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ON A PRIMAL-MIXED, VORTICITY-BASED FORMULATION
FOR REACTION-DIFFUSION-BRINKMAN SYSTEMS

VERÓNICA ANAYA∗, MOSTAFA BENDAHMANE† , DAVID MORA‡ , AND RICARDO RUIZ-BAIER§

Abstract. We are interested in modelling the interaction of bacteria and certain nutrient concentration within a porous
medium admitting viscous flow. The governing equations consist of a reaction-diffusion system representing the bacteria-
chemical mass exchange, coupled to the Brinkman problem written in terms of fluid vorticity, velocity and pressure, and
describing the flow patterns driven by an external source depending on the local distribution of the chemical species. A priori
stability bounds are derived for the uncoupled problems, and the solvability of the full system is analysed using a fixed-
point approach. We introduce a primal-mixed finite element method to numerically solve the model equations, employing a
primal scheme with piecewise linear approximation of the reaction-diffusion unknowns, while the discrete flow problem uses
a mixed approach based on Raviart-Thomas elements for velocity, Nédélec elements for vorticity, and piecewise constant
pressure approximations. In particular, this choice produces exactly divergence-free velocity approximations. Moreover, we
establish existence of discrete solutions and show convergence to a weak solution of the original problem. Finally, we report
several numerical experiments illustrating the behaviour of the proposed scheme.
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1. Introduction. Reaction-diffusion systems can explain many phenomena taking place in diverse
disciplines such as industrial and environmental processes, biomedical applications, or population dy-
namics. For instance, non-equilibrium effects associated to mass exchange and local configuration modi-
fications in the concentration of species are usually represented in terms of classical reaction-diffusion
equations. These models allow to reproduce chaos, spatiotemporal patterns, rhythmic and oscillatory
scenarios, and many other mechanisms. Nevertheless, in most of these applications the reactions do not
occur in complete isolation. The species are rather immersed in a fluid, or they move within (and interact
with) a fluid-solid continuum, and therefore the motion of the fluid affects that of the species. Up to some
extent, reciprocal effects might be substantially large, thus leading to local changes in the flow patterns.

Here it is assumed that the medium where the chemical reactions develop is a porous material saturated
with an incompressible viscous fluid. Consequently, the fluid flow can be governed by Brinkman equations
(representing linear momentum and mass conservation for the fluid). As indicated above, we also suppose
that the local fluctuations of a species’ concentration is important enough to affect the fluid flow. In turn,
the reaction-diffusion equations include additional terms accounting for the advection of each species with
the fluid velocity, therefore improving the mixing and interaction properties with respect to those observed
under pure diffusion effects [9]. Diverse types of continuum-based models resulting in reaction-diffusion-
momentum equations have been applied for e.g. enzyme reactions advected with a known Poiseuille
velocity profile [12], population kinetics on moving domains [19, 24], or biochemical interactions on
growing surfaces [8, 28].

We aim at developing numerical solutions to a class of similar systems, also addressing the solvability
of the governing equations, the expected properties of the underlying solutions, and the convergence
behaviour of suitable finite element schemes. More precisely, at both continuous and discrete levels, the
Brinkman equations are set in a mixed form (that is, the associated formulation possesses a saddle-point
structure involving the vorticity as additional unknown) whereas the formulation of the reaction-diffusion
system is written exclusively in terms of the primal variables, in this case the species’ concentration.
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Such a structure is motivated by the need of accurate vorticity rendering, obtained directly without
postprocessing it from typically low-order discrete velocities (which usually leads to insufficiently reliable
approximations).

The nonlinear reaction-diffusion system will be placed in the framework of general semilinear parabolic
equations and its well-posedness, for a fixed velocity, follows from the classical theory of Ladyženskaja
[15]. On the other hand, for a fixed species’ concentration, a number of Brinkman formulations based on
vorticity, pressure and velocity are available from the literature [2, 4, 5, 27] (see also [11, 21]). Here we
adopt the one introduced in [3], where the well-posedness of the flow equations is established thanks to the
classical Babuška-Brezzi framework. In turn, the fully coupled problem is analysed using a Schauder fixed-
point approach. Perhaps the closest contributions in the spirit of the present study are the error estimation
for finite element formulations to doubly-diffusive Boussinesq flows presented in [1], and the two-sidedly
degenerate chemotaxis-fluid coupled system from [7], whose solvability relies on a regularisation step
combined with compactness arguments.

Regarding numerical approximation, we propose a method based on piecewise linear and continuous
polynomials for the species’ concentrations, whereas the set of flow equations is discretised using a mixed
approach based on Raviart-Thomas elements for the approximation of the velocity, Nédélec elements
for vorticity, and piecewise constants for the pressure. The computational burden of this algorithm
is comparable to classical low-cost approximations as the so-called MINI element for velocity-pressure
formulations. On top of that, the proposed finite element method provides divergence-free velocities, thus
preserving an essential constraint of the underlying physical system.

After this introductory section, the remainder of the paper is structured in the following manner. Section 2
states the model problem and introduces the concept of weak solutions, together with a regularised
auxiliary coupled problem. The solvability of these auxiliary equations is established in Section 3, using
a fixed-point approach. The passage to the limit that transforms the regularised system into the original
problem is addressed in Section 4, and the proof of uniqueness of weak solution is postponed to Section 5.
Section 6 deals with the numerical approximation of the model problem, using mixed finite elements and
a first-order backward Euler time advancing scheme. In this section we establish existence of discrete
solutions and show convergence to a weak solution. Finally, we provide in Section 7 a set of numerical
tests to illustrate the properties of the numerical scheme and the features of the coupled model.

2. Governing equations.

2.1. Problem statement. Let Ω ⊂ R3, be a simply connected, and bounded porous domain
saturated with a Newtonian incompressible fluid, where also a bacterium and some chemical species
(diffusible agents or nutrients) are present. Viscous flow in the porous medium is usually modelled with
Brinkman equations stating momentum and mass conservation of the fluid. In addition, the Reynolds
transport principle applied to mass conservation of the interacting species yields an advection-reaction-
diffusion system. The physical scenario of interest can be therefore described by the following coupled
system, written in terms of the fluid velocity u, the rescaled fluid vorticity ω, the fluid pressure p, and
the volumetric fraction (or concentration) of the bacterium c and of the chemical substance s. For a.e.
(x, t) ∈ ΩT := Ω× [0, T ],

∂tc+ u · ∇c− div(Dc(c)∇c) = Gc(c, s), ∂ts+ u · ∇s− div(Ds(s)∇s) = Gs(c, s),

K−1u +
√
µ curlω +∇p = sg + f , ω −√µ curlu = 0, divu = 0,

(2.1)

where µ is the fluid viscosity, K(x) is the permeability tensor rescaled with viscosity, sg represents the
force exerted by the bacteria on the fluid motion (where g is the gravitational acceleration, or any other
particular force to which the species comply), and f(x, t) is an external force (e.g. centrifugal) applied
to the porous medium. Moreover, Dc, Ds, Gc, Gs are concentration-dependent coefficients determining,
respectively, the nonlinear diffusivities and reaction kinetics (representing production and degradation)
of bacteria and chemical species.

Equations (2.1) are complemented with the following boundary and initial data:

(cu−Dc(c)∇c) · n = (su−Ds(s)∇s) · n = 0, u · n = u∂ , ω × n = ω∂ (x, t) ∈ ∂Ω× [0, T ],

c = c0, s = s0, (x, t) ∈ Ω× {0},
(2.2)
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representing that the species cannot leave the medium and that a slip velocity and a compatible vorticity
trace are imposed along the boundary.

2.2. Main assumptions. We suppose that the permeability tensor K ∈ [C(Ω̄)]3×3 is symmetric
and uniformly positive definite. So it is its inverse, i.e., there exists C > 0 such that

vtK−1(x)v ≥ C|v|2 ∀ v ∈ R3, ∀ x ∈ Ω. (2.3)

In addition, the diffusivities are assumed always positive, coercive, and continuous: for i ∈ {s, c},

Di : [0, 1] 7→ R+ is continuous, 0 < Dmin ≤ Di(m) ≤ Dmax <∞, m ∈ R. (2.4)

Regarding the reaction terms Gc, Gs, we assume there exist constants Cc, Cs > such that

|Gc(c, s)| ≤ Cc(1 + |c|+ |s|), |Gs(c, s)| ≤ Cs(1 + |c|+ |s|) for all c, s ≥ 0,

Gc(c, s), Gs(c, s) ≥ 0 if c ≥ 0 and s ≥ 0,

Gc(c, s) = ν1 and Gs(c, s) = ν2 if c ≤ 0 or s ≤ 0,

(2.5)

for some parameters ν1 > 0 and ν2 > 0. Initial data are assumed nonnegative and regular enough

s0, c0 ≥ 0, c0, s0 ∈ L∞(Ω). (2.6)

Observe that for constant coefficients Dc, Ds, Gc, Gs, problem (2.1) might also serve as a model for the
coupling of Newtonian flows with mass and heat transport [22].

