N

N

Environmental factors promoting the evolution of
recruitment strategies in swarms of foraging robots
Steven Van van Essche, Eliseo Ferrante, Ali Emre Turgut, Rinde Van Lon,

Tom Holvoet, Tom Wenseleers

» To cite this version:

Steven Van van Essche, Eliseo Ferrante, Ali Emre Turgut, Rinde Van Lon, Tom Holvoet, et al..
Environmental factors promoting the evolution of recruitment strategies in swarms of foraging robots.
Swarm 2015, 2015, Kyoto, Japan. hal-01405907

HAL Id: hal-01405907
https://hal.science/hal-01405907
Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01405907
https://hal.archives-ouvertes.fr

Environmental factors promoting the evolution of recruitment strategies in
swarms of foraging robots

Steven Van Essche!, Eliseo Ferrante'f, Ali Emre Turgut?, Rinde Van Lon?,
Tom Holvoet?, and Tom Wenseleers'

Laboratory of Socioecology and Social Evolution, KU Leuven
Naamsestraat 59, 3000 Leuven, Belgium; E-mail: eliseo.ferrante @bio.kuleuven.be
2Mechanical Engineering Department, Middle East Technical University, 06800, Ankara, Turkey
3Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract: Swarm robotics has both an engineering as well as a scientific nature. From the engineering perspective, it
studies how to design flexible, robust, and scalable collective behaviors to solve real-world problems in large, unstructured
environments. From the scientific perspective, it is also useful to biologists to study the proximate mechanisms employed
by social species to achieve the astonishing levels of collective organization that are often observed in nature. Evolutionary
swarm robotics has a similar double nature. On the one hand, the use of evolutionary computation techniques is proposed
as a solution to the design problem, that is, to decompose the collective-level goal into the local behaviors of the robots.
On the other hand, studying evolutionary robotics scenarios can be very useful to biologists to understand the ultimate
causes and factors that promote the evolution of specific types of collective organization in nature.

In this paper, our goal is to use an evolutionary swarm robotics scenario to answer questions related to the evolution of
recruitment strategies in social insects. We consider a foraging scenario in which objects are distributed in the environment
according to specific distributions. We show that the way food is distributed in the environment has a significant influence
on whether and which recruitment strategies emerge through the evolutionary process. The results of this paper are
therefore useful both to advance our understanding on the evolutionary causes of recruitment in biological systems, as

well as to hint to engineers the requirements to evolve complex coordination strategies.

Keywords: swarm robotics;evolution of cooperation; signaling; recruitment; self-organization

1. INTRODUCTION

Applications such as search and destruction of can-
cer cells by nanobots, post-disaster search and rescue,
and large environments exploration are particularly suited
for large swarms of autonomous robots. Swarm robotics
is the area of robotics that tries to employ a multitude
of small, relatively simple robots to achieve intelligent
collective-level behaviors [3,25]. Swarm robotics draws
inspiration from biology and by the incredible complex
behavior exhibited by various species of animals and in
particular the robustness, scalability, flexibility displayed
by colonies of social insects [1, 3, 4, 6]. The design prob-
lem for swarm systems is hard [29], as a general way
to translate a collective-level objective into the individ-
ual behaviors of the robots is missing. Current method-
ologies are divided into behavior-based (which are trial-
and-error or seldom supported by a mathematical model)
and automatic design. In the latter category, Evolution-
ary Robotics (henceforth ER) proposes a general method-
ology to synthesize individual-level behaviors given the
collective objective expressed as the objective function
of an evolutionary computation method [3, 11, 15, 17].

Swarm robotics can be also very useful to study bio-
logical systems. Owing to natural systems being black
box entities, and mathematical models being too extreme
simplifications of reality, embodied multi-robot simula-
tions and robotic experiments have been used by biolo-

1 Eliseo Ferrante is the presenter of this paper.

gists to study the collective behavior of social insects [14,
16,28]. They provide a tool to test hypotheses on the
proximate mechanisms underlying the self-organization
of natural systems by directly implementing them on em-
bodied agents or robots. Coupled with evolutionary com-
putation methods, they become an even more powerful
tool in the hands of biologists. When seen as a syn-
thetic version of natural evolution, artificial evolution can
be used to test hypotheses on the evolutionary conditions
for the emergence of particular aspects of collective be-
haviors, such as communication [12, 13, 18, 30] and task
specialization [10].

