as one network.

In each network s, ∀s ∈ S, the expected achievable rate that
can be offered by each cell R̄s can be computed by consid-
ering a typical user and using the stochastic geometry based
approach. According to Slivnyak’s theorem [31], the typical
user in each network can be arbitrarily chosen. Therefore, we
consider the typical user located at the origin without loss
of generality and furthermore, denote the position of the BS
associated to the typical user as y0s . Then, the received power
of the typical user from the BS in y0s can be expressed as

P
(
y0s
)
= Psh

0
sψ

0
s

∥∥y0s∥∥−αs
= Psh

0
s

∥∥∥(ψ0
s

) 1
αs y0s

∥∥∥−αs

(2)

where h0s and ψ0
s represent the effect of Rayleigh fading and

that of shadow fading, respectively. Modeling the channel
with shadow fading makes that the received power is not
exponentially distributed and then, some important and useful
conclusions drawn in previous studies, e.g., [6], [8], [32], can
not be implemented. Fortunately, as pointed in the recent work
of Dhillon and Andrews [33], the long-term shadowing effects
can be interpreted as a random displacement of the location of
the BS placed according to the original PPP. In this light, we
have the following lemma by resorting to Lemma 1 presented
in [33].

Lemma 1: For each network s = (n, k) ∈ S , by defining
zs = (ψs)

1
αs ys,∀ys ∈ Ψs, we have a new point process

Ψ
(e)
s =

{
zs

∣∣∣zs = (ψs)
1

αs ys, ∀ys ∈ Ψs

}
. Furthermore, the

new point process Ψ
(e)
s is also a homogeneous PPP whose

density is

λ(e)s = λsE
[
(ψs)

1
αs

]
(3)

= λs exp

(
ln 10

5

µs

αs
+

1

2

(
ln 10

5

σs
αs

)2
)
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where µs and σs are the mean and standard deviation of the
shadow fading in network s, respectively.

Based on Lemma 1 we would consider the equivalent
point process Ψ

(e)
s instead of the original one Ψs hereafter,

when analyzing the expected achievable rate R̄s in network s.
Meanwhile, in this case it should be noted that the association
based on the maximum received power is equal to the one
based on minimum distance, i.e, each user will communicate
with the closest BS in each networks s. For the new point
process, let z0s ∈ Ψ

(e)
s denote the position of the BS associated

to the typical user located at the origin and then, the SINR at
the typical user can be equally expressed as

γs =
Psh

0
s

∥∥z0s∥∥−αs

Is + σ2
(4)

=
Psh

0
s

∥∥z0s∥∥−αk∑
zi
k∈Ψ

(e)
s /z0

s

Pshis∥zis∥
−αs + σ2

, ∀s = (n, k) ∈ S

where Ψ
(e)
s

/
y0s denotes the set of the positions of BSs causing

interference to the typical user, and Is denotes the cumulative
interference. Furthermore, the expected achievable rate R̄s is

R̄s = E [Bslog2 (1 + γs)] = B0
s R̄

0
s,∀s = (n, k) ∈ S (5)

where B0
s =

Bn,k

ln 2 , R̄0
s = E [ln (1 + γs)] and additionally,

the expectation is taken over both the spatial PPP and the
fading distribution. Since for a positive random variable X the
expectation can be calculated as E [X] =

∫
x>0

P (X > x)dx,
we have

R̄0
s

(a)
=

∫
r>0

e−πλ(e)
s r2E

[
ln

(
1 +

Psh
0
sr

−αs

Is + σ2

)]
2πλ(e)s rdr (6)

=

∫
r>0

e−πλ(e)
s r2

∫
x>0

P
[
ln

(
1 +

Psh
0
sr

−αs

Is + σ2

)
>x

]
dx2πλ(e)s rdr

(b)
=

∫
r>0

e−πλ(e)
s r2

∫
x>0

E
[
e(−

rαs
Ps

(Is+σ2)(ex−1))
]
dx2πλ(e)s rdr

=

∫
r>0

e−πλ
(e)
s r2

∫
x>0

e−
rαs
Ps

σ2(ex−1)LIs(
rαs

Ps
(ex − 1))dx2πλ(e)s rdr

where (a) follows the fact that the probability density function
(PDF) of the distance

∥∥z0k∥∥ is3

f∥z0
k∥ (r) = e−λsπr

2

2πλ(e)s r (7)

and (b) follows from the distribution that h0s ∼ exp (1). In
addition, LIs (ω) is the Laplace transform of the PDF of the
cumulative interference Is. Recalling the assumptions on the
channel model and the expression of Is in (4), we can get the
expression of LIs(

rαs

Ps
(ex − 1)) as follows [6]

LIs(
rαs

Ps
(ex − 1)) (8)

= exp

(
−πλ(e)s r2

∫
u≥1

ex − 1

ex − 1 + uαs/2
du

)
= exp

(
−πλ(e)s r2(ex − 1)

2/αs

∫
v≥(ex−1)−2/αs

1

1 + vαs/2
dv

)
.

3This expression is derived based on the assumption that, in each network,
the typical user will associate with the closest BS. The detail can be found
in [6].