2.3. Weak solutions. According to (2.2), let us introduce the functional spaces

H0(div; Ω) =
{
v ∈ H(div; Ω) : v · n = 0 on ∂Ω

}
, H0(curl; Ω) =

{
z ∈ H(curl; Ω) : z × n = 0 on ∂Ω

}
.

We then proceed, for a given t > 0, to test the first two equations in (2.1) with functions in H1
0(Ω), the

third equation in (2.1) against functions in H0(div; Ω), the fourth equation in (2.1) against functions
in H0(curl; Ω) and to integrate by parts. The last equation is tested with functions in L2

0(Ω) and no
integration by parts is applied. Consequently, and using (2.2) we can give the following definition.

Definition 2.1. In view of the properties outlined in Section 2.2, we shall say that the function
(c, s,u,ω, p) is a weak solution to (2.1) if

s, c ∈ L∞(ΩT ) ∩ L2(0, T ; H1(Ω)), ∂ts, ∂tc ∈ L2(0, T ; H1(Ω)′),

u ∈ L2(0, T ; H(div; Ω)), ω ∈ L2(0, T ; H(curl; Ω)), p ∈ L2(0, T ; L2
0(Ω)),

and ∫ T

0

〈∂tc,mc〉dt+

∫∫
ΩT

(Dc(c)∇c− cu) · ∇mc dxdt =

∫∫
ΩT

Gc(c, s)m
c dxdt,∫ T

0

〈∂ts,ms〉dt+

∫∫
ΩT

(Ds(s)∇s− su) · ∇ms dxdt =

∫∫
ΩT

Gs(c, s)m
s dxdt,∫∫

ΩT

K−1u · v dxdt+
√
µ

∫∫
ΩT

curlω · v dxdt−
∫∫

ΩT

p div v dxdt =

∫∫
ΩT

(sg + f) · v dxdt,

√
µ

∫∫
ΩT

curl z · udxdt−
∫∫

ΩT

ω · z dxdt = 0,

−
∫∫

ΩT

q divudxdt = 0,

for all mi ∈ L2(0, T ; H1(Ω)), v ∈ L2(0, T ; H0(div; Ω)), z ∈ L2(0, T ; H0(curl; Ω)), q ∈ L2(0, T ; L2
0(Ω)).

Our first main result states existence of weak solutions to the reaction-diffusion-Brinkman equations.

Theorem 2.2. Assume that conditions (2.3), (2.4) and (2.5) hold. If c0, v0 ∈ L∞(Ω) with c0 ≥ 0 and
s0 ≥ 0 a.e. in Ω, then there exists a weak solution of (2.1)-(2.2) in the sense of Definition 2.1.
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The proof of this result is based on an application of Schauder’s fixed-point theorem (in an appropriate
functional setting) to the following approximate system

∂tc+ u · ∇c− div(Dc(c)∇c) = Gc,ε(c, s), ∂ts+ u · ∇s− div(Ds(s)∇s) = Gs,ε(c, s),

K−1u +
√
µ curlω +∇p = ŝg + f , ω −√µ curlu = 0, divu = 0,

(2.7)

defined for each fixed ε > 0, where ŝ is a fixed function, and

Gc,ε(c, s) =
Gc(c, s)

1 + ε |Gc(c, s)|
, Gs,ε(c, s) =

Gs(c, s)

1 + ε |Gs(c, s)|
for a.e. c, s ∈ R.

The proof of Theorem 2.2 continues with the derivation of a priori estimates, and then passing to the limit
in the approximate solutions using monotonicity and compactness arguments. Having proved existence
of solutions to the system (2.7), the goal is to send the regularisation parameter ε to zero in sequences
of such solutions to compose weak solutions of the original system (2.1)-(2.2). Again, convergence is
achieved by means of a priori estimates and compactness arguments.

3. Existence result to the regularised problem. In this section we prove, for each fixed ε > 0,
the existence of solutions to (2.7), looking first at the solvability of the uncoupled systems.

3.1. Preliminaries. Let us recall the following abstract result (see e.g. [13, Theorem 1.3]):

Theorem 3.1. Let (X , 〈·, ·〉X ) be a Hilbert space. Let A : X × X → R be a bounded symmetric bilinear
form, and let G : X → R be a bounded functional. Assume that there exists β̄ > 0 such that

sup
y∈X
y 6=0

A(x, y)

‖y‖X
≥ β̄ ‖x‖X ∀x ∈ X .

Then, there exists a unique x ∈ X , such that

A(x, y) = G(y) ∀ y ∈ X .

Moreover, there exists C > 0, independent of the solution, such that

‖x‖X ≤ C‖G‖X ′ .

Let us also consider the kernel of the bilinear form
∫

Ω
q divudx, that is

X := {v ∈ H0(div; Ω) :

∫
Ω

q div v dx = 0, ∀q ∈ L2
0(Ω)} = {v ∈ H0(div; Ω) : div v = 0 a.e. in Ω}.

Moreover, we endow the space H(curl; Ω) with the following µ-dependent norm:

‖z‖2H(curl;Ω) := ‖z‖20,Ω + µ‖ curl z‖20,Ω,

and recall the following inf-sup condition (cf. [13]): there exists β2 > 0 only depending on Ω, such that

sup
v∈H(div;Ω)

v 6=0

|
∫

Ω
q div v dx|

‖v‖H(div;Ω)
≥ β2‖q‖0,Ω ∀q ∈ L2

0(Ω). (3.1)

3.2. The fixed-point method. In view of invoking Schauder’s fixed-point theorem to establish
solvability of (2.7), we introduce the following closed subset of the Banach space L2(ΩT ):

Kφ = {φ ∈ L2(ΩT ) : 0 ≤ φ(x, t) ≤ e−(λ−β)tkm, for a.e. (x, t) ∈ ΩT }, (3.2)

for φ ∈ {s, c}, where km ≥ sup{‖c0‖L∞(Ω) , ‖s0‖L∞(Ω)}, and λ, β are defined in (3.6) and Lemma 3.4,
respectively. Next, and thanks to Theorem 3.1, we can assert the solvability of the Brinkman equations
for a fixed ŝ ∈ Ks and for any t > 0.
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Lemma 3.2. Assume that ŝ ∈ Ks. Then, the variational problem∫
Ω

K−1u · v dx +
√
µ

∫
Ω

curlω · v dx−
∫

Ω

p div v dx =

∫
Ω

(ŝg + f) · v dx,

√
µ

∫
Ω

curl z · udx−
∫

Ω

ω · z dx = 0,

−
∫

Ω

q divudx = 0,

(3.3)

admits a unique solution (u,ω, p) ∈ H(div; Ω) × H(curl; Ω) × L2
0(Ω). Moreover, there exists C > 0

independent of µ such that

‖u‖H(div;Ω) + ‖ω‖H(curl;Ω) + ‖p‖0,Ω ≤ C
(
‖ŝ‖0,Ω‖g‖∞,Ω + ‖f‖0,Ω + ‖u∂‖−1/2,∂Ω + ‖ω∂‖−1/2,∂Ω

)
. (3.4)

Proof. First, we observe that, owing to the inf-sup condition (3.1), problem (3.3) is equivalent to: Find
(u,ω) ∈ X×H(curl; Ω) such that∫

Ω

K−1u · v dx +
√
µ

∫
Ω

curlω · v dx =

∫
Ω

(ŝg + f) · v dx, ∀v ∈ X,

√
µ

∫
Ω

curl z · udx−
∫

Ω

ω · z dx = 0, ∀z ∈ H0(curl; Ω).

Then, the desired result follows from Theorem 3.1, repeating the argument employed in the proofs of [3,
Theorem 2.2 and Corollary 2.1].

On the other hand, given a fixed velocity u ∈ L2(0, T ; H(div; Ω)), the following result establishes the
solvability of the regularised reaction-diffusion system:

Lemma 3.3. For any u ∈ L2(0, T ; H(div; Ω)), the system∫ T

0

〈∂tc,mc〉dt+

∫∫
ΩT

(Dc(c)∇c− cu) · ∇mc dxdt =

∫∫
ΩT

Gc,ε(c, s)m
c dxdt,∫ T

0

〈∂ts,ms〉dt+

∫∫
ΩT

(Ds(s)∇s− su) · ∇ms dxdt =

∫∫
ΩT

Gs,ε(c, s)m
s dxdt,

(3.5)

is uniquely solvable and there exists C > 0, depending on ‖c0‖0,Ω and ‖s0‖0,Ω, such that

‖c‖L2(0,T ;H1(Ω)) + ‖s‖L2(0,T ;H1(Ω)) ≤ C.

