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We present the results of a systematic numerical investigation of force distributions in granular packings. We find that all the 
main features of force transmission previously established for two-dimensional systems of hard particles hold in three-
dimensional systems and for soft particles, too. In particular, the probability distribution of normal forces falls off 
exponentially for forces above the mean force. For forces below the mean, this distribution is either a decreasing power law 
when the system is far from static equilibrium, or nearly uniform at static equilibrium, in agreement with recent experiments. 
Moreover, we show that the forces below the mean do not contribute to the shear stress. The subnetwork of the contacts 
carrying a force below the mean thus plays a role similar to a fluid surrounding the solid backbone composed of the contacts 
carrying a force above the mean. We address the issue of the computation of contact forces in a packing at static equilibrium. 
We introduce a model with no local simplifying force rules, that allows for an exact computation of contact forces for given 
granular texture and boundary conditions.

The inhomogeneous distribution of contact forces is
straightforward evidence of the mesoscopic scalein
granular packings. Computer simulations have recently
helped to reveal thebimodal feature of force transmission
at this scale. The interparticle contacts form two comple-
mentary networks, a ‘‘weak’’ network of the contacts
carrying a force below the mean force and a ‘‘strong’’
network of the contacts carrying a force larger than the
mean force, that exhibit quite different behaviors. The
whole shear stress is sustained by the strong network, the
weak network contributing only to the mean pressure.
The strong forces have a decreasing exponential distribu-
tion, whereas the weak forces show either a power law or
a nearly uniform distribution. The anisotropy and the
frictional dissipation inside the two networks are differ-
ent, too. Our numerical investigations have allowed us to
establish the robustness of this behavior with respect to
space dimension, material parameters, and boundary
conditions.

I. INTRODUCTION

Particle motion has been at the focus of experimental
observation more often than contact forces.1 Examples are
hopper flow, granular avalanches, and size segregation.
Moreover, purely kinematic models are naturally favored in

most communities interested ingranularmaterials. However,
the crucial role played by the contact network and its inher-
ent correlations does not appear in a straightforward way in
the velocity field. In this respect, the inhomogeneities ob-
served in the contact forces by means of the photoelastic
method2–4 or simulations similar to the one displayed in Fig.
1 are quite significant. They provide a faithful and direct
image of the correlations inside the underlying geometry
both at static equilibrium and in the course of its evolution.
For this reason, a detailed knowledge of the mechanisms of
force transmission should have a far-reaching impact on our
understanding of dynamical phenomena, flow regimes, and
plastic thresholds in granular materials.5

In this paper, we study the probability distribution of
contact forces both in two-dimensional~2D! and three-
dimensional~3D! systems. The robustness of the results with
respect to material parameters, boundary conditions and nu-
merical procedures will be emphasized. We show that in
both 2D and 3D systems the distribution of interparticle nor-
mal forces is a power law with a negative exponent or nearly
uniform for the forces below the mean force, and a decreas-
ing exponential for larger forces, the values of the exponents
depending on the average coordination number or the extent
of departure from static equilibrium. Then, we introduce a
model of contact forces in a packing at static equilibrium. In
this model, the contact network is explicitly accounted for,
so that no local force rule is needed like in other models of
force transmission in granular packings. This model allows
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for an efficient computation of contact forces when a static
solution exists. The force distributions obtained by this
method are similar to those observed in contact dynamics
and molecular dynamics simulations. Finally, we will discuss
the relevance of the statistical properties of the force network
to the overall description of force transmission in terms of
the stress tensor.

II. SIMULATION METHODS

We used two different simulation methods: contact dy-
namics ~CD! and molecular dynamics~MD!. The CD
method is based on the hard-particle approximation with
three material parameters: the coefficient of friction and the
coefficients of normal and tangential restitution.6–8 The Cou-
lomb friction law and the condition of particle impenetrabil-
ity are prescribed without any regularization. In the MD
method, a regularized form of the friction law~commonly a
viscoplastic formulation of it!is used, and a repulsive inter-
action potential is introduced in order to take care of the hard
core mutual exclusion of the particles.9,10 Depending on the
stiffness, the particles can be made more or less soft. Several
schemes exist for the implementation of the method. For the
MD simulations reported in this paper, we used a fifth-order
predictor–corrector scheme.11