Finally, combining Eq. (6) and (8), we would obtain the ex-
pression of the expected achievable rate in a cell of networks s,
i.e., R̄s, when given the spectrum allocation profiles of WSPs
B = (B1,B2, · · · ,BN ). Moreover, under the assumption that
the orthogonal transmission is implemented in each cell, i.e.,
equal time (and/ or frequency) slots are allocated to each
users one after another in a round-robin manner, then for each
network s the expected average user rate in a cell can be
expressed as [8]

R̄s,u =
R̄s

Ns
=
B0

s R̄
0
s

Ns
, Ns = xs

λuk
λs
, ∀s = (n, k) ∈ S (9)

where Ns denotes the average number of users per cell in
network s and meanwhile, xs (s = (n, k)) represents the
probability that one user would get service k from WSP
n or equally, the proportion of users choosing WSP n in
the population having the requirement of service k. In other
words, xs can also be referred as the population share in
the evolutionary game, which will be formally defined in
following subsection.

B. Evolutionary game formulation

For the WSP selection of users, the formulated evolutionary
game can be formally depicted as follows:

• Population: Each set of users requesting one common
service is referred to as a population. Hence, there are
totally K different populations which can be denoted by
the set K = {1, 2, · · · ,K}.

• Strategy space: For each user in the k-th population, he
can decide to get the service from which WSP. Therefore,
his strategy space can be depicted with the set

Ak = Nk = {n |n ∈ N , k ∈ Kn } . (10)

• Population state: For an evolutionary game, the propor-
tion of users choosing strategy ak ∈ Ak, denoted by
xak

, is referred to as the population share of strategy ak.
Moreover, in each population k, the population share of
all strategies is termed as a population state, which can
be denoted by the vector xk = (xak

)ak∈Ak
. Obviously,

we have xak
∈ [0, 1], ∀ak ∈ Ak, and

∑
ak∈Ak

xak
= 1.

Similarly, the population state of the whole K populations
can be expressed as x = (x1,x2, · · · ,xK).

• Payoff function: The payoff is used to quantify the satis-
faction level or fitness of a user adopting a strategy when
given the population state. Mathematically speaking, the
payoff function of an individual player choosing strategy
ak can be considered as a mapping πak

: x → R. In this
work, we depict the payoff function with the following
logarithmic function

πak
= ln

(
1 +

R̄ak,k,u

Cak,k

)
= ln

(
1 +

βak,kR̄
0
ak,k

xak

)
(11)

where βak,k =
λak,kBak,k

ln 2λu
kCak,k

. We note that, from the
economic perspective, the logarithmic payoff function
π = ln (1 + y) can capture both the user’s non-satiation,
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i.e., dπ
dy > 0, and risk aversion, i.e., dπ2

dy2 < 0, properties.
Hence, such a function has been widely used in wireless
resource allocation to evaluate satisfaction degree of an
agent [13], [14]. It is worth noticing that although only
the logarithmic function is considered here, the following
analysis also holds when other monotonically increasing
functions are adopted.

We note that in dynamic evolutionary game theory, as
shown above, the population share of each strategy xa can be
interpreted as the current proportion of individuals in the corre-
sponding population using the pure strategy a. Meanwhile, the
population state x can also be interpreted as a mixed strategy
for the corresponding symmetric normal form game and in this
case, the population share xa ∈ x represents the probability
that each individual player uses the pure strategy a [27]. In
addition, these two representations of the population state are
coincident when the number of players is large.

C. Replicator dynamic

To depict the dynamically learning behavior of users, the
replicator dynamic is adopted in this paper, which can be
expressed as follows:

ẋak
= δxak

(πak
(xk)− π̄k (xk)) (12)

= δxak

πak
−
∑

a
′
k∈Ak

xa′
k
πa′

k
(xk)

 , ∀k ∈ K

where δ > 0 is the rate of strategy adaption and π̄ (x) is
the average payoff in the population. Under this dynamic in
each population, the percentage growth rate of the population
share of each strategy is proportional to the excess of the
strategy’s payoff over the population’s average payoff. This
dynamic could be interpreted biologically as a model of natural
selection, and economically as a model of imitation [27]. As
shown in the above equation, the dynamics of service selection
can be described with K first-order differential equations.
Hence, in order to investigate the equilibrium behaviour of
users, we consider the solution of this evolutionary dynamic
as the fixed point of the differential equations, which is termed
as the evolutionary equilibrium (EE) represented by x∗. When
the population state of the game is at EE, then no user would
like to change his strategy.

Based on the support, the EE can be mainly divided into
two classes, i.e., the boundary EE and interior EE. Partic-
ularly, let us consider a EE x∗ and denote its support as
supp (x∗) =

{
(ak, k)

∣∣ak ∈ Ak, k ∈ K, x∗ak
> 0, x∗ak

∈ x∗}.
If supp (x∗) = (Ak, k)k∈K we say x∗ is an interior EE.
Otherwise, we term it as a boundary EE. Generally, the class
of the achieved EE for each replicator dynamic is determined
by the initial state x(0), i.e., supp (x(0)) = supp (x∗). In the
concerned problem, we note for the applied replicator dynamic
the boundary EE is not stable since any small perturbation
will make the system deviate from this boundary state. Hence,
in the rest of this paper, we just focus on the interior EE.
Furthermore, we have the following Theorem.

Theorem 1: For the replicator dynamic shown in Eq. (12),
the formulated WSP selection game has an unique interior EE

state. Let us denote this EE by x∗, and then, each element x∗ak

in x∗ can be expressed as

x∗ak
=

ηak
Bak,k∑

a
′
k∈AK

ηa′
k
Ba

′
k,k

, ∀ak ∈ Ak, ∀k ∈ K (13)

where ηak,k =
λak,kR̄

0
ak,k

Cak,k
. Intuitively, ηak,k can be seen as

the cost performance per unit bandwidth of the k-th service
provided by WSP ak.