Understanding the factors that promote the evolution
of highly organized collective behaviors is key to unravel
the mysteries linked to the occurrence of the so-called
major transitions in evolution [21], for example the tran-
sition from single to multi-cellular organisms and from
solitary to eusocial insects, to name a few. It can also be
very useful to understand what are the right conditions to
automatically design highly organized collective behav-
iors that can be used to tackle tasks in complex environ-
ments [10].

In this paper, we aim at understanding the environmen-
tal factor leading to advanced forms of recruitment in so-
cieties of social insects. We focus on a foraging scenario,
in which objects randomly scattered in the environment
need to be retrieved by a swarm of robots. In social in-
sect colonies, individuals do not collect selfishly during
foraging, but rather signal explicitly to the others the lo-



cation of a significant food source, when found. In this
way, more foragers are attracted to the food source, mak-
ing the foraging process much more efficient, leading to
direct benefits for the colony’s members [5, 20, 26].

We perform evolutionary experiments using the AR-
GoS simulator [23], a realistic simulator where detailed
models of robots are available. We show that the type of
food distribution is a key factor that promotes the evo-
lution of recruitment strategies in foraging. This is sim-
ilar to a recent study on a similar scenario [19], which
used less detailed multi-agent simulations and focused
on pheromone strategies rather than those implementable
on a swarm of robots. Our previous work has looked at
the evolution of more general cooperation patterns such
as foraging and task specialization [9, 10], but none have
looked at recruitment strategies in foraging in the robotics
community.

In our experiments, we compare the performance of
recruitment strategies with those of solitary behaviors.
The recruitment strategy that we employ is based on man-
ually designed behavioral building blocks that are further
optimized by a genetic algorithm. Although we have a
few free parameters, this methodology still allows for the
expression of a rich set of possible collective behaviors
with different levels of collective organization.

Our results are relevant both for swarm robotics and
for biology. From a biological point of view, our results
give us a better understanding of why and how cooper-
ation through recruitment evolved. In swarm robotics,
our results show that the right environmental conditions,
more than the fitness function, are very important to au-
tomatically synthesize collective behaviors with complex
coordination strategies via ER.

2. PROBLEM DEFINITION

Analogously to a foraging scenario observed in ants or
bees, in our scenario a swarm of n robots has to search
and retrieve objects, which we will henceforth call food.
Food is placed in random positions in the environment.
We consider two types of food distribution. In uniform
food distribution, the food is spread randomly covering
the entire arena (see Figure la). In patched food dis-
tribution the food is concentrated in a restricted area of
the environment, called patch, whose shape is square and
whose central location is randomly chosen at the begin-
ning of each experiment (see Figure 1b).

The goal of our research is to determine which forag-
ing strategy is favored by evolution in each of these two
environments. In the remaining of this section we will
describe the simulated environment and robots that were
used in the experiments. The experiments are carried
using the ARGoS simulator [24], an open-source simu-
lator able to simulate realistically complex experiments
involving large swarms of robots. In Section 3 we will
describe the methodology that we used to develop and
evolve the collective behaviors.

2.1. The environment

The environments in our experiments are square areas
delimited by walls through which the robots are unable
to pass. Their shape is not relevant to the experiment and
can be chosen arbitrarily. Different shapes would only
change the time needed for a robot to find food. It is thus
only important that the shape and size of the environment
stays consistent throughout our experiments, in order to
perform meaningful comparisons between strategies.

The robots are initially placed near a gray square area
called nest located in the middle of the arena. Robots can
easily return to the nest thanks to a light that is placed
above the nest. They can detect when they are in the nest
by using their ground sensor that can measure the color of
the area beneath them. The nest is the area where the food
must be returned. The size of the nest is big enough to
accommodate multiple robots returning food at the same
time.

Food items are circular and can be distinguished by
the robots by detecting its black color using the ground
sensors. Food is never placed in the nest nor too close
to the nest because otherwise there would be no need for
foraging. Throughout the experiments, the average dis-
tance to all the food objects is kept constant. This means
that the distance from the nest to the center of a patch (in
the patched environment) is determined by the average
distance from the nest to all uniformly distributed food
objects (in the uniform environment). We do this in order
not to bias foraging towards a specific kind of environ-
ment, and to have a fair comparison.