Proof. It suffices to combine assumptions (2.4), (2.6) with the general result for quasilinear parabolic
problems given in [15, Section 5].

As the next step, we consider a constant λ > 0 and define the auxiliary variables (φc, φs) by setting

c = eλtφc and s = eλtφs. (3.6)

Then (c, s) satisfies the strong form of (3.5) with diffusion and reaction terms replaced, respectively, by Dc(c) := Dc(e
λtc) and Ds(s) := Ds(e

λts),
Gc,ε(c, s) := −λc+ e−λtGc,ε(e

λtc, eλts),
Gs,ε(c, s) := −λs+ e−λtGs,ε(e

λtc, eλts).

We now introduce a map R : Ks → Ks such that R(ŝ) = s, where s solves (3.5). The goal is to prove that
such map has a fixed-point. First, let us show that R is a continuous mapping. Let (ŝn)n be a sequence
in Ks and ŝ ∈ Ks be such that ŝn → ŝ in L2(ΩT ) as n → ∞. Let us then define sn = R(ŝn), i.e., sn
is the solution of (3.5) associated with ŝn and the solution u of (3.3). The objective is to show that sn
converges to R(ŝ) in L2(ΩT ). We start with the following lemma:

Lemma 3.4. Let (cn, sn)n be the solution to problem (3.5) and recall that ŝ ∈ Ks. Then
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(i) There exists a constant γ ≥ 0 such that 0 ≤ cn(x, t), sn(x, t) ≤ eγtkm, for a.e. (x, t) ∈ ΩT , where
km is defined as in (3.2).

(ii) The sequence (cn, sn)n is bounded in L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L2(Ω)).
(iii) The sequence (cn, sn)n is relatively compact in L2(ΩT ).

Proof. (i) We replace the strong form of (3.5) by

∂tcn − div(Dc(cn)∇cn) + u · ∇cn = −λcn + e−λtGc,ε(e
λtcn, e

λtsn), in ΩT . (3.7)

Multiplying (3.7) by −c−n =
cn − |cn|

2
and integrating over Ω, we obtain

1

2

d

dt

∫
Ω

∣∣c−n ∣∣2dx +Dmin

∫
Ω

∣∣∇c−n ∣∣2dx−
∫

Ω

c−nu · ∇cndx− λ
∫

Ω

cn c
−
n dx ≤ −

∫
Ω

e−λtGc,ε(e
λtcn, e

λtsn)c−n dx.

(3.8)
Now, we use that divu = 0 and (2.5) to deduce

−
∫

Ω

c−nu · ∇cn dx =
1

2

∫
Ω

u · ∇(c−n )2 dx = 0,

and 
−
∫

Ω

e−λtGc,ε(e
λtcn, e

λtsn)c−n dx = −
∫

Ω

e−λt
ν1

1 + ε |Gc(eλtcn, eλtsn)|
c−n dx ≤ 0 if cn ≤ 0,

−
∫

Ω

e−λtGc,ε(e
λtcn, e

λtsn)c−n dx = 0 if cn > 0.

According to the positivity of the second and the fourth terms in the left-hand side of (3.8), we get

1

2

d

dt

∫
Ω

∣∣c−n ∣∣2 dx ≤ 0.

Since c0 is nonnegative, we deduce that c−n = 0, and reasoning similarly we have that s−n = 0.

Next, we let kc, ks ∈ R such that kc ≥ ‖c0‖L∞(Ω) and ks ≥ ‖s0‖L∞(Ω). Let us consider t ∈ (0, T ), and

proceed to multiply (3.7) by

ξc := (cn − e−(λ−β)tk)+, with β ≥ λ, and with k = sup{kc, ks},

and to integrate over Ω, which yields that there exists some constant C6 > 0 such that

1

2

d

dt

∫
Ω

ξ2
c dx− (λ− β)

∫
Ω

e−(λ−β)tk ξc dx +Dmin

∫
Ω

|∇ξc|2 dx +

∫
Ω

ξc u · ∇cn dx + λ

∫
Ω

cn ξcdx

=
1

2

d

dt

∫
Ω

ξ2
c dx + β

∫
Ω

e−(λ−β)tk ξc dx +Dmin

∫
Ω

|∇ξc|2 dx +
1

2

∫
Ω

u · (∇ξ2
c ) dx + λ

∫
Ω

ξ2
c dx

≤
∫

Ω

e−λtGc,ε(e
λtcn, e

λtsn)ξc dx ≤ C6

(∫
Ω

e−(λ−β)tkξc dx +

∫
Ω

ξ2
c dx +

∫
Ω

ξ2
s dx

)
, (3.9)

where ξs := (sn − e−(λ−β)tk)+. Following an analogous treatment for sn, we get

1

2

d

dt

∫
Ω

ξ2
s dx− (λ− β)

∫
Ω

e−(λ−β)tkξs dx +Dmin

∫
Ω

|∇ξs|2 dx +

∫
Ω

ξsu · ∇sn dx + λ

∫
Ω

snξs dx

≤ C7

(∫
Ω

e−(λ−β)tkξs dx +

∫
Ω

ξ2
c dx +

∫
Ω

ξ2
s dx

)
, (3.10)

for some constant C7 > 0. We next observe that∫
Ω

u · ∇(ξc)
2 dx = 0,

∫
Ω

u · ∇(ξs)
2 dx = 0,
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which inserted into (3.9) and (3.10), implies that

1

2

d

dt

∫
Ω

ξ2
c dx +

1

2

d

dt

∫
Ω

ξ2
s dx + (β − C6 − C7)e−(λ−β)tk

(∫
Ω

ξc dx +

∫
Ω

ξs dx

)
+(λ− C6 − C7)

∫
Ω

ξ2
c dx + (λ− C6 − C7)

∫
Ω

ξ2
s dx ≤ 0.

(3.11)

Finally for β ≥ λ ≥ C6 + C7, an application of (3.11) yields

d

dt

∫
Ω

|ξc|2 dx +
d

dt

∫
Ω

|ξs|2 dx ≤ 0,

and exploiting that c0, s0 ≤ k in Ω, we conclude that cn(·, t) ≤ e−(λ−β)tk and sn(·, t) ≤ e−(λ−β)tk in
Ω× (0, T ).

(ii) We multiply equation (3.7) by cn and integrate over Ω to obtain

1

2

d

dt

∫
Ω

|cn|2 dx +Dmin

∫
Ω

|∇cn|2 dx +

∫
Ω

cnu · ∇cn dx + λ

∫
Ω

|cn|2 dx

≤
∫

Ω

e−λtGc,ε(e
λtcn, e

λtsn)cn dx.
(3.12)

Invoking the boundedness of cn and sn, we get that the integral on the right-hand side is bounded
independently of n. Then using that∫

Ω

cnu · ∇cn dx =
1

2

∫
Ω

u · ∇(cn)2 dx = 0,

we deduce from (3.12) the following bound

1

2

d

dt

∫
Ω

|cn|2 dx +Dmin

∫
Ω

|∇cn|2 dx ≤ C8,

valid for some constant C8 > 0 independent of n. This completes the proof of (ii).

(iii) Next we multiply (3.7) by ϕ ∈ L2(0, T ; H1(Ω)) and use the boundedness of cn and sn to get∣∣∣∣∣
∫ T

0

〈∂tcn, ϕ〉 dt

∣∣∣∣∣ =

∣∣∣∣∣−
∫

Ω

Dc(cn)∇cn · ϕdx +

∫
Ω

cnu · ∇ϕdx

−λ
∫

Ω

cnϕdx +

∫
Ω

e−λtGc,ε(e
λtcn, e

λtsn)ϕdx

∣∣∣∣∣
≤ Dmax ‖∇cn‖L2(ΩT ) ‖ϕ‖L2(ΩT ) + C9 ‖u‖0,Ω ‖∇ϕ‖L2(ΩT )

+C10

(
‖cn‖L2(ΩT ) + ‖sn‖L2(ΩT )

)
‖ϕ‖L2(ΩT )

≤ C11 ‖ϕ‖L2(0,T ;H1(Ω)) ,

for some constants C9, C10, C11 > 0 independent of n. Consequently, we end up with the bound

‖∂tcn‖L2(0,T ;(H1(Ω))′) ≤ C11. (3.13)

Working on the same lines as for (cn)n, the counterpart of (ii) and (3.13) for (sn)n can be obtained.