The CD method is naturally more efficient than the MD
method, and it provides a more precise prescription of the
Coulomb friction law. Assuming that the particles are per-
fectly rigid, the CD method handles the nonsmooth motion

~involving velocity jumps!of particles due to multiple colli-
sions ~transmission of momenta through the whole contact
network! by means of the coefficients of restitution and a
relaxation procedure similar to the Gauss–Seidel method. In
the limit of dilute systems, the CD method becomes equiva-
lent to the so-called event-driven method widely used for the
simulation of granular gases. The phenomena in which elas-
ticity is involved, such as wave propagation, cannot be simu-
lated by the CD method. Such problems should rather be
tackled by the MD method provided a fine time resolution is
employed.

As far as the contact forces are concerned, we expect
similar results from the two methods for stiff particles. The
reason is that the contact forces in a noncohesive granular
packing are basically determined by the contact network and
the external forces acting on the particles. Differences may
arise as a result of the organization of the contact network
itself following the method used. For example, the coordina-
tion number, i.e., the average number of particles touching a
particle, seems to decrease with the particle stiffness in MD
simulations.

Another source of discrepancy is the ‘‘nonsmooth’’ fea-
ture of the dry friction law: The sliding velocity and the
friction force at a contact belong to a set of admissible values
which cannot be represented as a mathematical function.6,7,12

This property makes a granular packing at static equilibrium
hyperstatic, i.e., there are more forces to be determined than
balance equations.12 In the CD method, these indetermina-
cies are removed by the dynamics and force history. For
example, in a pile at static equilibrium, the forces are par-
tially determined by the preparation process. In the MD
method, there is no indeterminacy because of the regulariza-
tion of contact laws~contact elasticity and viscous friction
around zero sliding velocities!. Our simulations suggest that
only very weak forces are influenced either by the history in
CD simulations or by the force schemes in MD simulations.
However, most of time, those weak forces are close to the
limit of numerical precision. We may assume that they pro-
vide aphysicallimit of precision for our numerical results.

III. STATIC FORCES

A. Two-dimensional systems

We simulated the same system of 4000 circular particles,
once by the CD method and then by the MD method. Particle
radii were uniformly distributed between 3.7 and 7.5 mm.
The gravity and the particle-wall coefficient of friction were
set to zero. The particle–particle coefficient of friction and
the coefficient of normal restitution were 0.4 and 0.2, respec-
tively. The particles were contained in a rectangular box.
One of the walls was loaded by a constant force. The system
was biaxially compressed by the inward motion of one of the
walls. Then the compression was stopped and the system
was allowed to relax to the static equilibrium.

Figure 2 shows the probability densityP of normal
forces at static equilibrium for the CD and MD simulations.
We see that the two distributions collapse on the same curve
except when the force decreases toward zero, where we ob-
serve a small decrease ofP in MD simulations compared to

FIG. 1. Normal forces in a packing of 4000 particles compressed biaxially.
Line thickness is proportional to the normal force.

2



CD simulations. For forcesN below the mean̂N&, referred
to as ‘‘weak forces,’’P is nearly uniform. For forces larger
than the mean force, the ‘‘strong forces,’’P decreases expo-
nentially,

P}e2bN/^N&, N/^N&.1. ~1!

The exponentb equals roughly 1.4. The nearly uniform dis-
tribution of weak forces is an interesting feature of the dis-
tribution. The weak forces, comprising nearly 60% of con-
tacts, are more frequent than the mean force itself.

B. Three-dimensional systems

We simulated two systems of 4000 particles contained in
cylindrical box with two different coefficients of friction 0.1
and 0.4. The samples were prepared by a uniaxial compres-
sion under the action of a constant load applied on the upper
lid. Figure 3 shows the distributionP of normal forces at
static equilibrium. The two distributions collapse nearly on
the same curve with the same value 1.4 ofb as in the above
2D systems. Figure 4 displays the force network in a thin
layer parallel to cylinder axis. Strong ‘‘force chains’’ can
easily be distinguished as in a 2D packing. The strongest
chains have a linear aspect and they are mostly parallel to the
axis of compression~vertical!.