Food also has a renewal rate which determines at what
rate it reappears in the environment. For simplicity, in
our experiments, one food item will reappear in the envi-
ronment in a random location (uniformly or in the patch)
once an other item has been retrieved to the nest, that is,
we consider the highest possible rate. We believe that
different renewal rates would possibly lead to different
recruitment strategies, but this study is left to future in-
vestigation. The total number of food items is saturated
to 50. For a summary of the parameters characterizing
the environment and on their values, refer to Table 1. The
swarm’s performance is measured by its collection rate
and the total amount of food it is able to collect.

’ Parameter description H Value
Size of the environment 10 units
Size of the nest 2 units
Food distribution type patched or uniform
Time steps to rep 1
Max. number of food items 50

Radius of a food item 0.1 units

Table 1 Environment parameters used in the
experiments.
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Fig. 1 The two types of environments used in our experiments: (a) uniform versus (b) patched environment.
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Fig. 2 The physical marXBot with the sensors/actuators
that we used in our experiments.

2.2. Robots

The robots involved in our experiments are simulated
versions of the marXbot [2], a differential-drive robot
with various actuators and sensors. This robot is de-
picted in fig.2. Among the plethora of sensors and ac-
tuators available to this robot, we only use those depicted
in the picture. The range and bearing sensor, which al-
lows robot-to-robot sensing and local communication, is
used to avoid other robots and for the signaling behav-
ior. The light and proximity sensor, which allows robot
to detect lights and to sense objects in near proximity, is
used to detect the light placed above the nest and to avoid
walls. The ground sensors are used to detect the color of
the ground. Finally, the wheels are used to navigate in
a differential-drive fashion. In Section 3 we will better
describe how the sensors are used.

3. METHODS

The behavior exhibited by our simulated robots is
based on a modular architecture [8].

3.1. Behavioral building blocks

We implemented the following low-level behaviorial
building blocks:
Random Walk The robot moves in a straight line for a
random amount of time and then changes direction ran-
domly (uses the wheel actuators and no sensors).
Phototaxis The robot moves towards to direction corre-
sponding to the highest light intensity (uses the light sen-
sor and the wheels actuators).
Anti-Phototaxis The robot moves away from the direc-
tion corresponding to the highest light intensity (uses the
light sensor and the wheels actuators).
Observe Ground The robot senses the color of the area
beneath it to distinguish between nest, regular environ-
ment and food (uses the ground sensors).
Obstacle Avoidance The robot senses other robots and
walls and changes its path to avoid collisions with them
(uses the proximity sensors, the range and bearing actua-
tors and sensors, and the wheels actuators).
Signal The robot sends a signal to other robots in local
proximity (uses the range and bearing actuators and sen-
sors).
Follow signal The robot receives signals from other
robots in local proximity, and moves towards the direc-
tion of the strongest signal perceived (uses the range and
bearing actuators and sensors and the wheels actuators).
These behaviors are combined into higher-level behav-
iors that are associated with robot states. The finite state
machine used by each robot is determined by their role.
Swarm robots can have one among three possible roles:
recruiter, recruitee or solitary. The intuitive idea behind
these roles is the following:
Solitary The robot performs a random walk in the envi-



ronment, immediately carrying off any food that it finds
to the nest. It does not signal other robots and ignores
other robots’ signals completely.

Recruiter The robot performs a random walk in the en-
vironment. When it has found food, it sends a signal to
the other robots for a given duration.

Recruitee The robot performs a random walk in the envi-
ronment, listening to signals of recruiters. When a signal
is detected, a recruitee moves towards the source of this
signal. Once very close to the signal, it starts exploring
that area for food. If food is found, it is immediately car-
ried to the nest.

Each of these roles is implemented by a finite state ma-
chine (henceforth FSM) that uses the previously defined
low-level behaviors. We will now take a closer look at
their finite state machines:

3.1.1. Solitary

found food

in nest
in nest

Fig. 3 FSM of a solitary robot.

start —

not in nest

The solitary robot’s FSM is a fairly simple one and is
depicted in Figure 3. It consists of three states:

Explore (EX P): The robot performs the Random Walk
behavior to explore its environment while using Obstacle
Avoidance to avoid any obstacles.

Return to nest (RTN): The robot uses Phototaxis and
Obstacle Avoidance to find its way back to the nest with
the food object that it has picked up.