Finally, (iii) is deduced from (ii) and the uniform boundedness of (∂tcn)n and (∂tsn)n in L2(0, T ; (H1(Ω)′).

In summary, Lemmas 3.2, and 3.4 imply that there exists (c, s,u,ω, p) ∈ L2(0, T ; H1(Ω))×L2(0, T ; H1(Ω))×
H(div; Ω)×H(curl; Ω)× L2

0(Ω) such that, up to extracting subsequences if necessary,{
(cn, sn)→ (c, s) in L2(ΩT ,R2) strongly and a.e., and in L2(0, T ; H1(Ω)) weakly,

(un,ωn, pn)→ (u,ω, p) in H(div; Ω)×H(curl; Ω)× L2
0(Ω) weakly,
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and consequently, the continuity of R on Ks holds. Moreover, Lemma 3.4 indicates the boundedness of
R(Ks) within the set

S =
{
s ∈ L2(0, T ; H1(Ω)) : ∂ts ∈ L2(0, T ; (H1(Ω))′)

}
. (3.14)

Appealing to the theory of compact sets [23], the compactness of the map S ↪→ L2(ΩT ) implies that of
R. Therefore, and thanks to Schauder’s fixed-point theorem, the operator R has a fixed point s. That
is, there exists a solution to∫ T

0

〈∂tcε,mc〉dt+

∫∫
ΩT

(Dc(cε)∇cε − cεuε) · ∇mc dxdt =

∫∫
ΩT

Gc,ε(cε, sε)m
c dxdt,∫ T

0

〈∂tsε,ms〉dt+

∫∫
ΩT

(Ds(sε)∇sε − sεuε) · ∇ms dxdt =

∫∫
ΩT

Gs,ε(cε, sε)m
s dxdt,∫∫

ΩT

K−1uε · v dxdt+
√
µ

∫∫
ΩT

v · curlωε dxdt−
∫∫

ΩT

pε div v dxdt =

∫∫
ΩT

(sεg + f) · v dxdt,

√
µ

∫∫
ΩT

uε · curl z dxdt−
∫∫

ΩT

ωε · z dxdt = 0, (3.15)

−
∫∫

ΩT

q divuε dxdt = 0,

for all mi ∈ L2(0, T ; H1(Ω)), v ∈ L2(0, T ; H0(div; Ω)), z ∈ L2(0, T ; H0(curl; Ω)), q ∈ L2(0, T ; L2
0(Ω)).

4. Existence of weak solutions. We have shown in Section 3 that problem (2.7) admits a solution
(cε, sε,ωε,uε, pε). The goal in this section is to send the regularisation parameter ε to zero in sequences
of such solutions to obtain weak solutions of the original system (2.1)-(2.2). Observe that, for each fixed
ε > 0, we have shown the existence of a solution (cε, sε) to (2.7) such that

0 ≤ cε(x, t), sε(x, t) ≤ eγtkm, γ > 0, a.e. in (x, t) ∈ ΩT . (4.1)

Using the Brinkman equation in (2.7), it is easy to see that the estimates of (3.4) in Lemma 3.2 do not
depend on ε, i.e., there exists C12 > 0 independent of ε such that

‖uε‖H(div;Ω) + ‖ωε‖H(curl;Ω) + ‖pε‖0,Ω ≤ C12

(
‖g‖∞,Ω + ‖f‖0,Ω + ‖u∂‖−1/2,∂Ω + ‖ω∂‖−1/2,∂Ω

)
.

Taking mc = cε and ms = sε as test functions in (3.15) and working as in the proof of (ii) in Lemma 3.4,
we readily obtain

sup
0≤t≤T

∫
Ω

|cε(x, t)|2 dx + sup
0≤t≤T

∫
Ω

|sε(x, t)|2 dx +

∫∫
ΩT

|∇cε|2 dx dt+

∫∫
ΩT

|∇sε|2 dx dt ≤ C13,

for some constant C13 > 0 independent of ε. Repeating the steps of the proof of (iii) in Lemma 3.4, we
derive the bound

‖∂tcε‖L2(0,T ;(H1(Ω))′) + ‖∂tsε‖L2(0,T ;(H1(Ω))′) ≤ C14, (4.2)

for some constant C14 > 0. Then, combining (4.1)-(4.2) with standard compactness results (cf. [23]) we
can extract subsequences, which we do not relabel, such that, as ε goes to 0,

(cε, sε)→ (c, s) weakly −? in L∞(ΩT ,R2) and in L2(0, T ; H1(Ω,R2)) weakly,

(uε,ωε, pε)→ (u,ω, p) in H(div; Ω)×H(curl; Ω)× L2
0(Ω) weakly,

∂tcε → ∂tc weakly in L2(0, T ; (H1(Ω))′), and

∂tsε → ∂ts weakly in L2(0, T ; (H1(Ω))′).

(4.3)

It is then evident that cε and sε are uniformly bounded in the set S defined in (3.14). Then, from the
compact embedding S ↪→ L2(ΩT ) we deduce that there exist subsequences of cε and sε such that

cε → c and sε → s strongly in L2(ΩT ) and a.e. in ΩT . (4.4)
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This result, together with the weak-? convergences in L∞(ΩT ) of cε and sε to c and s, respectively, yields

cε → c and sε → s strongly in Lp(ΩT ) for 1 ≤ p <∞, (4.5)

which in turn implies that

Gc,ε(cε, sε)→ Gc(c, s), Gs,ε(cε, sε)→ Gs(c, s), (4.6)

a.e. in ΩT and strongly in Lp(ΩT ) for 1 ≤ p <∞. As a consequence of (4.3), (4.4), (4.5) and (4.6), it is
clear that as ε→ 0, we can identify the limit as the weak solution from Definition 2.1.

5. Uniqueness of weak solutions. The following result completes the well-posedness analysis for
the reaction-diffusion-Brinkman system.

Theorem 5.1. Assume (2.3)-(2.5) hold, and let (c1, s1,u1,ω1, p1) and (c2, s2,u2,ω2, p2) be two weak
solutions to (2.1)-(2.2), associated with the data c0 = c1,0, s0 = s1,0, g = g1, f = f1 and c0 = c2,0,
s0 = s2,0, g = g2, f = f2, respectively. Then, for any t ∈ [0, T ] there exists C > 0 such that∫∫

Ωt

(
|C|2 + |S|2 + |U|2 + |W|2 + |P|2

)
dx dσ

≤ C

(∫
Ω

(
|c1,0(x)− c2,0(x)|2 + |s1,0(x)− s2,0(x)|2

)
dx +

∫∫
Ωt

(
|g1 − g2|

2
+ |f1 − f2|

2
)

dx dσ

)
,

(5.1)

where C = c1 − c2, S = s1 − s2, U = u1 −u2, W = ω1 −ω2, and P = p1 − p2. In particular, there exists
at most one weak solution to the reaction-diffusion-Brinkman system (2.1)-(2.2).

Proof. First we observe that the pair (U ,W,P) satisfies∫∫
Ωt

K−1U · v dx dσ +
√
µ

∫∫
Ωt

v · curlW dx dσ −
∫∫

Ωt

P div v dx dσ

=

∫∫
Ωt

(s1g1 − s2g2) · v dx dσ +

∫∫
Ωt

(f1 − f2) · v dx dσ ,

√
µ

∫∫
Ωt

U · curl z dx dσ −
∫∫

Ωt

W · z dx dσ = 0,

−
∫∫

Ωt

q divU dx dσ = 0,

(5.2)

for t ∈ (0, T ) and for all v ∈ L2(0, T ; H0(div; Ω)), z ∈ L2(0, T ; H0(curl; Ω)), q ∈ L2(0, T ; L2
0(Ω)).