Proof: The proof is given in Appendix A.
Remark 1: From an economic perspective, elements in x∗

denote the expected long-term equilibrium of market shares
of different services. For instance, the expected market share
of each WSP n can be represented as

∑
k∈K

∑
ak∈Nk,ak=n

x∗ak
.

Therefore, with such statistical results, WSPs can get some
insights about the effect of bandwidth allocation on users’
WSP selection and further, appropriately deploy the HCNs.

Besides EE, for an evolutionary game the evolutionary
stable strategy (ESS) is another important solution standing for
a refinement of NE with interesting features [34]. Particularly,
if the NE is reached, no player is willing to unilaterally change
his own strategy under the condition that no other players will
deviate from the NE. While, if the ESS is archived, then no
player would like to adopt another strategy even if there is a
small group of players irrationally deviate from the ESS. Next,
we formally give the definition of ESS [27].

Definition 1: ESS: We term x̄ as an ESS, if for any different
population state (or mixed strategy) x ̸= x̄, there exists some
εx ∈ (0, 1) that for all ε ∈ (0, εx), we have

π̄ (x̄, (1− ε) x̄+ εx) > π̄ (x, (1− ε) x̄+ εx)

where π̄ (x̄, (1− ε) x̄+ εx) and π̄ (x, (1− ε) x̄+ εx) denote
the expected payoff of the group of users having the state
(or adopting the mixed strategy) x̄ and x given the current
population state (1− ε) x̄+ εx, respectively.

One intuitive interpretation of the above definition is that
if the ESS is achieved in a population, a small amount of
invaders adopting other strategy instead of ESS would achieve
a lower expected payoff than the incumbent does. To see more
interpretations of this definition, the readers are encouraged
to see [27] and [35]. For our formulated evolutionary game
and the adopted replicator dynamic, an interior ESS is also
an asymptotically stable state, which means that it is stable
and attracting (Theorem 2.7.1 in [27]). Hence, such a state
can be finally reached via evolutionary process with an initial
point in some open neighborhood of the asymptotically stable
state. The detailed definition about asymptotically stability
can be found in Definition 2.5.2 in [27]. Unfortunately, in
general there is no guarantee that every EE would be aligned
with an ESS. In other words, there is no guarantee that the
fixed point of a replicator dynamic is also asymptotical stable.
However, for the interior EE obtained in Theorem 1, we have
the following theorem.

Theorem 2: The unique interior EE x∗ obtained in Theorem
1 is an ESS and hence, is asymptotical stable for the adopted
replicator dynamic.
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Proof: This theorem can be proved with the similar
method applied in the proof of Theorem 2 of [21] and in
that of Theorem 3 of [29]. However, we still present the proof
in Appendix B for completeness.

Remark 2: It should be noted that for our concerned WSP
selection game, the reason resulting in the mutation from the
equilibrium state EE can be intuitively interpreted from many
perspectives. On one hand, if we suppose that the formulated
game operates in EE x∗ and at that moment, there are some
users joining or leaving the market. Then, the evolution state
may deviate form the EE, i.e., the mutation is introduced for
the equilibrium state. On the other hand, the mutation may
also be introduced at some moment when parts of users have
accidentally made an irrational decision due to some reasons.
Fortunately, as shown in the above theorem, the effect of such
a mutation would be eliminated and the EE would be reached
again. These comments will be illustrated with simulation
results shown in Section VI.

IV. SPECTRUM BANDWIDTH ALLOCATION GAME

In order to obtain a higher market share and revenue, a
WSP must properly allocate the available spectrum. Since the
spectrum allocation profile may not be frequently adjusted,
each WSP should make his decision based on the equilibrium
state of the service selection of users, i.e., the EE.4 Hence, we
define the payoff function for the WSP as follows

Un (Bn,B−n) =
∑
k∈Kn

Un,k =
∑
k∈Kn

λukx
∗
n,kCn,k (14)

=
∑
k∈Kn

φn,kBn,k∑
m∈Nk

ηm,kBm,k

=
∑
k∈Kn

φn,kBn,k∑
m∈Nk,m̸=n

ηm,kBm,k + ηn,kBn,k

where B−n = (B1, · · · ,Bn−1,Bn+1, · · · ,BN ) denotes
bandwidth allocation profiles of WSPs other than WSP n.
In addition, ηn,k =

λn,kR̄
0
n,k

Cn,k
, and φn,k = λukηn,kCn,k,

∀k ∈ Kn, ∀n ∈ N . We also impose the constraint Bn,k ≥ b
on each WSP’s bandwidth allocation strategy, where b > 0 is
a positive constant. 5

As shown in Eq. (14), the payoff of each WSP is determined
by both its own bandwidth allocation profile and those of other
WSPs. In contrast to the study in the previous section, we
assume that each WSP is fully capable of acquiring all the
information on HCNs deployed by its competitors (i.e., other
operators) [17]–[20], [36], e.g., the BSs densities and transmit
powers. Conditioned on this, we can formulate the problem
as a Non-cooperative spectrum Bandwidth Allocation Game
(N-BAG) and hereafter, the terms WSP and player would be
used interchangeably in this section.

4This consideration is mainly because in practice, each operator usually
makes a long-term decision instead of changing his decision frequently [36].

5This b can be interpreted as a minimum bandwidth allocation required in
order to deploy a certain service. b = 0 leads to a potentially undefined payoff
function when Bn,k = 0, ∀n for any k. So from a mathematical point of
view this constraint keeps the function continuous and easier to handle. Note,
this extra constraint will be finally removed when designing the spectrum
allocation algorithm at the end of this section.