Exit nest (EX N ): The robot uses Anti-Phototaxis and
Obstacle Avoidance to leave the nest as quickly as pos-
sible.

The robot starts in the Explore state until it finds a food
object. It then proceeds with picking up the food object
and switching its state to the Return to nest state. Once
it has arrived back to the nest, it drops its food, trigger-
ing the Exit nest state. When the robot has left the nest,
the whole process starts over. The Exit nest state is also
triggered whenever the robot accidentally enters the nest
without food.

3.1.2. Recruiter

The recruiter robot is similar to the solitary robot, but
is specialized in recruiting other robots to any food source
it finds. Its FSM can be seen in fig. 4. This FSM intro-
duces one new state:

Signal food (SIG): The robot stops moving and uses the
Signal behavior to broadcast a signal to nearby robots.

found food timer=zero

not in nest

Fig. 4 FSM of a recruiter robot.

The signal can be only perceived by robots in close prox-
imity (in our experiments, 4 meters, determined by the
default sensing range of the range and bearing sensor of
the marXbot).

This robot’s behavior is similar to the solitary robot’s
behavior, but instead of switching to the Return to nest
state when food is found, it switches to the Signal food
state. When it enters this state it starts a timer. When that
timer reaches zero, the robot stops signaling and enters
the Return to nest state.

3.1.3. Recruitee

timer=zero

near signal source

signal los
food found

ound signal

art ound food
start —

in nest
in nest

not in nest

Fig. 5 FSM of a recruitee robot.

The recruitee is specialized in finding signals and fol-
lowing them. Its FSM can be seen in fig. 5. Its FSM
introduces the following new states:

Follow signal (FOL): The robot detects a signal and
moves towards the direction of the signal’s source using
the Follow signal behavior and the ObstacleAvoidance
behavior to avoid collisions with other robots and objects.

Explore signal area (ESA): The robot explores the area
around the signal (in a similar way as in the Explore state)
but here it also keeps track of how long it has been explor-
ing the signal source’s area.

food found
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Fig. 6 The results of using a solitary versus a recruitment strategy in a uniform and patched environment.

Instead of simply exploring the environment, this
robot also listens for signals of recruiters. Whenever it
picks up such a signal, it switches to the Follow signal
state. At this point, the robot can either lose the signal,
find its source, or encounter food on its way to the signal’s
source. Finding food immediately triggers the Return to
nest state, while losing the signal results in the robot re-
verting back to the Explore state. When a robot succeeds
in reaching a signal’s source (i.e. entering within a spe-
cific range of the signal source), it switches to the Explore
signal area state. In this state, the robot can either find
food, thus switching to the Return to nest state, or give
up after a while and return to the Follow signal state. The
rationale behind this behavior is that the robot might have
wandered off too far from the signal area, allowing it to
once more return to the signaled food source.

3.2. Evolutionary method

As it can be deducted from the previous section, a
number of parameters need to be chosen for the recruit-
ment strategy. These are:

Robot distribution

This determines the proportion of robots engaged in the
solitary, recruiter and recruitee strategies, respectively.
Exploration time

This is the time spent by the recruitee in the Explore sig-
nal area state.

Signaling time

This is the time spent by the recruiter in the Signal food
state.

Signal closeness range

This is how close a robot will try to be to a signal source
before it starts exploring the signal area.

Despite the number of parameters not being huge, we
chose them in a way to maximize the variety of collec-
tive dynamics that can be in principle achieved. The first
parameter, the robot distribution, is clearly key in deter-
mining the collective dynamics and the performance of
the swarm. In principle, the problem can be seen as an
evolutionary game played by robots, each of which could

be playing one of the three strategies: solitary, recruiter,
or recruitee. This would correspond to the same type of
analysis as the one in [10] and in an ongoing work in
which we modeled such dynamics using replicators equa-
tions. Such analysis is however beyond the scope of the
current paper. Furthermore, the other parameters have
also a substantial impact on the collective dynamics and
performance. For instance, the signaling time determines
the cost of signaling, that is, how much of its own fitness a
recruiter robot is willing to sacrifice to benefit the colony
in the attempt to increase the overall colony efficiency.
Similarly, the exploration time and the signal closeness
range are used to fine-tune the recruitee behavior and the
recruiter-recruitee behavioral interactions.