After substituting v = U , z = W, q = P in (5.2) and adding the resulting equations, we can invoke the
continuous dependence on the data (3.4) to establish the a priori bound∫∫

Ωt

|U|2 dx dσ +

∫∫
Ωt

|W|2 dx dσ +

∫∫
Ωt

|P|2 dx dσ

≤ C14

∫∫
Ωt

|S|2 dx dσ + C15

(∫∫
Ωt

|g1 − g2|
2

dx dσ +

∫∫
Ωt

|f1 − f2|
2

dx dσ

)
, (5.3)

for some constant C15 > 0. Next, note that (C,S) satisfies

−
∫ t

0

〈C, ∂tmc〉dσ +

∫∫
Ωt

(Dc(c1)∇c1 −Dc(c2)∇c2) · ∇mc dx dσ −
∫∫

Ωt

c1U · ∇mc dx dσ

−
∫∫

Ωt

Cu2 · ∇mc dx dσ =

∫
Ω

C0(x)mc(x, 0) dx +

∫∫
Ωt

(Gc(c1, s1)−Gc(c2, s2))mc dx dσ ,

−
∫ t

0

〈S, ∂tms〉dσ +

∫∫
Ωt

(Ds(s1)∇s1 −Ds(s2)∇s2) · ∇ms dx dσ −
∫∫

Ωt

s1U · ∇ms dx dσ

−
∫∫

Ωt

Su2 · ∇ms dx dσ =

∫
Ω

S0(x)mc(x, 0) dx +

∫∫
Ωt

(Gs(c1, s1)−Gs(c2, s2))ms dx dσ ,

(5.4)
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for t ∈ (0, T ) and for all mi ∈ L2(0, T ; H1(Ω)) and ∂tm
i ∈ L2(0, T ; (H1(Ω))′) with mc(·, T ) = 0, i = c, s.

Now, for t0 ∈ (0, T ) we take

mi(x, t) =


∫ t0

t

(Di(i1)−Di(i2)) dσ for 0 ≤ t < t0,

0 for t0 ≤ t ≤ T,

with Di(i) =

∫ i

0

Di(r) dr, for i = c, s. Using these relations in (5.4), and recalling that the function D is

strictly increasing, we get

−
∫ T

0

〈C, ∂tmc〉dσ =

∫ t0

0

〈C, (Dc(c1)−Dc(c2))〉dσ ≥ CD
∫∫

Ωt0

|C|2 dx dσ , (5.5)

∫∫
Ωt

(Dc(c1)∇c1 −Dc(c2)∇c2) · ∇mc dx dσ =
1

2

∫
Ω

∣∣∣∣∇ ∫ t0

0

(Dc(c1)−Dc(c2)) dσ

∣∣∣∣2 dx,∫
Ω

C0(x)mc(x, 0) dx =

∫ t0

t

∫
Ω

C0(x)(Dc(c1)−Dc(c2)) dx dσ ≤ C16

∫
Ω

|C0(x)|2 dx +
CD
4

∫∫
Ωt0

|C|2 dx dσ ,

for some constants CD, C16 > 0. Moreover,∫∫
Ωt

c1U · ∇mc dx dσ ≤ C17

∫ t0

0

∫∫
Ωt

|U|2 dx dσ dt+
1

8

∫
Ω

∣∣∣∣∇ ∫ t0

0

(Dc(c1)−Dc(c2)) dσ

∣∣∣∣2 dx, (5.6)∫∫
Ωt

Cu2 · ∇mc dx dσ ≤ C18

∫ t0

0

∫∫
Ωt

|C|2 dx dσ dt+
1

8

∫
Ω

∣∣∣∣∇ ∫ t0

0

(Dc(c1)−Dc(c2)) dσ

∣∣∣∣2 dx, (5.7)

for some constants C17, C18 > 0 depending on ‖c1‖L∞(ΩT ) and ‖u2‖L∞(ΩT ,R3) (the latter being bounded
thanks to classical maximal regularity results for Stokes equations cf. [25]). Next, we use the L∞-bounds
of (c1, s1) and (c2, s2), leading to∫∫

Ωt

(Gs(c1, s1)−Gs(c2, s2))ms dx dσ ≤ C19

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dx dσ
)

dt

+
CD
4

∫∫
Ωt0

|C|2 dx dσ ,

(5.8)

for some constant C19 > 0. We proceed to collect the results (5.3) and (5.5)-(5.8), to infer that

CD
2

∫∫
Ωt0

|C|2 dx dσ ≤ C16

∫
Ω

|C0(x)|2 dx + C20

(∫∫
Ωt

|g1 − g2|
2

dx dσ +

∫∫
Ωt

|f1 − f2|
2

dx dσ

)

+ C21

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dxdσ
)

dt,

(5.9)

for some constants C20, C21 > 0. Similarly we get for the equation of S

CD
2

∫∫
Ωt0

|S|2 dx dσ ≤ C22

∫
Ω

|S0(x)|2 dx + C23

(∫∫
Ωt

|g1 − g2|
2

dxdσ +

∫∫
Ωt

|f1 − f2|
2

dxdσ

)

+ C24

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dxdσ
)

dt,

(5.10)

for some constants C22, C23, C24 > 0. Thus (5.9) and (5.10) imply∫∫
Ωt0

(
|C|2 + |S|2

)
dx dσ ≤ C25

∫
Ω

(
|C0(x)|2 + |S0(x)|2

)
dx + C26

∫ t0

0

(∫∫
Ωt

(|C|2 + |S|2) dxdσ
)

dt

+ C27

(∫∫
Ωt

|g1 − g2|
2

dxdσ +

∫∫
Ωt

|f1 − f2|
2

dxdσ

)
,

(5.11)
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for some constants C25, C26, C27 > 0. Then, an application of Gronwall’s inequality to (5.11) combined
with (5.3) proves (5.1).

6. Numerical approximation. In this section, we construct a primal-mixed fully-discrete scheme
for the approximation of the coupled system (2.1). The finite element spaces yielding unique solvability
of the semi-discrete problem are then specified, and a proof of convergence to the unique weak solution
(presented in Definition 2.1) is outlined.

6.1. The semi-discrete scheme. Let Th be a regular family of triangulations of Ω̄ by tetrahedra K
of maximum diameter h. Given an integer k ≥ 0 and S ⊂ R3, by Pk(S) we denote the space of polynomial
functions defined in S of total degree up to k, and define the following finite element subspaces

Vh=
{
mh ∈ H1(Ω) : mh|K ∈ P1(K)∀K ∈ Th

}
, Hh=

{
vh ∈ H(div; Ω) : vh|K ∈ RT0(K)∀K ∈ Th

}
,

Zh=
{
zh ∈ H(curl,Ω) : zh|K ∈ ND1(K)∀K ∈ Th

}
, Qh=

{
qh ∈ L2

0(Ω) : qh|K ∈ P0(K)∀K ∈ Th
}
,
(6.1)

where for any K ∈ Th(Ω), the local lowest order Raviart-Thomas and edge space of Nédélec type, are
defined as RT0(K) = P0(K)3 ⊕ P0(K)x, and ND1(K) = P0(K)3 ⊕ P0(K)3 × x, respectively.

Then, a Galerkin semi-discretisation associated to the formulation introduced in Definition 2.1 reads: For
t ∈ (0, T ] find (ch(t), sh(t),uh(t),ωh(t), ph(t)) ∈ Vh ×Vh ×Hh × Zh ×Qh such that∫

Ω

∂tch(t)mc
h dx +

∫
Ω

(Dc(ch(t))∇ch(t)− ch(t)uh) · ∇mc
h dx =

∫
Ω

Gc(ch(t), sh(t))mc
h dx,∫

Ω

∂tsh(t)ms
h dx +

∫
Ω

(Ds(sh(t))∇sh(t)− sh(t)uh) · ∇ms
h dx =

∫
Ω

Gs(ch(t), sh(t))ms
h dx,∫

Ω

K−1uh(t) · vh dx +
√
µ

∫
Ω

curlvh · ωh(t) dx−
∫

Ω

ph(t) div vh dx =

∫
Ω

(sh(t)g + f) · vh dx,

√
µ

∫
Ω

curluh(t) · zh dx−
∫

Ω

ωh(t) · zh dx = 0,

−
∫

Ω

qh divuh(t) dx = 0,

(6.2)

for all mc
h,m

s
h ∈ Vh, vh ∈ Hh, zh ∈ Zh, and qh ∈ Qh.