Definition 2: N-BAG: This game can be represented by the
tuple

G = Γ
(
N , (Bn)n∈N , (Un)n∈N

)
. (15)

Here, N denotes the set of players which is identical to the
WSP set. For each player n, its strategy space Bn is defined
as the set of available spectrum bandwidth allocation profiles

Bn =

{
Bn

∣∣∣∣∣Bn = (Bn,k)k∈Kn
, Bn,k > b,

∑
k∈Kn

Bn,k = Bn

}
(16)

Based on Eq. (14), when given a strategy profile

(Bn)n∈N = (B1,B2, · · · ,BN ) ∈ (Bn)n∈N , (17)

the payoff function of each player n, n ∈ N , can be expressed
as

Un (Bn,B−n) =
∑
k∈Kn

φn,kBn,k

χn,k(B−n) + ηn,kBn,k
(18)

where the term χn,k(B−n) =
∑

m∈Nk,m̸=n

ηm,kBm,k depicts

the interference caused to player n from other players.
For a non-cooperative game, NE is the standard solution

standing for the equilibrium state, under which no player can
unilaterally improve its own payoff by choosing a different
strategy [15]. Accordingly, we have the following theorem
about the existence of NE for N-BAG.

Theorem 3: For our formulated non-cooperative game N-
BAG, there always admits at least one NE under which no
WSP would like to unilaterally change his own bandwidth allo-
cation strategy. Furthermore, when given other WSPs’ strategy
profile B−n, the best response of WSP n, B∗

n =
(
B∗

n,k

)
k∈Kn

,
is unique and can be expressed as

B∗
n,k = max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
.

(19)

where∑
k∈Kn

max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
= Bn.

(20)

Proof: The proof is given in C.
Based on the above, an iterative algorithm has been de-

veloped to obtain the NE of N-BAG, which is shown in
Algorithm 1. Particularly, at the beginning of this algorithm,
the starting point will be initialized based on the available
bandwidth of each WSP, i.e.,

∑
k∈Kn

Bn,k = Bn,∀n ∈ N . After

that, the algorithm goes into a loop. At each iteration t, each
WSP n calculates the optimal Lagrange multiplier υ∗n with
(20) and then, updates the best response Bn(t) by applying
(19). Then, the loop will stop when the relative difference
of the two optimal solutions obtained after the consecutive
iterations (i.e., (Bn(t− 1))n∈N and (Bn(t))n∈N ) is small
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Algorithm 1 : Computation of NE (B∗
n)n∈N .

1: Initialization: For ∀n ∈ N , initialize the starting point
Bn,k(0) satisfying

∑
k∈Kn

Bn,k = Bn and set t = 0.

2: repeat
3: Set t = t+ 1 and Bn(t) = Bn(t− 1) .
4: for n = 1 to N users do
5: Calculate the optimal Lagrange multiplier υ∗n with

Eq. (20)and then, update the best response Bn(t) by
applying Eq. (19).

6: end for
7: until the stop criterion shown in Eq. (21) is satisfied.
8: For Bn,k(t) being equal to b set its value (i.e., Bn,k(t))

and the corresponding payoff Un,k(t) to 0, ∀k ∈ Kn, ∀n ∈
N .

9: Set B∗
n = Bn(t) and U∗

n =
∑
n∈N

Un,k(t), ∀n ∈ N .

enough. Mathematically speaking, the stopping criterion of
Algorithm 1 can be expressed as∥∥(Bn(t))n∈N − (Bn(t− 1))n∈N

∥∥∥∥(Bn(t− 1))n∈N
∥∥ < ε (21)

where ∥·∥ denotes a proper vector norm and ε is a small
positive constant. Finally, the effects the added constraint that
Bn,k ≥ b would be eliminated with the step in line 8 of the
proposed algorithm.

Remark 3: It should be noted that given the initial point
(Bn(0))n∈N , Algorithm 1 will converge to the unique solution
NE (B∗

n)n∈N . Meanwhile, when the initial point changes, the
finally achieved solution may be different unless the NE of N-
BAG is unique. However based on our extensive simulation
results, we conjecture that the NE is unique and hence, the
algorithm will converge to the same point irrespective of the
starting allocation chosen.

Remark 4: From a mathematical perspective, note that this
game and the corresponding IWF algorithm proposed is indeed
quite similar to the well known IWFA for power allocation
[37]. However, a significant difference that makes the problem
harder to prove uniqueness of the NE is that, the water level in
each service k for this work are different unlike the uniform
water level over channels seen in [37].

Here, we note that the developed algorithm is an offline
algorithm. In addition, since we assume that each WSP
can acquire the related information of the co-players, this
algorithm can be independently implemented by each WSP
and will convergence to an NE when given the initial point.
Hence, with the finally obtained solution, no WSP has the
incentive to deviate from this strategy, i.e., the equilibrium
state is achieved. On the other hand, it is worth noting that
this algorithm can also be implemented by some neutral
institution [38] and the achieved NE based strategy would
be informed to each WSP independently, i.e., providing a
centralized bandwidth allocation scheme. Due to the fact that
each WSP knows he cannot unilaterally improve his own
revenue by choosing a strategy different from that suggested
by the neutral institution, these suggested strategies will be
adopted by these rational WSPs, eventually.