Each robot in a swarm of n robots is executing the
same controller. The genotype representations of the con-
troller is simply a tuple of integers encoding the param-
eters described above. We evaluate the fitness function
by measuring the amount of food the swarm is able to
collect in the allotted simulation time. Each chromosome
is evaluated 20 times using a different seed each time to
generate a different environment with the same food dis-
tribution (uniform or patched). The fitness is the mean
fitness over 20 runs. We perform selection following a
fitness-proportional scheme, or roulette-wheel selection.
We define a selection rate that determines how many in-
dividuals are allowed to reproduce, but also how many
are substituted to create the next generation. Our selec-
tion rate is 90%, which also implies an elitism of 10%
(i.e. the 10% best individuals are preserved for the next
generation). We used a population size for the GA of 20
individuals, 30 generations, a mutation probability of 5%
and crossover probability of 90%. Each experiment was
ran for 50 000 simulated time steps, which was empiri-
cally determined as sufficient for the swarms to converge
on a steady collection rate.

4. EXPERIMENTS

In all our experiments, the swarm size was selected to
be n = 12. We chose this number as it was high enough



Performance of recruitment versus solitary behaviour in a uniform and patched environment.
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Fig. 7 The collection rates achieved in the four different experiments.

to obtain rich collective dynamics and low enough to
be able to execute enough experiments with the allotted
computational resources. To avoid situations in which
robots would initially all head off in the same directory
by chance, we’ve initially placed all robots on a circle
around the center of the nest facing outwards (see fig. 1).
This way the time needed by the swarm to converge on
their constant collection rate is reduced.

We first executed two evolutionary runs, one in the
uniform environment and one in the patched environ-
ment. The final evolved controller in the uniform envi-
ronment resulted in a swarm that does not use recruit-
ment. In other words, the resulting swarm only contained
solitary robots. However, in the patched environment, the
final evolved controller corresponds to a swarm that does
employ recruitment. The characteristics and correspond-
ing parameters of this swarm are given in Table 2. For
videos demonstrating the resulting controllers, refer to

[7].

Parameter Value
# Solitaries 0
# Recruiters 4
# Recruitees 8

Exploration time
Signaling time
Signal closeness range

300 time steps
15 000 time steps
20 units

Table 2 GA results for the patched environment.

The results suggest that the evolutionary process leads
to a swarm that has a 1:2 ratio of recruiters versus re-
cruitees. We can also see that once a recruiter finds a
patch, it stays there for a very long time. One might have
expected that it would even be better for the recruiter to
stay in the same spot for the entire experiment since there
is only one patch. This is however not true for a number
of reasons. If a lot of recruiters find the patch and stay
there indefinitely, they might actually block the patch as
the robots will avoid coming too close to each other. Fur-

thermore, it comes to the cost of not contributing to the
overall collection task, as described above.

These results show that recruitment strategies do not
readily evolve in environments that are too uniform,
while they do evolve in presence of heterogeneous envi-
ronments with features that can be exploited by individ-
uals. In the case of the current scenarios, these features
are represented by information that can be exploited and
communicated by the robots (food location). In another
scenario that we considered in an earlier study [10], we
reached a similar conclusions. In that study, a complex
coordination strategy that we referred to as task special-
ization emerged only in presence of non-uniform envi-
ronments, in that case represented by a non-flat arena
where a slope could be exploited to transfer food items
more economically, which resulted in a task-partitioning
behavior. We speculate that there might be a general
principle governing the emergence of complex coordina-
tion strategies, whereby information transfer maximiza-
tion could be its driving factor.

These two controllers we then evaluated in four set of
experiments:

Uniform — Uniform We evaluated a robot swarm evolved
in a uniform environment (fully solitary strategy) into a

uniform environment.

Uniform — Patched We evaluated a robot swarm evolved
in a uniform environment (fully solitary strategy) into a

patched environment.

Patched — Uniform We evaluated a robot swarm evolved
in a patched environment (recruitment-recruitee strategy)

into a uniform environment.

Patched — Patched We evaluated a robot swarm evolved

in a patched environment (recruitment-recruitee strategy)

into a patched environment.

Each experiment set consists of 60 evaluation runs.