6.2. Euler time discretisation. Let c0h = PVh
(c0), s0

h = PVh
(s0) be appropriate projections of

the initial data, and consider the following fully discrete method arising after backward Euler time
discretisation using a fixed time step ∆t = T/N : For n ∈ {1, . . . , N}, find (cnh, s

n
h,u

n
h,ω

n
h, p

n
h) ∈ Vh ×

Vh ×Hh × Zh ×Qh such that∫
Ω

cnh−c
n−1
h

∆t
mc
h dx +

∫
Ω

(Dc(c
n
h)∇cnh − cnhunh) · ∇mc

h dx =

∫
Ω

Gc(c
n−1
h , sn−1

h )mc
h dx,∫

Ω

snh−s
n−1
h

∆t
mc
h dx +

∫
Ω

(Ds(s
n
h)∇snh − snhunh) · ∇ms

h dx =

∫
Ω

Gs(c
n−1
h , sn−1

h )ms
h dx,∫

Ω

K−1unh · vh dx +
√
µ

∫
Ω

vh · curlωnh dx−
∫

Ω

pnh div vh dx =

∫
Ω

(snhg + f) · vh dx,

√
µ

∫
Ω

unh · curl zh dxdt−
∫

Ω

ωnh · zh dx = 0,

−
∫

Ω

qh divunh dx = 0,

(6.3)

for all mc
h,m

s
h ∈ Vh, vh ∈ Hh, zh ∈ Zh, qh ∈ Qh, where the forcing term in the momentum equation is

discretised explicitly. We also stress that, owing to the choice (6.1), the discrete velocities uh generated
using either (6.2) or (6.3) are exactly divergence-free, that is, divuh(t) = 0 and divunh = 0 in Ω (cf. [3]).
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6.3. Sketched convergence analysis. The convergence of solutions generated by (6.3) is next
established following two main lemmas. The first one states the non-negativity and boundedness of the
discrete concentrations (sh, ch).

Lemma 6.1. Let (snh, c
n
h) be part of the solution of (6.3). Then there exists a constant M > 0 depending

on ‖c0‖L∞(Ω) and ‖s0‖L∞(Ω) such that, for all n = 1, . . . , N

0 ≤ snh, cnh ≤M.

Proof. Let us show by induction in n that cnh, s
n
h ≥ 0. The claim is true for n = 0. We assume that

ckh, s
k
h ≥ 0 for k = 1, . . . , n− 1. Testing the first equation of (6.3) by −cnh

− =
cnh − |cnh|

2
, we readily get

−
∫

Ω

cnh−c
n−1
h

∆t
cnh
− dx +Dmin

∫
Ω

∣∣∇cnh−∣∣2 dx−
∫

Ω

cnh
−unh · ∇cnh dx ≤ −

∫
Ω

Gc(c
n−1
h , sn−1

h )cnh
− dx. (6.4)

Now, we use that divunh = 0 in Ω and relation (2.5) to deduce

−
∫

Ω

cnh
−unh · ∇cnh dx =

1

2

∫
Ω

unh · ∇(cnh
−)2 dx = 0, and −

∫
Ω

Gc(c
n−1
h , sn−1

h )cnh
− dx ≤ 0.

Thus, according to the positivity of the second term in left hand side of (6.4), we obtain

−
∫

Ω

(cnh−cn−1
h )cnh

− dx ≤ 0. (6.5)

Next we employ the identity cnh = cnh
+ − cnh

−, the nonnegativity of cn−1
h , and (6.5) to deduce that∫

Ω

∣∣cnh−∣∣2 dx = 0.

This implies the nonnegativity of cnh. Much in the same way, we get sn−h = 0 for k = 1, . . . , n, concluding
the proof of our first claim.

Now we prove (by induction) that there exists a constant M > 0 such that snh, c
n
h ≤M for n = 0, . . . , N .

The statement clearly holds for n = 0. We then assume that ckh, s
k
h ≤M for k = 1, . . . , n− 1. The main

idea consists in realising that (Hn
h ) is a super-solution of the second equation for (cnh, s

n
h) in (6.3). Indeed,

thanks to (2.5) we have
H0
h = max{‖c0‖L∞(Ω) , ‖c0‖L∞(Ω)} ≥ c0h, s0

h,

Hn
h −H

n−1
h

∆t
= max{Cs, Cc}(1 +

∣∣cn−1
h

∣∣+
∣∣sn−1
h

∣∣) ≥ {Gs(cn−1
h , sn−1

h ),

Gc(c
n−1
h , sn−1

h ),

(6.6)

for all n = 1, . . . , N . Therefore we can prove by induction that ckk, s
k
h ≤ Hk

h for all k = 1, . . . , N . This
relation is readily verified for k = 0 (recall that H0

h = max{‖c0‖L∞(Ω) , ‖c0‖L∞(Ω)}). Assuming it holds

true for k = n− 1, and after subtracting the first equation in (6.3) from (6.6) for Hn
h , it follows that∫

Ω

cnh−Hn
h

∆t
mc
h dx +

∫
Ω

(Dc(c
n
h)∇cnh − cnhunh) · ∇mc

h dx =∫
Ω

cn−1
h −Hn−1

h

∆t
mc
h dx +

∫
Ω

(
Gc(c

n−1
h , sn−1

h )−max{Cs, Cc}(1 +
∣∣cn−1
h

∣∣+
∣∣sn−1
h

∣∣))mc
h dx,

(6.7)

for all mc
h ∈ Vh. Observe that as a consequence of (2.5), the locally divergence free velocity condition,

and the relation cn−1
h −Hn−1

h ≤ 0, we obtain∫
Ω

(Dc(c
n
h)∇cnh − cnhunh) · ∇(cnh−Hn

h )+ dx ≥ 0,

12



∫
Ω

cn−1
h −Hn−1

h

∆t
(cnh−Hn

h )+ dx ≤ 0,∫
Ω

(
Gc(c

n−1
h , sn−1

h )−max{Cs, Cc}(1 +
∣∣cn−1
h

∣∣+
∣∣sn−1
h

∣∣))(cnh−Hn
h )+ dx ≥ 0.

Combining these inequalities and substituting mc
h = (cnh−Hn

h )+ in (6.7), implies that (cnh −Hn
h )+ ≤ 0.

Similarly, we get skh ≤ Hk
h for all k = 1, . . . , N . Using this and (6.6), we deduce

Hk
h ≤ (1 + 2∆tmax{Cs, Cc})Hk−1 + ∆tmax{Cs, Cc},

for k = 1, . . . , N . This implies that

sup
N∈N

max
1≤n≤N

Hn
h ≤ C(max{‖c0‖L∞(Ω) , ‖s0‖L∞(Ω)}, T ) < +∞,

which concludes the proof.

The next step consists in deriving stability estimates. Their proof follows closely those presented in
Sections 3 and 4. Namely, we employ the same kind of test functions in the same combination of
equations; whereas the chain rule for time derivatives is now replaced by the convexity inequality

an(an − an−1) ≥ |a
n|2

2
−
∣∣an−1

∣∣2
2

,

to treat the finite difference discretisation of the time derivatives. Proceeding in this way, we can obtain
estimates (uniform in both h and ∆t) for the discrete Brinkman solutions

‖uh‖L2(0,T ;H(div;Ω)) + ‖ωh‖L2(0,T ;H(curl;Ω)) + ‖ph‖L2(0,T ;L2
0(Ω)) ≤ C, (6.8)

and for the advection-reaction-diffusion system

‖ch‖L∞(0,T ;L2(Ω)) + ‖sh‖L∞(0,T ;L2(Ω)) + ‖∇ch‖L2(ΩT ) + ‖∇sh‖L2(ΩT ) ≤ C, (6.9)

for some constant C > 0.

The next goal is to establish the relative compactness in L2(ΩT ) of the sequences (ch, sh), which is
achieved by constructing space and time translates and using the a priori estimates given above.

Lemma 6.2. There exists a constant C > 0 depending on Ω, T , c0 and s0 such that∫∫
Ωr×(0,T )

[
|ch(x + r, t)− ch(x, t)|2 + |sh(x + r, t)− sh(x, t)|2

]
dx dt ≤ C |r|2, (6.10)∫∫

Ω×(0,T−τ)

[
|ch(x, t+ τ)− ch(x, t)|2 + |sh(x, t+ τ)− sh(x, t)|2

]
dx dt ≤ C(τ + ∆t). (6.11)

for all r ∈ R3 and for all τ ∈ (0, T ), where Ωr = {x ∈ Ω, [x,x + r] ⊂ Ω}.
Proof. Let us introduce the space translates

(Jrch)(x, ·) = ch(x + r, ·)− ch(x, ·), and (Jrsh)(x, ·) = sh(x + r, ·)− sh(x, ·).

From the L2(0, T ; H1(Ω))−estimate for ch and sh, the bound∫ T

0

∫
Ωr

|Jrch|2 dx dt+

∫ T

0

∫
Ωr

|Jrsh|2 dx dt ≤ C|r|2, (6.12)

easily follows. It is then clear that the right-hand side in (6.12) vanishes as |r| → 0, uniformly in h, which
yields (6.10).