V. SIMULATION RESULTS

To validate the effectiveness of our theoretical analysis,
simulations are conducted and the corresponding results are
presented in this section. We consider the region where totally
K = 3 different services would be provided to users by HCNs,
i.e., macrocell service, picocell service and femtocell service,
which are labeled by 1, 2, and 3, respectively. Accordingly, the
three populations of users are respectively denoted by P1, P2,
and P3. Unless specified otherwise, the simulation parameters
are adopted as listed in Table I.

A. EE and ESS for users’ WSP selection

In this subsection, we illustrate the dynamics of user be-
havior. There exist three different WSPs each of which offers
all the three services to users. We label these WSPs as WSP
1, WSP 2 and WSP 3 and meanwhile, set the densities of
BSs deployed by them as (λ1,1, λ1,2, λ1,3) = (3, 15, 40),
(λ2,1, λ2,2, λ2,3) = (2, 40, 30) and (λ3,1, λ3,2, λ3,3) =
(1, 10, 60).6 Intuitively, this setting means that the three WSPs
respectively have their own appealing service. To see the
dynamics of users, we conduct the simulation in a region
with 1000 km2 and equally, consisting of 20000, 60000, and
100000 users in P1, P2 and P3, respectively. Here, we consider
that each WSP would equally allocate the available bandwidth
to each tier. During the initialization of this simulation, users
in each population would randomly select the available WSPs.
After that, they will adopt the pairwise proportional imitation
during the evolutionary progress, which means that each user
would randomly select an opponent and imitates the opponent
only if the opponent’s payoff is higher than his own with
probability proportional to the payoff difference [35]. The
dynamics of population state and payoff achieved by each user
are shown in Fig. 3 and Fig. 4, respectively.

From these two figures, we can see that the EE of formulat-
ed evolutionary game can be achieved less than 30 iterations.
Meanwhile, as shown in Theorem 2, when this equilibrium
state is achieved in each population, all the users will obtain
the same payoff no matter getting the service from which
WSP. In other words, from the perspective of payoff achieved
by each user, the load among WSPs is balanced when EE is
reached. In order to further show the asymptotic stability of
the EE, we suppose that at the moment that the evolutionary
time is 40, in each population there are 20 percents of the users
selecting WSP 1 and WSP 2 decide to churn to WSP 3, for
example, due to the inaccuracy of obtained information, i.e.,
the mutation occurs. It can be seen that the payoff achieved
by the user selecting WSP 3 is reduced due to the fact that the
mutation demolish the load balance among WSPs. However,
since the EE is asymptotically stable, the equilibrium state EE
would be finally reached again. For this reason, from the long
term perspective, it seems plausible for each WSP to evaluate
the market and investigate the deployment of his own HCN
based on this stable state of users’ behavior.

6All the density related parameters have the same units in this section, i.e.,
the number of BSs or users per km2. Hereafter, the units will be omitted for
convenience.
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TABLE I
DEFAULT SIMULATION PARAMETERS

Parameter and description value

The number of services (the number of user populations), K 3
The number of WSPs, N 3
The available bandwidth for WSP n, ∀n ∈ N 10 MHz
The densities of users, {λu

1 , λ
u
2 , λ

u
3} {20, 60, 100} per km2

The transmit power of BS, {Pn,1, Pn,2, Pn,3}, ∀n ∈ N {46, 35, 20} dBm per 10 MHz
The price of service, {Cn,1, Cn,2, Cn,3}, ∀n ∈ N {1, 0.5, 0.2}
The AWGN power density, N0 -174 dBm/Hz
The path-loss exponent, αn,k , ∀k ∈ K, ∀n ∈ N 4

The shadow fading mean, {µn,1, µn,2, µn,3}, ∀n ∈ N {1, 4, 8} dB
The shadow fading standard deviation, σn,k , ∀k ∈ K, ∀n ∈ N 8 dB
The required upper accuracy of Algorithm 1, ε 10−3
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Fig. 3. The dynamic of population sate in the population P1, P2 and P3. To illustrate the asymptotic stability of the EE, the mutation is added in each
population at the moment that the evolutionary time is 40.
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Fig. 4. The dynamic of payoff obtained by each user in the population P1, P2 and P3. To illustrate the asymptotic stability of the EE, the mutation is added
in each population at the moment that the evolutionary time is 40.

B. Convergence of Algorithm 1

In this subsection the convergence of our proposed algo-
rithm, i.e., Algorithm 1, is illustrated by simulations. Here,
the required relative accuracy ε (in Eq. (21)) and the added
bandwidth allocation constraint b (in Eq. (32)) are set to
10−3 and 10−5 MHz, respectively. Moreover, the densities
of BSs are set to the same value as in Section VI-A. To
show the uniqueness of NE for the formulated game N-BAG,
we run the simulation with 10000 independent realizations of
the initial point in our algorithm and for clearly exposition,

present 200 results in Fig. 5.7 Here, the bandwidth allocation
profile at iteration 0 denotes the starting point of the algorithm.
As illustrated in the figure, the equilibrium state of N-BAG
can be reached after a few iterations, i.e., about 5 iterations.
Moreover, we can see that the same strategy would be finally
adopted by each individual WSP which does not depend on
the initial point. In other words, the NE of the game is
unique. Besides that, we notice that for WSP 1, 2 and 3,
in order to achieve a higher payoff, they have allocated the
most bandwidth to macrocell service, picocell service and

7Although we have not shown all the 10000 simulation results here, we
note that the remain results have shown the same convergence behavior.
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Fig. 5. The bandwidth allocation strategies of three WSPs.
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Fig. 6. The bandwidth allocated to macrocell service vs. the densities of
MBSs and PBSs. It can be seen that the effects of BSs densities on bandwidth
allocation strategy are significant even for the case consisting of two WSPs.

femtocell service, respectively. One main reason lies into the
fact that, compared with other WSPs, they have deployed the
most dense BSs for these three different service, respectively,
e.g., λ1,1 > λ2,1 > λ3,1.

