R. A. Petros and J. M. Desimone, Strategies in the design of nanoparticles for therapeutic applications, Nature Reviews Drug Discovery, vol.3, issue.8, pp.615-627, 2010.
DOI : 10.1038/nrd2591

D. E. Lee, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chem. Soc. Rev., vol.620, issue.7, pp.2656-2672, 2012.
DOI : 10.1039/C2CS15261D

K. Y. Choi, G. Liu, S. Lee, and X. Chen, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives, Nanoscale, vol.39, issue.2, pp.330-342, 2012.
DOI : 10.1039/C1NR11277E

S. S. Kelkar and T. M. Reineke, Theranostics: Combining Imaging and Therapy, Bioconjugate Chemistry, vol.22, issue.10, pp.1879-1903, 2011.
DOI : 10.1021/bc200151q

T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. T. Kiessling et al., Theranostic Nanomedicine, Accounts of Chemical Research, vol.44, issue.10, pp.1029-1067, 2011.
DOI : 10.1021/ar200019c

A. Wicki, D. Witzigmann, V. Balasubramanian, and J. Huwyler, Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, Journal of Controlled Release, vol.200, pp.138-157, 2015.
DOI : 10.1016/j.jconrel.2014.12.030

R. K. Jain and T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nature Reviews Clinical Oncology, vol.3, issue.11, pp.653-664, 2010.
DOI : 10.1038/nrclinonc.2010.139

D. A. Scheinberg, C. H. Villa, F. E. Escorcia, and M. R. Mcdevitt, Conscripts of the infinite armada: systemic cancer therapy using nanomaterials, Nature Reviews Clinical Oncology, vol.21, issue.5, pp.266-276, 2010.
DOI : 10.1038/nrclinonc.2010.38

H. Maeda, T. Sawa, and T. Konno, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, Journal of Controlled Release, vol.74, issue.1-3, pp.47-61, 2001.
DOI : 10.1016/S0168-3659(01)00309-1

M. Yu and J. Zheng, Clearance Pathways and Tumor Targeting of Imaging Nanoparticles, ACS Nano, vol.9, issue.7, pp.6655-6674, 2015.
DOI : 10.1021/acsnano.5b01320

L. Duc and G. , Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles, ACS Nano, vol.5, issue.12, pp.9566-9574, 2011.
DOI : 10.1021/nn202797h

F. Lux, Ultrasmall rigid particles as multimodal probes for medical applications. Angew Chem Inter Ed, pp.12299-12303, 2011.
DOI : 10.1002/anie.201104104

URL : https://hal.archives-ouvertes.fr/hal-00673713

A. Mignot, A Top-Down Synthesis Route to Ultrasmall Multifunctional Gd-Based Silica Nanoparticles for Theranostic Applications, Chemistry - A European Journal, vol.132, issue.19, pp.6122-6136, 2013.
DOI : 10.1002/chem.201203003

K. Kobayashi, N. Usami, E. Porcel, S. Lacombe, and C. Le-sech, Enhancement of radiation effect by heavy elements, Mutation Research/Reviews in Mutation Research, vol.704, issue.1-3, pp.123-131, 2010.
DOI : 10.1016/j.mrrev.2010.01.002

L. Duc and G. , Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment, Cancer Nanotechnol, vol.5, pp.1-14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115650

P. Caravan, J. J. Ellison, T. J. Mcmurry, R. B. Lauffer, and . Gadolinium, Gadolinium(III) Chelates as MRI Contrast Agents:?? Structure, Dynamics, and Applications, III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications, pp.2293-2352, 1999.
DOI : 10.1021/cr980440x

F. Evanics, P. R. Diamente, F. C. Van-veggel, G. J. Stanisz, and R. S. Prosser, NanoparticlesPhysical Characterization and NMR Relaxation Properties, Chemistry of Materials, vol.18, issue.10, pp.2499-2505, 2006.
DOI : 10.1021/cm052299w

J. Y. Park, MR Images, ACS Nano, vol.3, issue.11, pp.3663-3669, 2009.
DOI : 10.1021/nn900761s

J. Bridot, Hybrid Gadolinium Oxide Nanoparticles:?? Multimodal Contrast Agents for in Vivo Imaging, Journal of the American Chemical Society, vol.129, issue.16, pp.5076-84, 2007.
DOI : 10.1021/ja068356j

URL : https://hal.archives-ouvertes.fr/hal-00434120

A. Bianchi, Targeting and in vivo imaging of non-small-cell lung cancer using nebulized multimodal contrast agents, Proceedings of the National Academy of Sciences, vol.111, issue.25, pp.9247-52, 2014.
DOI : 10.1073/pnas.1402196111

URL : https://hal.archives-ouvertes.fr/hal-01115890

P. Vajkoczy and M. D. Menger, Vascular Microenvironment in Gliomas, J Neuro-Oncol, vol.50, pp.99-108, 2000.
DOI : 10.1007/978-1-4419-8871-3_15

S. K. Hobbs, Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment, Proc. Natl Acad Sci, pp.4607-4612, 1998.
DOI : 10.1073/pnas.95.8.4607

I. Brigger, Poly(ethylene glycol)-Coated Hexadecylcyanoacrylate Nanospheres Display a Combined Effect for Brain Tumor Targeting, Journal of Pharmacology and Experimental Therapeutics, vol.303, issue.3, pp.928-936, 2002.
DOI : 10.1124/jpet.102.039669

S. Dufort, L. Sancey, and J. Coll, Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution, Advanced Drug Delivery Reviews, vol.64, issue.2, pp.179-189, 2012.
DOI : 10.1016/j.addr.2011.09.009

. Internet and R. D. Deslattes, National Institute of Standards and Technology, Gaithersburg, MD. X-ray Transition Energies (version 1.2) Revised 4, 2015.

J. M. Brown and A. J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy, Cancer Res, vol.58, pp.1408-1416, 1998.

A. Bouchet, Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor, Tumor Biology, vol.30, issue.7, pp.6221-6254, 2014.
DOI : 10.1007/s13277-014-1783-6

URL : https://hal.archives-ouvertes.fr/inserm-01077407

P. Mowat, <I>In Vitro</I> Radiosensitizing Effects of Ultrasmall Gadolinium Based Particles on Tumour Cells, Journal of Nanoscience and Nanotechnology, vol.11, issue.9, pp.7833-7839, 2011.
DOI : 10.1166/jnn.2011.4725

W. Rima, Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles, Biomaterials, vol.34, issue.1, pp.181-195, 2013.
DOI : 10.1016/j.biomaterials.2012.09.029

URL : https://hal.archives-ouvertes.fr/hal-00843773

N. Kobayashi, N. Allen, N. R. Clendenon, and L. W. Ko, An improved rat brain-tumor model, Journal of Neurosurgery, vol.53, issue.6, pp.808-823, 1980.
DOI : 10.3171/jns.1980.53.6.0808

M. Salomé, The ID21 Scanning X-ray Microscope at ESRF. J Phys: Conf Ser, p.2004, 2013.

S. Bohic, Biomedical applications of the ESRF synchrotron-based microspectroscopy platform, Journal of Structural Biology, vol.177, issue.2, pp.248-258, 2012.
DOI : 10.1016/j.jsb.2011.12.006

URL : https://hal.archives-ouvertes.fr/inserm-00855368

V. A. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.63-68, 2007.
DOI : 10.1016/j.sab.2006.12.002