Next we introduce the time translates

(Thch)(·, t) := ch(·, t+ τ)− ch(·, t) and (Thsh)(·, t) := sh(·, t+ τ)− sh(·, t),
13



and notice that for all t ∈ [0, T − τ ], these functions assume values in Vh (cf. (6.1)). Therefore they
can be used as test functions in the fully-discrete scheme (6.3). Moreover, the previously proved uniform
bounds for (ch, sh) and (∇ch,∇sh) in L2(ΩT ,R2) imply analogous bounds for the translates T τ ch, T

τsh
and ∇T τ ch,∇T τsh in L2((0, T − τ)× Ω).

Let us now define (ch, sh) as the piecewise affine in t function in W 1,∞([0;T ];Vh) interpolating the
states (cnh, s

n
h)n=0,...,N ⊂ Vh at the points (n∆t)n=0,...,N (recall the interpolation scheme nh = nn−1

h +
t− tn−1

∆t
(nnh − nn−1

h ) for n = c, s). Then we have∫
Ω

∂tchm
c
h dx +

∫
Ω

(Dc(ch)∇ch − chuh) · ∇mc
h dx =

∫
Ω

Gc(ch, sh)mc
h dx,∫

Ω

∂tshm
s
h dx +

∫
Ω

(Ds(sh)∇sh − shuh) · ∇ms
h dx =

∫
Ω

Gs(ch, sh)ms
h dx,

(6.13)

for all mc
h,m

s
h ∈ Vh. We integrate (6.13) with respect to time σ ∈ [t, t+τ ] (with 0 < τ < T ) and consider

mc
h = T τ ch and ms

h = T τsh as test functions in the resulting equations. Therefore∫ T−τ

0

∫
Ω

∣∣(Thc̄h)(x, t)
∣∣2 dx dt+

∫ T−τ

0

∫
Ω

∣∣(Ths̄h)(x, t)
∣∣2 dx dt

=

∫ T−τ

0

∫
Ω

(∫ t+τ

t

∂σ c̄h(x, σ) dσ
)

(Thch)(x, t) dx dt+

∫ T−τ

0

∫
Ω

(∫ t+τ

t

∂σ s̄h(x, σ) dσ
)

(Thsh)(x, t) dx dt

= −
∫ T−τ

0

∫
Ω

∫ t+τ

t

(Dc(ch)∇ch(x, σ)− ch(x, t))uh(x)) · ∇(Thch)(x, t) dx dσ dt

−
∫ T−τ

0

∫
Ω

∫ t+τ

t

(Ds(sh)∇sh(x, σ)− sh(x, t))uh(x)) · ∇(Thsh)(x, t) dx dσ dt

+

∫ T−τ

0

∫
Ω

∫ t+τ

t

Gc(ch(x, t), sh(x, t))(Thch)(x, t) dx dσ dt

+

∫ T−τ

0

∫
Ω

∫ t+τ

t

Gs(ch(x, t), sh(x, t))(Thsh)(x, t) dx dσ dt

=: I1 + I2 + I3 + I4.

Now, we examine these integrals separately. For I1 we have

|I1| ≤ C

[∫ T−τ

0

∫
Ω

(∫ t+τ

t

|∇ch(x, σ)|2 dσ
)2

dx dt

] 1
2

×

[∫ T−τ

0

∫
Ω

∣∣∇(Thch)(x, t)
∣∣2 dx dt

] 1
2

≤ C τ,

and similarly |I2| ≤ C τ , for some constant C > 0. Herein we have used the Fubini theorem (recall that∫ t+τ
t

dσ = τ =
∫ σ
σ−τ dt), the divergence-free condition for the discrete velocity, the Hölder inequality and

the L2−bounds for (ch, sh), (∇ch,∇sh) and (∇Thch,∇Thsh). Keeping in mind the growth assumptions
on Gc, Gs, we can apply the Hölder inequality (with p = 2, p′ = 2) to deduce that |I3| + |I4| ≤ C τ, for
some constant C > 0. Collecting these inequalities we readily get∫ T−τ

0

∫
Ω

(
|c̄h(·, t+ τ)− c̄h(·, t)|2 + |s̄h(·, t+ τ)− s̄h(·, t)|2

)
dx dt ≤ C τ.

Furthermore, the definition of (c̄h, s̄h) together with (6.9) eventually implies that

‖c̄h − ch‖2L2(ΩT ) ≤
N∑
n=1

∆t‖cnh − cn−1
h ‖2L2(Ω) ≤ C(∆t) → 0 as ∆t→ 0,

‖s̄h − sh‖2L2(ΩT ) ≤
N∑
n=1

∆t‖snh − sn−1
h ‖2L2(Ω) ≤ C(∆t) → 0 as ∆t→ 0,

which establishes (6.11), therefore finishing the proof.
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Fig. 7.1. Example 1. Convergence tests for the spatial (left) and temporal (right) discretisation via mixed P1 × P1 ×
RT0 × P1 × P0 finite elements and backward Euler time stepping applied to (2.1).

Note that as a consequence of (6.8)-(6.9), Lemma 6.2, and Kolmogorov’s compactness criterion (cf. [6,
Theorem IV.25]), we can assert that there exists a subsequence of (ch, sh,uh,ωh, ph), not relabeled, such
that, as h→ 0,

(ch, sh)→ (c, s) weakly −? in L∞(ΩT ,R2) and in L2(0, T ; H1(Ω,R2)) weakly,

(uh,ωh, ph)→ (u,ω, p) in L2(0, T ; H(div; Ω))× L2(0, T ; H(curl; Ω))× L2(0, T ; L2
0(Ω)) weakly,

ch → c and sh → s strongly in Lp(ΩT ) for 1 ≤ p <∞.

These convergence properties allow us to identify the limit (c, s,u,ω, p) as the weak solution of (2.1),
and the convergence result is summarised as follows.

Theorem 6.3. Assume that conditions (2.3), (2.4) and (2.5) hold. If c0, s0 ∈ L∞(Ω) with c0 ≥ 0 and
s0 ≥ 0 a.e. in Ω, then the finite element solution (cnh, s

n
h,u

n
h,ω

n
h, p

n
h), generated by (6.3), converges along

a subsequence to (c, s,u,ω, p) as h,∆t → 0, where (c, s,u,ω, p) is a unique weak solution of (2.1)-(2.2)
in the sense of Definition 2.1.

We observe that the error generated by the fully discrete scheme (6.3) has two components: one due to
the spatial discretisation and depending on the mesh size h, and the error due to the time discretisation
depending on the timestep ∆t. Given the approximation properties of the employed finite element spaces
and the time stepping method (see e.g. [10]), we can expect the following convergence rates for the
proposed method

‖(c(·, tn), s(·, tn),u(·, tn),ω(·, tn), p(·, tn))− (cnh, s
n
h,u

n
h,ω

n
h, p

n
h)‖ ≤ C1h+ C2∆t, (6.14)

with tn = n∆t, for n = 1, . . . , N and C1, C2 > 0 are constants independent of h and ∆t. Here
(cnh, s

n
h,u

n
h,ω

n
h, p

n
h) denotes the sequence generated by (6.3) for all n = 1, . . . , N . A rigorous deriva-

tion of this space-time error estimate is part of ongoing developments.

7. Numerical tests. We finally present a set of examples to illustrate the properties of the model
and of the proposed finite element method. The coupling between Brinkman and reaction-diffusion
equations will be implemented either via: a) a fully monolithic solution, b) an iterative Picard method
splitting linear Brinkman and fully explicit reaction-diffusion equations, and c) an iterative Picard method
with an embedded Newton algorithm for the linearisation of the reaction-diffusion system. Efficient
coupling strategies and thorough comparisons will be reported elsewhere (see [17]).

Example 1: Spatio-temporal accuracy. Let us consider the spatio-temporal domain ΩT = (0, 1)2 ×
[0, 0.1] and define the following exact solutions to (2.1) in the case of constant diffusivities Dc, Ds:

c(x, t) = exp(−4Dcπ
2t)[cos(2πx) + cos(2πy)], s(x, t) = exp(−4Dsπ

2t)[cos(2πx) + cos(2πy)],

u(x, t) = 3 sin(t)x2(x− 1)2y2(y − 1)2
(
x(x− 1)(2y − 1),−(2x− 1)y(y − 1)

)T
, p(x, t) = x4 − y4,

ω(x, t) = −6 sin(t)
√
µ[x(5x3 − 10x2 + 6x− 1)y3(y − 1)3 + y(5y3 − 10y2 + 6y − 1)x3(x− 1)3].