C. Performance evaluation

At the beginning of this subsection, we want to show the
effects of BSs’ densities on the bandwidth allocation of the
WSP. For easy of exposition, we consider two WSPs (WSP
1 and WSP 2) each of which would provide two services
(macrocell service and picocell service) to two populations
of users (P1 and P2). Here, we suppose that the densities
of users in the two populations and those of BSs deployed
by WSP 1 are fixed, which are set as (λu1 , λ

u
2 ) = (20, 60)

and (λ1,1, λ1,2) = (2, 20), respectively, while the densities
of MBSs and PBSs deployed by WSP 2 (i.e., λ2,1 and
λ2,2) vary. According to the changes of λ2,1 and λ2,2, the
bandwidth allocated to the macrocell service by WSP 2, B2,1,
and his achieved payoff, U2, are illustrated in Fig. 6 and 7,
respectively. In these figures, λ2,1 varies from 1 to 5 and
meanwhile λ2,2 varies form 5 to 60. Since B2,1 +B2,1 = B2

which is a constant, the results about B2,2 are omitted here
for the sake of brevity.

From Fig. 6 it is seen that the densities of MBSs and PBSs
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Fig. 7. The payoff achieved by WSP 2 vs. the densities of MBSs and PBSs.

have a significant effect on WSP 2’s bandwidth allocation
strategy even for the case consisting of two WSPs. More
specifically, two observations can be made. On one hand,
when given the density of PBS, λ2,2, the bandwidth allocated
to macrocell service, B1,2, first increases with respect to the
density of MBS λ2,1 and then decreases. Additionally, the
threshold is around λ2,1 = 2 which equals to the density of
MBSs deployed by WSP 1. The reason is that when λ2,1 is
small, in order to attract more users in population P1 and in-
crease his own payoff, WSP 2 has to allocate more bandwidth
to macrocell service to improve the competitiveness. However,
when λ2,1 > λ1,1 the macrocell service offered by WSP 2 can
provide users higher expected achievable rate per bandwidth,
i.e., R0

2,1 > R0
1,1. As shown in Theorem 1, this further means

that WSP 2 may attract more users in P1 than WSP 1 dose,
even WSP 2 allocates less bandwidth to this service. Hence, he
can allocate more bandwidth to the second service to further
improve the payoff. On the other hand, it is shown that when
given λ2,1, B1,2 would first decrease and then increase when
λ2,2 gradually becomes larger. The reason resulting in this
performance is similar to the one previously stated. Besides
that, it is not surprising that the divide in this case appears near
to the point that λ2,2 = 20, which is equal to λ1,2. Here we
should note that these results are different to those illustrated
in [13], where it is shown that the spectrum allocated to some
service s is monotonic increasing with respect to the density
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of the corresponding BSs λs. This difference is mainly caused
by the competition among WSPs.

To see the trend of the obtained payoff U2, we can refer to
Fig. 7. It should be noted that, in contrast to B2,1, the payoff
U2 is monotonically increasing with respect to both λ2,1 and
λ2,2. The reasons can be explained as follows. When deploying
more BSs, the WSP will have a higher competitiveness in the
market and hence, can attract more users to further improve his
own payoff. Additionally, another reason for the monotonically
increasing of U2 is due to the fact that the cost for BSs
deployment is not taken into account. Otherwise, the trend
of U2 would probably first increase and then decrease, since
the upper bound of the revenue could be obtained by WSP
2 in the market is fixed, i.e., λu1C2,1+λ

u
2C2,2, which appears

when every user chooses to get service from WSP 2.
Finally, we want to compare our algorithm with other three

bandwidth allocation schemes which are presented as follows.
• Uniform distribution (UD): With this approach each WSP

would equally divide the available bandwidth into sub-
bands and allocated them to different tiers.

• Proportion to density of BSs (PDBS): With this approach
each WSP would allocate the available bandwidth to each
tier based on the density of BSs, i.e.,

Bn,k : Bn,l = λn,k : λn,l,∀k, l ∈ Kn,∀n ∈ N . (22)

• Proportion to density of users (PDU): With this approach
each WSP would allocate the available bandwidth to
each tier based on the density of potential users in each
population, i.e.,

Bn,k : Bn,l = λuk : λul , ∀k, l ∈ Kn, ∀n ∈ N . (23)

We note that this scheme is similar to the one proposed
in [13], which focuses on the single WSP scenario.

Here, we consider there are three WSPs, each of which deploys
a 3-tier HCN with the BS density as λ1,k = 2λ2,k = 4λ3,k,
where (λ3,1, λ3,2, λ3,3) = (0.5, 5, 10). In addition, the avail-
able bandwidth of the three WSPs are set as (B1, B2, B3) =
(20, 10, 5) MHz, which means that the bandwidth obtained
by each WPS is not the same and may sometimes happen
in some practical cases. Based on the different deployment of
HCNs, we consider that the price charged by WSPs are also d-
ifferent: (C1,1, C1,2, C1,3) = (2, 0.8, 0.4), (C2,1, C2,2, C2,3) =
(0.8, 0.3, 0.1), and (C2,1, C2,2, C2,3) = (0.3, 0.05, 0.01). We
evaluate the performance of these schemes in terms of the
sum payoff U =

∑
n∈N

Un and Jain’s fairness index, i.e.,

J =

( ∑
n∈N

Un

)2
/(

N
∑

n∈N
(Un)

2

)
, which are illustrated

in Fig. 8 and 9, respectively. While λu3 varies from 60 to 150
during the simulation, the density of users in P1 and P2 are
set according to Table I, i.e., λu1 = 20 and λu2 = 60.