The results are shown in Figure 6. The results clearly
show that each evolved behavior was optimal for the en-
vironment in which it was evolved, and did not transfer
very well to a different environment. We also see that



performance in the uniform environment are in general
much higher than in the patched environment. This is
due to the natural increased difficulty of the task in the
patched environment: In the uniform environment, food
can be found anywhere, and there is no need to perform
search. In the patched environment, food needs first to
be searched, before being able to retrieve it effectively.
This is also reflected in the increased standard deviation
of the performance of the recruitment-based behavior in
the patched environment: the performance of a given run
will depend strongly on the initial time needed to find the
food patch by the first robot(s).

Finally, Figure 7 reports a comparison of the the av-
erage performance in the four experimental evaluations,
plotted as a function of time. The figure confirms that the
best performance are obtained using a solitary strategy in
a uniform environment, confirming the intrinsic simplic-
ity of such a scenario. We also notice that a recruitment
strategy in the uniform environment has an initial perfor-
mance boost, which then is attenuated: this behavior cor-
responds to the fact that the signaling strategy is not giv-
ing an effect in the initial moment of the simulation, and
as such recruitees are behaving like solitary robots. Once
recruitment starts, this will have a negative effect on the
swarm performance due to the absence of positional in-
formation that can be exploited. We also notice the pres-
ence of fluctuating peaks after this initial peak, which can
be explained by a “’synchronization” effect of recruiters
stopping signaling and bringing food together to the nest.
This initial effect is then dampened once recruiters stop
being synchronized. Besides this, Figure 7 confirms the
general message, being that each controller performs the
best in the environment where it first evolved.

Overall, our results show that specific environmental
conditions are critical for the emergence of complex coor-
dination strategies. In our setting, these strategies did not
transfer well to other environments, but this immediately
raises questions on what would then be the right environ-
mental conditions required for the emergence of flexible
coordination strategies, that is, strategies that would auto-
matically switch from solitary to recruitment-type of be-
haviors depending on the environmental situations. De-
termining such environment is object to future work, and
we will be determined by looking at the environment
present in real biological systems. We speculate that a
power-law type of distribution of food items in the envi-
ronment might be enough for evolving an adaptive forag-
ing strategy [19].

5. CONCLUSION

In this paper, we showed how environmental fac-
tors play a key role in the evolution of complex co-
ordination strategies, such as recruitment and signal-
ing. To support this hypothesis, we performed evolu-
tionary experiments using realistic swarm robotics simu-
lations. Our methodology relied on the presence of exist-
ing behavioral-building blocks, that is, behavioral prim-
itives able to carry out basic tasks such moving towards

the light, avoiding obstacles, etc ..., in a similar fashion
as it is believed to happen through natural evolution [22].
Using a simple GA, we were able to evolve a rich variety
of collective behaviors to cope with a foraging task in two
environments: a uniform environment where food items
are placed uniformly at random positions, and a patched
environment where items are placed in bounded patches
at given random locations.

Our results show that a complex recruitment strat-
egy could only evolve in the patched environment, while
a solitary strategy evolved in the uniform environment.
Furthermore, each strategy was shown to be perform-
ing well only in its original environment where it first
evolved. This results prompt the need to answer the ques-
tion of what would be the right environment that would
favor a flexible foraging strategy, able to switch from soli-
tary to recruitment as needed.

This study is important but only the first milestone
in our research agenda. Our next step is to investigate
the role of genetic structure on the evolution of signal-
ing and recruitment behaviors. In evolutionary biology, it
is well known that explicit signaling should be favored
in groups composed of genetically related individuals,
whereby sharing information about food benefits the en-
tire colony and hence produces an inclusive fitness effect,
but less so in groups of non-related individuals, whereby
different strategies such as eavesdropping emerge [27].
Future work aims at using a similar scenario to the one
considered here with a different evolutionary framework
that would allow the study of the effect of genetic relat-
edness on the evolution of different recruitment mech-
anisms. Furthermore, we plan to develop a theoretical
model able to predict when and which type of recruitment
model can be favored by evolution under different envi-
ronmental situations. Finally, our ultimate goal is develop
a more general, rather than case-specific, understanding
of what are the factors leading to the emergence of com-
plex coordination strategies, that encompasses not only
the scenario considered here but also the one we studied
in [10] and other collective behaviors observable in natu-
ral system. This way, we can not only shed more light on
the evolutionary causes in biology, but also develop the
right tools and recommendations for the automatic design
of collaborative strategies for artificial swarms of robots.
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