Our simulated system is similar to the experimental
samples of Muethet al.,13 who used a refined carbon paper
technique for measuring the normal forces on the interior
surfaces of a cylindrical vessel filled with spherical particles.
They found a similar result for the distribution of normal

forces with almost the same value 1.4 ofb as in our simu-
lations, although they measured only wall-particle forces and
the smallest forces they measured were only one decade be-
low the mean force. We checked that the distributionP in
our simulations is the same at the contacts along the confin-
ing walls as inside the packing.

Furthermore, Mueth and co-workers proposed the func-
tional form

f ~N!5a~12be2N2
!e2bN, ~2!

which fits the distributionP over the whole range of the
measured normal forces. Figure 5 shows that the form~2!
with b50.6 andb51.35 fits our data excellently, as well,
except forN→0. Actually, a slight increase inP was ob-
served in the experiments asN decreased toward zero. We
have observed a similar increase in our simulations, but we
checked that it was related to the numerical precision in the
range of very weak forces, i.e., below 0.1% of the mean
force. As argued by Muethet al.,13 the above function for the
range of weak forces provides a fit essentially indistinguish-
able from a power lawN2a which we proposed following
our early simulations,14 as long asa is positive and close to
zero. However, as we shall see below, as soon as the coor-

FIG. 2. Probability densityP of normal forces in a 2D packing at static
equilibrium for the CD and MD simulations; see the text. Forces are nor-
malized with respect to the mean force.

FIG. 3. Probability densityP of normal forces in two 3D packings of
spheres at static equilibrium with coefficients of friction 0.1 and 0.4. Forces
are normalized with respect to the mean force.

FIG. 4. Normal forces in a thin layer inside a 3D packing at static equilib-
rium. Line thickness is proportional to the normal force. The gray level
corresponds to the field depth. Filled circles are particle centers.

FIG. 5. Probability densityP of normal forces in a packing at static equi-

librium fitted by the form f (N)5a(12be2N2
)e2bN, with b50.6 andb

51.35, proposed by Muethet al. Forces are normalized with respect to the
mean force.
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dination number decreases due, for example, to fast shearing,
the distribution of weak forces is well described by a de-
creasing power lawN2a and the functional form~2! is not
suited any more.

Although the fitting form~2! suggests a continuous tran-
sition from weak forces to strong forces, it does capture the
very different statistical behaviors of weak and strong forces.
This difference is further materialized in the way the weak
forces take part in the overall shear stress, geometrical an-
isotropy and frictional dissipation in the contact network.15

Some aspects of such a ‘‘bimodal’’ character of the force
network will be discussed in Sec. VI.

IV. DYNAMIC FORCES

The contact network plays the same role for the random-
ization of forces in a dense packing of particles as the binary
collisions in a granular gas for the particle momenta.13,16 In
static equilibrium, the mean coordination numberz is con-
trolled by the confining pressurep, the coefficient of friction
m, and the dynamical processes from which the equilibrium
state is reached. Nevertheless, whatever the values ofp and
m, the requirement of static equilibrium for each particle
together with geometrical disorder imply a mean coordina-
tion number larger than 3 in a 2D packing. In the CD simu-
lations with circular particles, we find a value ofz ranging
from 3.2 to 3.8.

In contrast, when a granular packing is forced to deform,
z may decrease below 3. This means that a subset of particles
has either two contacts or no contacts at all. The forces are
then less efficiently redistributed than at static equilibrium.
This implies long-range force correlations within the contact
network. Figure 6 shows an example of normal forces in a
system of 3000 particles biaxially sheared by the fast motion
of one of the walls. We observe a strong concentration of
forces on contact lines ranging over the whole system and a
ramified structure around them. These lines are naturally un-
stable and dynamical in nature. In fact, the whole force net-

work is constantly modified in the course of deformation.
What is the probability distribution of these ‘‘dynamic’’
forces?