(7.1)
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The model parameters are set as µ = 1, Dc = 0.01, Ds = 0.5, g = (0,−1)T , and K = I; the reaction
kinetics are specified by

Gj(c, s) = 6π sin(t) exp(−4Djπ
2t)x2(x− 1)2y2(y − 1)2

× [(2x− 1)y(y − 1) sin(2πy)− x(x− 1)(2y − 1) sin(2πx)], j = c, s,

whereas f is computed using (7.1) and the momentum equation in (2.1). Note that these solutions
satisfy the mass conservation equation, while boundary and initial conditions (2.2) are imposed according
to (7.1). Also, a non-homogeneous source term is incorporated on the right hand side of the reaction-
diffusion equations and constructed using the manufactured solutions.

Errors associated to splitting algorithms are avoided by invoking the exact full Jacobian and performing
Newton iterations until convergence at each time step. The mesh convergence is investigated by fixing
∆t =1.6e-4 and computing errors between the exact solutions from (7.1) and approximations obtained
with our mixed-primal method on a sequence of successively refined structured triangulations of Ω, at
the final adimensional time T =5e-3. That is, for each field η, we compute eh(η) := ‖ηN − ηNh ‖, where
ηN = η(·, T ), and ‖ · ‖ is either the H1, H(div), or L2−norm. On the other hand, the error history
associated to the time discretisation is studied by fixing a small meshsize h = 2.43e-5 and computing
accumulative errors up to T = 0.1, and decreasing ∆t. That is, we measure errors in the `∞(0, t; ·)−norm:

E∆t(η) :=
∑N
n=0 ‖ηn − ηnh‖(·). Figure 7.1 depicts a convergence analysis for the propose method with

respect to meshsize and timestep. All plots indicate an overall first order convergence in both space and
time, as expected from the involved approximations yielding (6.14).

Example 2: Bacterial bioconvection. Next we focus on the interaction between bacteria (with
concentration c) and oxygen (described by s) in a small chamber, as studied in e.g. [16]. As it stands,
this model does not fall exactly in the framework analysed in Section 3, since a cross-diffusion term for
the bacteria is utilised div(Dc∇c) + div(D′c∇s), with D′c(c, s) = cr(s), r(s) = −α2 (1 + s−s∗√

(s−s∗)2+ε2
),

where s∗ is an oxygen threshold, below which the chemotactic convection is turned off. We consider a
fully explicit approximation of the cross diffusion, the reaction part for the oxygen conservation equation
is given by Gs(c, s) = βcr(s), and the remaining model functions and adimensional parameters are set as
follows: K = K0 + K0η(x) (with K0 = 7700 and η a uniformly distributed random field), g = (0,−γ)T ,
s∗ = 0.3, Dc = 0.01, Ds = 0.25, ε = h. The computational domain is a disk of radius 1

2 centred
at ( 1

2 ,
1
2 ), discretised into an unstructured mesh of 13972 points and 27942 triangular elements, and a

timestep of ∆t =1e-3 is employed. For this example we solve via fixed point iterations the coupling
between the Brinkman problem and the set of reaction-diffusion equations. The system is initially at
rest (zero velocity, vorticity, and pressure), having a concentration of bacteria near the top of the disk
c0 = 1 − (1 + exp(−50

√
(x− 0.5)2 + (y − 0.9)2))−1, and an homogeneous oxygen content s0 = 1. In

Figure 7.2 we show three snapshots (at advanced time) of the obtained numerical solutions on different
regimes characterised by α, β, γ. In all cases we observe the species heading to the bottom of the disk,
generating vortical flow around the zones of high concentrations of oxygen and bacteria. The plots
indicate that transitional flow occurs (mainly due to the triggering of unstable modes), which can be
captured in a robust manner by the numerical method, even in the most unstable regime.

Example 3: FitzHugh-Nagumo dynamics in a 3D porous cavity. This test emphasises the
effects of high contrast permeabilities on the propagation of travelling waves dictated by the well-known
FitzHugh-Nagumo reactions Gc(c, s) = k(s + c(c − a)(c − 1)), and Gs(c, s) = d1c − s. In this prototype
model of excitable systems, c and s represent a membrane voltage, and a recovery variable. We consider a
polygonal domain Ω = (0, 1.8)× (0, 1)× (0, 0.6) filled with 60 large particles (of radii 1.5e-3 and randomly
distributed on Ω) with a permeability 100 times higher than in the rest of the porous matrix.

The forcing term is specified by g = d2(1, 1, 1)T and f = 0. Moreover, the conductivity of the medium is
assumed anisotropic and affected by the heterogeneity of the permeability field (Dc)1,1 = 40K, (Dc)2,2 =
5K, Ds =1e-3, the fluid viscosity is µ = 0.01, and the remaining parameters are chosen as a = 0.25,
d1 = 0.16875, d2 = 250

√
3, k = −100. The domain is discretised into an unstructured mesh of 126034

tetrahedral elements sharing 21952 nodes, and we set a timestep of ∆t =1e-3. All sides of the box are
provided with zero-fluxes for voltage and recovery fields, zero tangential vorticity, and slip velocities,
and as initial condition we excite the bottom left part of the domain. This time we use the method
of characteristics to treat the convective terms, a Newton algorithm is used to linearise the reaction-

16



Fig. 7.2. Example 2: snapshots at t = 0.5 of the bioconvection dynamics for three different regimes characterised by
α = β = 0.1, γ = 41.8 (left), α = 0.25, β = 2.5, γ = 418 (centre), and α = β = 5, γ = 4180 (right). Computed solutions
from top to bottom: bacteria concentration, amount of oxygen, vorticity, velocity, and pressure.

diffusion equations, and outer Picard iterations are applied to couple that system together with the set
of Brinkman equations. The obtained numerical solutions are depicted in Figure 7.3. A propagating
front for the potential moves towards the positive x−axis, followed by the slower recovery variable front.
As a consequence of the heterogeneity of conductivities and permeabilities, preferential velocity patterns
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Fig. 7.3. Example 3: Computed solutions (voltage, recovery variable, vorticity, velocity, and pressure) for the
FitzHugh-Nagumo dynamics on a porous mixture at early (left), mid (centre), and advanced (right) times.

start to form. We also notice that vorticity (in this case, we show only its magnitude) clearly marks the
regions of contact between high gradients of potential and recovery field.

Example 4: Intracellular calcium-induced calcium release. In closing this section we present a
simulation of the interaction between two species c, s (the concentrations of cytosolic and sarcoplasmic
calcium, respectively) inside a cardiac cell. This phenomenon has been studied in terms of the reacting
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Fig. 7.4. Example 4: Computed solutions (cytosolic calcium, sarcoplasmic calcium, vorticity, velocity, and pressure)
for the intracellular calcium dynamics at early (left) and advanced (right) times.

species alone (cf. [14, 18]), and also including the active cell contraction while solving for the underlying
finite elasticity equations [20, 26]. In contrast, here we assume that the species interact with an interstitial
fluid occupying the sarcoplasmic reticulum, which is in turn pictured as a porous medium with a non-
homogeneous permeability distribution. A 2D geometry reconstructed from confocal images is used and
a triangular mesh of 46610 elements and 23741 vertices is generated. The time advancing algorithm uses
a fixed time step of ∆t = 0.01. The process consists in opening 80 channels of cytosolic calcium located
randomly within the myocyte, and observing how these propagate thorough plasma into the whole cell.
We also consider that the permeability is higher in the vicinity of these channels. The minimal reaction-
diffusion model proposed in [14] involves the following specialisation for constant and species-dependent
coefficients:

Dc = (1 +
1

4
η(x))

(
0.6 0
0 0.3

)
, Ds = 0, Gc(c, s) = ν1 − ν2

c2

k2 + c2
+ ν3

c4s2

(k3 + s2)(k4 + c4)
− ν4c,

Gs(c, s) = ν2
c2

k2 + c2
− ν3

c4s2

(k3 + s2)(k4 + c4)
− ν5s,

where η is a step function assuming the value 1 on disks centred at uniformly distributed random locations
corresponding to the channels, and zero elsewhere. The influence of calcium patterns into the flow
behaviour of the plasma is encoded in the forcing term for the momentum equation f = γ0|s|(f0⊗f0)∇s,
which might be regarded as the flow-counterpart to the active force proposed in [19]. Here f0 = (1, 0)T

is a given preferential direction of plasma displacement, and the remaining parameters are γ0 = −0.12,
ν1 = 1.58, ν2 = 16, ν3 = 91, ν4 = 2, ν5 = 0.2, k2 = 1, k3 = 4, k4 = 0.75, K = 1e-4(1+10η(x)). Snapshots
of the numerical solutions at an early and advanced time steps are collected in Figure 7.4. Starting from
the open channels, the cytosolic calcium starts to propagate towards other channels, also following a
higher diffusion in the preferential direction f0 (aligned with the x−axis).
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