From Fig. 8 we can see that, compared with other three
schemes, our proposed algorithm can bring the highest sum
payoff to WSPs. For instance, when λu3 = 150 our algorithm
yields a performance advantage around 11.8% relative to the
scheme PDBS, i.e., from 66.01 to 73.77. The main reason for
this improvement mainly lies into the fact that, by formulating
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the bandwidth allocation problem as a game, the rational
WSPs could intelligently allocate the available bandwidth
into different tiers fully considering the effects caused by
the competition from other WSPs. In addition we can find
that the sum payoff achieved by the scheme UD and that by
PDU is the same. To explain this, it should be noted that
when implementing these two strategies, the ratio of provided
bandwidth from different WSPs is the same for a given service,
i.e., B1,k : B2,k : B3,k = 4 : 2 : 1, ∀k ∈ K. Recalling Eq. (14),
this further means that a particular WSP n will obtain the same
payoff when adopting UD and PDU. To see the fairness we
can refer to Fig. 9, which shows that our proposed approach is
the fairest one among these four schemes. This is mainly due
to the fact both the rationality and individual interest of each
WSP can be well considered by resorting to the game theory
based formulation. Meanwhile, it is not surprising to see that
UD and PDU also have the same performance. The reason
is the same as previously described. As a consequence, the
simulation results illustrated in these two figures demonstrate
that, compared with the scheme UD, PDBS and PDU, the
equilibrium solution achieved by Algorithm 1 is efficient as
well as fair.
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VI. CONCLUSIONS

The users’ wireless service provider (WSP) selection as well
as WSPs’ bandwidth allocation in multi-tier heterogeneous
cellular networks (HCNs) has been investigated by adopting
the approach combining stochastic geometry and game theory.
To be more specific, after analyzing the expected average rate
for users, the WSP selection of users has been formulated
as an evolutionary game. Then, a closed form expression
for the EE (which denotes the state of user behavior at
equilibrium) and its asymptotic stability has been proven.
Based on this analysis, the bandwidth allocation of WSPs as a
non-cooperative game has been formulated and the existence
of Nash equilibrium (NE) has been proven. Here, an algorithm
used to achieve the NE has also been developed. Simulation
results have shown the effects of the BSs’ as well as users’
densities on the WSP’s bandwidth allocation decision. In
addition, it has also been demonstrated by simulation that,
compared with other schemes, an efficient and fair solution
would be obtained by implementing our proposed algorithm.

APPENDIX A
PROOF OF THEOREM 1

Proof: Substituting Eq. (11) into Eq. (12), we can e-
qually transform the replicator dynamics of the formulated
evolutionary service selection game as Eq. (24). Based on Eq.
(24), we note that to get the EE x∗ we should make sure that
ẋ∗ak

= 0, ∀ak ∈ Ak,∀k ∈ K. Meanwhile, recalling that x>ak
0

(∀ak ∈ Ak, ∀k ∈ K) and
∑

ak∈Ak

xak
= 1, we have

x∗ak
=
βak,kR̄

0
ak,k

βa′′
k ,kR̄

0
a
′′
k ,k

x∗
a
′′
k

,∀ak, a
′′

k ∈ Ak (25)

and ∑
a
′
k∈Ak

βa′
k,k
R̄0

a
′
k,k

βa′′
k ,kR̄

0
a
′′
k ,k

x∗
a
′′
k

= 1 (26)

Further, we can get the expression of the EE as

x∗ak
=

βak,kR̄
0
ak,k∑

a
′
k∈Ak

βa′
k,k
R̄0

a
′
k,k

=

λak,kBak,k

Cak,k
R̄0

ak,k∑
a
′
k∈Ak

λ
a
′
k
,k
B

a
′
k
,k

C
a
′
k
,k

R̄0
a
′
k,k

(27)

where ∀ak ∈ Ak, ∀k ∈ K.
Then, replacing the term λak,kBak,k

Cak,k
by ηak,k we can draw

the conclusion shown in Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

Proof: Based on the folk theorem of an evolutionary
game, any strict NE corresponds to an ESS [27]. Meanwhile,
it is obvious that the solution in Eq. (13) is an equilibrium for
the evolution dynamics in Eq. (12), since there is no player
would change his own strategy, i.e., ẋs = 0 for any s ∈ S .
Hence, we will prove this theorem by showing the equilibrium
x∗ is a strict NE. Considering the evolution game operates in
EE x∗, the payoff obtained by a user selecting service s is

πs(x
∗) = ln

(
1 +

βsR̄
0
s

x∗
s

)
(as shown in Eq. (11)). In addition,

we have πs(x∗) = πl(x
∗), ∀s, l ∈ S . Now, suppose that some

user (or users) deviates (or deviate) the strategy from s to l
where s ̸= l, and then the population state becomes

x̂ =
(
x∗1, · · · , x∗s − ξ, · · · , x∗l + ξ, · · · , x∗|S|

)
(28)

where the constant ξ > 0 is determined by the number of
users deviating the strategy. In addition, with the deviation
from strategy s to l, the payoff of the user becomes

πl(x̂)=ln

(
1 +

βsR̄
0
s

x∗l + ξ

)
< ln

(
1 +

βsR̄
0
s

x∗l

)
=πl(x

∗). (29)

It follows that πs(x∗) > πl(x̂) and further means that the
deviating from the equilibrium state will lower the payoff of
the user, which satisfies the definition of the strict NE.