We simulated three different systems, which we will re-
fer to as A, B, and C. All of them are biaxially sheared with
the same shear speed, but the confining pressurep decreases
from system A to system C. Hence, the rate of energy injec-
tion and thus the dynamic motion of particles increases from
A to C, and at the same timez decreases. The coordination
numbers, considering only force-transmitting contacts, are
2.4, 2.1, and 1.6 in systems A, B, and C, respectively. We
found that in all cases the forces larger than the average^N&
are exponentially distributed, but the exponentb is reduced
from 1.4 in A to 1 in C. On the other hand, our data, repre-
sented on the log–log scale in Fig. 7, show that the weak
forces have a power law distribution with an exponenta
increasing in absolute value from A to C. This distribution
can be roughly written in the following form:

P~N!5H k S N

^N& D
2a

, N/^N&,1

keb(12N/^N&), N/^N&.1,

~3!

wherek is the normalization factor given by

1

k
5

1

12a
1

1

b
. ~4!

Moreover, considering the mean force^N& as the point of
crossover between the two parts of the distribution, we get
the following relation between the exponents:

b25~12a!~22a!. ~5!

Note that the nearly uniform distribution of static forces is
recovered by settinga50 in Eq. ~3!. Then, from Eq.~5! we
get b5A2.1.4, which is the value we found for the distri-
bution of static forces. Of course, it is desirable to find a
single form fitting the whole range of forces for the distribu-
tion of dynamic forces. However, the writing in Eq.~3! rea-
sonably describes the basic trends of the distributions ob-
served in Fig. 7.

The power law divergence of the number of forces as the
force decreases toward zero remains to be understood, as
well as the nearly uniform distribution of weak static forces.
Figure 6 suggests a self-similar branching process for weak
forces. The absence of a force scale in the weak network

FIG. 6. Normal forces in a system of 3000 particles biaxially sheared by the
fast motion of one of the walls. Line thickness is proportional to the normal
force.

FIG. 7. Probability densityP of normal forces in three different 2D pack-
ings out of equilibrium as a result of fast shearing; see the text. Forces are
normalized with respect to the mean force.
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means that the corresponding contacts are partially
‘‘screened’’ by archlike structures inducing local force cor-
relations.

V. COMPUTING STATIC FORCES

A simple way to model the contact forces is to consider
the components of the forces acting on each particle along a
fixeddirection in space and require that these components are
exactly balanced on each particle. The granular medium can
then be thought of as composed of parallel layers perpen-
dicular to that direction, the particles of each layer touching
those of adjacent layers. The idea behind the so-called ‘‘q
model’’17 was to model the inherent disorder of the contact
network by assuming that the incoming forces from a layer
i 21 into the layeri are randomly redistributed into the layer
i 11. This particular local force rule is the simplest one, but
it can obviously be replaced by other rules in view of a better
matching of the results to the data. The merit of this model is
that it is amenable to an analytical treatment. Asymptoti-
cally, i.e., for i→`, the model predicts a purely exponential
force distributionP(F)}e2F/F0. This is an interesting result
in itself compared to numerical and experimental observa-
tions although the model is based on crude approximations.

Of course, a layer-by-layer ‘‘propagation’’ of static
forces through a local force rule is not realistic since it re-
places a boundary value problem by a diffusive initial value
problem in space. Moreover, the invariance by rotation re-
quires a vectorial formulation of the problem. Even then,
these conditions may be quite insufficient to provide the right
distribution of forces. The reason is clear from the numerical
results: the strong contacts form chains and loops, i.e., local
correlations and nonlocal interactions, which may not easily
be captured in a nondiffusive model. In other words, in order
to tackle the problem of force distribution it is essential to
accountab initio for the granular texture, i.e., the contact
network, instead of introducing an arbitrary local force rule.

Indeed, we show here that the forces can be computed
for a granular packing without any other physical input than
the requirement of static equilibrium for each particle, given
the contact network and external forces. In order to simplify
the presentation, we consider only the normal forces, though
the method can be generalized with no difficulty to include
friction forces with the Coulomb friction law.

