J. Coulter, W. Hyland, J. Nicol, and F. Currell, Radiosensitising Nanoparticles as Novel Cancer Therapeutics ??? Pipe Dream or Realistic Prospect?, Clinical Oncology, vol.25, issue.10, pp.593-603, 2013.
DOI : 10.1016/j.clon.2013.06.011

D. Cooper, D. Bekah, and J. Nadeau, Gold nanoparticles and their alternatives for radiation therapy enhancement, Frontiers in Chemistry, vol.33, p.86, 2014.
DOI : 10.1016/j.biomaterials.2012.05.047

S. Jain, D. Hirst, O. Sullivan, and J. , Gold nanoparticles as novel agents for cancer therapy, The British Journal of Radiology, vol.85, issue.1010, pp.101-113, 1010.
DOI : 10.1259/bjr/59448833

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473940

M. Etheridge, S. Campbell, A. Erdman, C. Haynes, S. Wolf et al., The big picture on nanomedicine: the state of investigational and approved nanomedicine products, Nanomedicine: Nanotechnology, Biology and Medicine, vol.9, issue.1, pp.1-14, 2013.
DOI : 10.1016/j.nano.2012.05.013

J. Marill, N. Anesary, and P. Zhang, Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?, Radiation Oncology, vol.9, issue.1, p.150, 2014.
DOI : 10.1080/095530097143653

URL : http://doi.org/10.1186/1748-717x-9-150

M. Douglass, E. Bezak, and S. Penfold, Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model, Medical Physics, vol.156, issue.9, p.71710, 2013.
DOI : 10.1667/0033-7587(2001)156[0365:TLKMOD]2.0.CO;2

B. Jones, S. Krishnan, and S. Cho, Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations, Medical Physics, vol.1, issue.5, pp.3809-3816, 2010.
DOI : 10.1118/1.3455703

E. Lechtman, N. Chattopadhyay, Z. Cai, S. Mashouf, R. Reilly et al., Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location, Physics in Medicine and Biology, vol.56, issue.15, pp.4631-4647, 2011.
DOI : 10.1088/0031-9155/56/15/001

E. Lechtman, S. Mashouf, and N. Chattopadhyay, A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness, Physics in Medicine and Biology, vol.58, issue.10, pp.3075-3087, 2013.
DOI : 10.1088/0031-9155/58/10/3075

S. Agostinelli, J. Allison, and K. Amako, Geant4???a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.506, issue.3, pp.250-303, 2003.
DOI : 10.1016/S0168-9002(03)01368-8

URL : https://hal.archives-ouvertes.fr/in2p3-00020246

J. Baro, J. Sempau, J. Fernandez-varea, and F. Salvat, PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.100, issue.1, pp.31-46, 1995.
DOI : 10.1016/0168-583X(95)00349-5

R. Forster, G. Tnk-alcouffe, R. Dautray, R. Forster, A. Ledanois et al., MCNP - a general Monte Carlo code for neutron and photon transport, Monte-Carlo Methods and Applications in Neutronics, pp.33-55
DOI : 10.1007/BFb0049033

D. Rogers, B. Faddegon, G. Ding, C. Ma, J. We et al., BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Medical Physics, vol.22, issue.5
DOI : 10.1118/1.597552

K. Butterworth, S. Mcmahon, L. Taggart, and K. Prise, Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress, Transl Cancer Res, vol.2, issue.4, pp.269-279, 2013.

S. Mcmahon, K. Prise, and F. Currell, Comment on ???Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location???, Physics in Medicine and Biology, vol.57, issue.1, pp.287-290, 2012.
DOI : 10.1088/0031-9155/57/1/287

W. Rima, L. Sancey, and M. Aloy, Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles, Biomaterials, vol.34, issue.1, pp.181-195, 2013.
DOI : 10.1016/j.biomaterials.2012.09.029

URL : https://hal.archives-ouvertes.fr/hal-00843773

L. Stefancikova, E. Porcel, and P. Eustache, Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells, Cancer Nanotechnology, vol.82, issue.5, p.6, 2014.
DOI : 10.1186/s12645-014-0006-6

URL : https://hal.archives-ouvertes.fr/hal-01115881

P. Retif, S. Pinel, and M. Toussaint, Nanoparticles for Radiation Therapy Enhancement: the Key Parameters, Theranostics, vol.5, issue.9, pp.1030-1044, 2015.
DOI : 10.7150/thno.11642

URL : https://hal.archives-ouvertes.fr/hal-01174788

M. Kodiha, Y. Wang, E. Hutter, D. Maysinger, and U. Stochaj, Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles, Theranostics, vol.5, issue.4, pp.357-370, 2015.
DOI : 10.7150/thno.10657

S. Cho and S. Krishnan, Cancer Nanotechnology: Principles and Applications in Radiation Oncology, 2013.

M. Martinov, R. Thomson, and . Su-e-t-, SU-E-T-667: Radiosensitization Due to Gold Nanoparticles: A Monte Carlo Cellular Dosimetry Investigation of An Expansive Parameter Space, Medical Physics, vol.42, issue.6, p.3490, 2015.
DOI : 10.1118/1.4925030

S. Elzey, D. Tsai, S. Rabb, L. Yu, M. Winchester et al., Quantification of ligand packing density on gold nanoparticles using ICP-OES, Analytical and Bioanalytical Chemistry, vol.26, issue.6, pp.145-149, 2012.
DOI : 10.1007/s00216-012-5830-0

N. Franken, H. Rodermond, J. Stap, J. Haveman, and C. Van-bree, Clonogenic assay of cells in vitro, Nature Protocols, vol.19, issue.5, pp.2315-2319, 2006.
DOI : 10.1080/095530097143653

L. Sancey, S. Kotb, and C. Truillet, Clearance of Gadolinium-Based AGuIX Nanoparticles and Their Biocompatibility after Systemic Injection, ACS Nano, vol.9, issue.3, pp.2477-2488, 2015.
DOI : 10.1021/acsnano.5b00552

URL : https://hal.archives-ouvertes.fr/hal-01207383

G. Ding, Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator, Physics in Medicine and Biology, vol.47, issue.7, pp.1025-1046, 2002.
DOI : 10.1088/0031-9155/47/7/303

R. Brun and F. Rademakers, ROOT ??? An object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.389, issue.1-2, pp.81-86, 1997.
DOI : 10.1016/S0168-9002(97)00048-X

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.1038/nmeth.2089

A. Mesbahi, F. Jamali, and N. Garehaghaji, Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy, Bioimpacts, vol.3, issue.1, pp.29-35, 2013.

D. Zhang, V. Feygelman, E. Moros, K. Latifi, and G. Zhang, Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy, PLoS ONE, vol.80, issue.10, p.109389, 2014.
DOI : 10.1371/journal.pone.0109389.t001

P. Tsiamas, B. Liu, and F. Cifter, Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement, Physics in Medicine and Biology, vol.58, issue.3, pp.451-464, 2013.
DOI : 10.1088/0031-9155/58/3/451