Now, the proof is completed.

APPENDIX C
PROOF OF THEOREM 3

Proof: First, we will prove the existence of NE for the
formulated game N-BAG. After some algebraic computations
we can transform the payoff of WSP n as

Un (Bn,B−n) = τn −
∑
k∈Kn

λukCn,kχn,k(B−n)

χn,k(B−n) + ηn,kBn,k
(30)

where τn =
∑

k∈Kn

φn,k

ηn,k
=

∑
k∈Kn

λukCn,k. It is easy to prove

that the n-th player’s payoff Un is concave over his strategy
set Bn for each fixed B−n and meanwhile, the strategy space
(Bn)n∈N is a closed and bounded convex set [39]. Therefore,
we can know that G is a concave game which always admits at
least one NE [40]. We note that this proposition can be proved
through three steps. First, when given a strategy profile, it can
be proved that the best response of each player is compact
and convex which is due to the continuity and concavity of
the payoff function. Then, it can be proved that that the best
response function Ω : (Bn)n∈N → (Bn)n∈N is upper semi-
continuous. Finally, by applying Kakutani fixed point theorem,
it can be proved that there exists a fixed point Ω((B∗

n)n∈N ) =
(B∗

n)n∈N . To be more specific, this fixed point (B∗
n)n∈N is a

NE for the considered concave game.
Next, we will derive the expression of the best response of

WSP n when given the strategy profile of other WSPs B−n. In
this case, for each player n, selecting the strategy maximizing
his own payoff is equivalent to solving the following optimal
spectrum allocation problem

P : min
Bn

∑
k∈Kn

λukCn,kχn,k(B−n)

χn,k(B−n) + ηn,kBn,k
(31)

s.t. Bn,k ≥ b,∀k ∈ Kn, (32)∑
k∈Kn

Bn,k = Bn, (33)

which is a convex problem. For problem P, the lagrangian
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ẋak
= δxak

(
ln

(
1 +

βak,kR̄ak,k,u

xak

)
−

∑
a′

k∈Ak

xa′
k
ln

(
1 +

βa′
k,kR̄a′

k,k,u

xa′
k

))
, ∀ak ∈ Ak, ∀k ∈ N (24)

function can be written as

Ln =
∑
k∈Kn

λukCn,kχn,k(B−n)

χn,k(B−n) + ηn,kBn,k
(34)

−
∑
k∈Kn

θn,k (Bn,k − b) + υn

(∑
k∈Kn

Bn,k −Bn

)
where θn,k ≥ 0 and υn are the Lagrange multipliers [39].
Moreover, the KKT conditions can be expressed as

∂Ln

∂Bn,k
= − λukCn,kχn,k(B−n)ηn,k

(χn,k(B−n) + ηn,kBn,k)
2 − θn,k + υn = 0,

Bn,k ≥ b,
∑
k∈Kn

Bn,k = Bn,

θn,k ≥ 0, θn,k (Bn,k − b) = 0, ∀k ∈ Nk. (35)

Since problem P is a convex problem, the optimal variable
B∗

n =
(
B∗

n,k

)
k∈Kn

can be achieved by solving the KKT
conditions (35), which could be further transformed as

υn ≥ λu
kCn,kχn,k(B−n)ηn,k

(χn,k(B−n)+ηn,kBn,k)
2 ,

(Bn,k − b)
(
υn − λu

kCn,kχn,k(B−n)ηn,k

(χn,k(B−n)+ηn,kBn,k)
2

)
= 0,

Bn,k − b ≥ 0,
∑

k∈Kn

Bn,k = Bn, ∀k ∈ Nk. (36)

To solve the above equations, two disjoint cases need to
be considered. Firstly, if υn <

λu
kCn,kχn,k(B−n)ηn,k

(χn,k(B−n))
2 =

λu
kCn,kηn,k

χn,k(B−n)
, the first three conditions in Eq. (36) only hold

when

Bn,k =

√
λukCn,kχn,k(B−n)

υnηn,k
− χn,k(B−n)

ηn,k
≥ b. (37)

or

Bn,k = b,

√
λukCn,kχn,k(B−n)

υnηn,k
− χn,k(B−n)

ηn,k
< b. (38)

On the other hand, if υn ≥ λu
kCn,kηn,k

χn,k(B−n)
, then Bn,k > b >

0 and the second condition in Eq. (36) can not be satisfied
simultaneously, which further means Bn,k can only equal to
b. To this end, the optimal solution B∗

n =
(
B∗

n,k

)
k∈Kn

can
be expressed as

B∗
n,k = max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
.

Meanwhile, recalling the constraint that
∑

k∈Kn

Bn,k = Bn, we

can get the optimal Lagrange multiplier υ∗n by solving

∑
k∈Kn

max

{
b,

√
λukCn,kχn,k(B−n)

υ∗nηn,k
− χn,k(B−n)

ηn,k

}
= Bn.

Finally, we will prove the uniqueness of B∗
n when given

B−n. It should be noted that the left side of the above equation
is a piece-wise-linear increasing function of 1

υ∗
n

, hence the
solution of this equation is unique when given B−n, which
further means that the solution shown in Eq. (19) is also unique
in the same case, i.e., given B−n.

Now, we complete the proof.
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