Consider two particles in the bulk of a granular medium
touching at the contactc. From the equations of static equi-
librium for each particle, the following relation is easily de-
rived:

N5 1
2 ~Nin2Nout!, ~6!

whereN is the force at the contactc, Nin is the sum of the
components of all forces pushing the two particles against
one another along the contact normal~incoming forces!, and
Nout is the sum of the components of all forces tending to
separate the two particles from one another along the contact
normal ~outgoing force!. This is a ‘‘transfer equation’’ for
the contactc in the sense that it relates the forceN acting
between the two particles to in and out forces exerted by

other particles. We thus transform the system of equations of
static equilibrium for the particles into a set of transfer equa-
tions for the contacts.

Physically, Eq.~6! means that a contact force in a granu-
lar medium is given by a difference. As a result, however
large the values of in and out forces, the force at a contact
can be arbitrarily weak. This is quite plausible in view of the
nearly uniform probability distribution of weak forces. For a
given contact, the in force is a compressive force, whereas
the out force plays the same role as a tensile force. The limit
of Nin5Nout implies N50, which corresponds to a full
screening of the contact by the surrounding contacts.

The transfer equation suggests a very simple relaxation
method for the computation of forces. Start with a set of
arbitrary valuesN of all contact forces. From these values
and the known external forces, compute the values ofNin and
Nout and henceN850.5(Nin2Nout) for each contact. Then,
do the following:

if N8,0 → N950,

if N850 → N95N8, ~7!

and start again withN5N9 at each contact. For a given
precision d.uN92N8u, the iteration of this process con-
verges to a solution which fulfills the transfer equation for
each contact and hence the equations of static equilibrium for
each particle. We found that the relaxation is smooth and
fast. If the iteration does not converge, there is no static
solution. Different aspects of this method, such as the influ-
ence of the underlying contact network and the initial values
of forces, will be presented elsewhere. We note that other
methods have been proposed as alternatives to theq model
for computing static forces.18–20

For the computation of dynamic forces, the transfer
equation should be extended to include particle accelera-
tions. Then, a similar method may be employed to calculate
both forces and accelerations. The CD method itself may be
viewed as an implementation of the above idea.

In Fig. 8, we have shown an example of the computed
forces in a system of 15 000 disks of the same size forming
a triangular contact network. In order to randomize the net-
work, we removed a subset of contacts by requiring that the

FIG. 8. Normal forces in a system of 15 000 disks of the same size forming
a triangular contact network, as computed by a relaxation method over
transfer equations; see the text.
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force is zero at those contacts. This ‘‘substitutional disorder’’
is strong enough to allow for an inhomogeneous distribution
of forces. The only boundary force is applied on one of the
walls for which a transfer equation is written in the same
spirit as for the particles. Furthermore, in order to ensure a
full equivalence between the set of equations of static equi-
librium and the set of transfer equations, we consider the
zero forces at nontransmitting contacts as external forces.
We get three transfer equations per particle, since on a trian-
gular network each particle has six contacts and each contact
is shared by two particles. In this way, the two equations of
static equilibrium for each particle transform into three trans-
fer equations on three contacts with different directions.
When a contact is considered as nontransmitting, this does
not reduce the number of equations since the zero force at
the contact is treated as an external force, but the number of
unknown forces to be determined is thus reduced.

The computation time depends naturally on the precision
required. For a precision of the order 0.001 times the mean
force, the system shown in Fig. 8 can be computed in not
more than half an hour on a workstation of moderate power.
We remark that the friction forces can easily be included in
this method and that the computation of the forces does not
necessarily require a regular underlying contact network. In
contrast to theq model, we found a uniform distribution for
the weak forces and a decreasing exponential distribution for
the strong forces.

VI. FORCES AND THE AVERAGE PRESSURE

What do we learn about the average pressurep in a
granular medium from the force distributions? The pressure
in a granular medium is a statistical quantity. From the ex-
pression of the stress tensor, the following relation between
the average pressure and the mean force is easily derived:16

p5nc^ l &^N&, ~8!

wherenc is the number of contacts per unit volume, and^ l &
is the average distance between the centers of touching par-
ticles. To establish the above expression, the weak correla-
tion between the contact forceN and the intercenter distance
l has been neglected.

Equation~8! is similar to the expression of kinetic pres-
sure in a molecular gas, namelyp5npkBT, wherenp is the
number of particles per unit volume,kB is the Boltzmann
constant, andT is the temperature. The distributionP of
contact forces plays the same role with respect to the static
pressure in a granular system as the Maxwell–Boltzmann
distributionPB of particle velocities in a gas with respect to
the kinetic pressure. The important difference between the
two distributions is that, on one handP is much wider than
PB , and on the other hand, in contrast withPB , P shows no
peak. The absence of a central tendency in the statistics of
contact forces means that the pressurep does not by itself
provide a sufficient average information about the full range
of contact forces.

In this respect, given that the mean force is approxi-
mately the turning point from weak forces to strong forces in
the distributionP, we may at least distinguish the contribu-

tions pw and ps of weak and strong forces, respectively, to
the overall pressurep5pw1ps . From the expression ofP,
we get

pw

p
5

*0
^N&NP~N! dN

*0
`NP~N! dN

5
1

22a

12a
1

22a

b

. ~9!

In static equilibrium, fora50 and b51.4, we havepw

.0.29p. This distinction between ‘‘weak’’ and ‘‘strong’’
pressures would remain purely formal if the weak forces
contributed exactly the same way as strong forces to the
mechanical properties of a granular medium. Our simula-
tions by the CD and MD methods show that this is not the
case. Figure 9 shows the contribution of the forces belowj
to the stress ratioq/p as a function ofj in a simple shear
deformation simulated by the MD method. A similar behav-
ior was observed by the CD method.15 We see that the weak
forces give almost no contribution to the shear stress. The
whole shear stress is sustained by the strong network. In
other words, the weak pressure is mechanically similar to a
fluid pressure.

This means that, quite apart from its importance as a
physical phenomenon in its own right, the local inhomoge-
neity of contact forces is not indifferent to the macroscopic
description of a granular material. From a statistical point of
view, this behavior implies that a granular medium is com-
posed of two distinct and complementary phases. The ‘‘weak
phase’’ behaves like a fluid, whereas the ‘‘strong phase’’
constitutes the solid backbone of the medium.

VII. CONCLUSION

We presented a set of numerical observations about the
distribution of contact forces in a granular packing. Both
contact dynamics and molecular dynamics methods were
used for the simulations. We showed that the forces below
the average force~weak forces!have a generic power law
distribution, whereas the forces larger than the average force
~strong forces!have a decreasing exponential distribution.
The power law distribution of weak forces becomes a nearly
uniform distribution at static equilibrium, in agreement with

FIG. 9. Contribution of the forces belowj to the stress ratioq/p as j is
increased from zero to the maximal force in a simple shear simulated by the
MD method.
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the experiments of Muethet al.13 These robust features of
force distribution are the same in both two- and three-
dimensional packings.

We introduced a simple model that allows for an effi-
cient computation of static forces. The equations of static
equilibrium are first transformed into a condition of force
transfer across the contact between two touching particles.
Then, a relaxation scheme is used over the transfer equations
in order to compute the contact forces. We applied this
method to a regular packing with a prescribed contact disor-
der, and found the same force distribution as observed in
simulations. This model implies no local force rule assumed
in other models of force transmission in granular packings.

Finally, we discussed the relevance of these findings to
the mean pressure and shear stress in a granular packing. We
argued that the contributions of weak and strong forces
should be distinguished. A careful analysis of the data
shows, indeed, that the weak forces do not contribute to the
shear stress. The weak pressure is analogous to a fluid pres-
sure, whereas the strong forces bear the whole shear stress of
the medium.

Coming to the perspectives of this work, it is obvious
that several aspects of the problem, such as the distribution
and activation of friction forces and the behavior of dynamic
forces in a gradual crossover from static equilibrium to a
fully fluidized regime, are to be pursued. We think that the
two-phase behavior of the contact forces is not only a prop-
erty of the forces, but more fundamentally a property of the
contact network itself. The analysis of the anisotropy of the
contact network in connection with the forces shows indeed
interesting correlations.15 An investigation of the local cor-

relations of the contact network may provide a key for un-
derstanding the origins of the force distributions as observed
in numerical simulations and experiments.
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