S. Jung, N. J. Hwang, and S. , Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy, Analytical Chemistry, vol.85, issue.16, pp.7674-7681, 2013.
DOI : 10.1021/ac401390m

O. Gobbo, K. Sjaastad, M. Radomski, Y. Volkov, and A. Prina-mello, Magnetic Nanoparticles in Cancer Theranostics, Theranostics, vol.5, issue.11, pp.1249-1263, 2015.
DOI : 10.7150/thno.11544

URL : http://doi.org/10.7150/thno.11544

P. Mukherjee, S. Misra, and M. Gryka, Tunable Luminescent Carbon Nanospheres with Well-Defined Nanoscale Chemistry for Synchronized Imaging and Therapy, Small, vol.4, issue.36, pp.4691-4703, 2015.
DOI : 10.1002/smll.201500728

S. Perala and S. Kumar, On the Mechanism of Metal Nanoparticle Synthesis in the Brust???Schiffrin Method, Langmuir, vol.29, issue.31, pp.9863-9873, 2013.
DOI : 10.1021/la401604q

S. Balasubramanian, L. Yang, L. Yung, C. Ong, W. Ong et al., Characterization, purification, and stability of gold nanoparticles, Biomaterials, vol.31, issue.34, pp.9023-9030, 2010.
DOI : 10.1016/j.biomaterials.2010.08.012

Y. Wang, L. Chen, Y. Li, X. Zhao, L. Peng et al., A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles, Nanotechnology, vol.21, issue.30, p.305601, 2010.
DOI : 10.1088/0957-4484/21/30/305601

E. Connor, J. Mwamuka, A. Gole, C. Murphy, and M. Wyatt, Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity, Small, vol.47, issue.3, pp.325-327, 2005.
DOI : 10.1002/smll.200400093

S. Narayanan, B. Sathy, U. Mony, M. Koyakutty, S. Nair et al., Biocompatible Magnetite/Gold Nanohybrid Contrast Agents via Green Chemistry for MRI and CT Bioimaging, ACS Applied Materials & Interfaces, vol.4, issue.1, pp.251-260, 2012.
DOI : 10.1021/am201311c

A. Kunzmann, B. Andersson, T. Thurnherr, H. Krug, A. Scheynius et al., Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1810, issue.3, pp.361-373, 2011.
DOI : 10.1016/j.bbagen.2010.04.007

G. Su, C. Yang, and J. Zhu, Fabrication of Gold Nanorods with Tunable Longitudinal Surface Plasmon Resonance Peaks by Reductive Dopamine, Langmuir, vol.31, issue.2, pp.817-823, 2015.
DOI : 10.1021/la504041f

H. Yuan, C. Khoury, C. Wilson, G. Grant, A. Bennett et al., In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.8, pp.1355-1363, 2012.
DOI : 10.1016/j.nano.2012.02.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462891

J. Hainfeld, D. Slatkin, T. Focella, and H. Smilowitz, Gold nanoparticles: a new X-ray contrast agent, The British Journal of Radiology, vol.79, issue.939, pp.248-253, 2006.
DOI : 10.1259/bjr/13169882

L. Cole, R. Ross, J. Tilley, T. Vargo-gogola, and R. Roeder, Gold nanoparticles as contrast agents in x-ray imaging and computed tomography, Nanomedicine, vol.10, issue.2, pp.321-341, 2015.
DOI : 10.2217/nnm.14.171

M. Kircher, A. De-la-zerda, and J. Jokerst, A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle, Nature Medicine, vol.6, issue.5, pp.829-834, 2012.
DOI : 10.1038/nm.2721

H. Labouta, T. Kraus, L. El-khordagui, and M. Schneider, Combined multiphoton imaging-pixel analysis for semiquantitation of skin penetration of gold nanoparticles, International Journal of Pharmaceutics, vol.413, issue.1-2
DOI : 10.1016/j.ijpharm.2011.03.067

G. Luke, D. Yeager, and S. Emelianov, Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents, Annals of Biomedical Engineering, vol.20, issue.39
DOI : 10.1007/s10439-011-0449-4

K. Butterworth, S. Mcmahon, F. Currell, and K. Prise, Physical basis and biological mechanisms of gold nanoparticle radiosensitization, Nanoscale, vol.115, issue.4, p.4830, 2012.
DOI : 10.1039/c2nr31227a

M. Misawa and J. Takahashi, Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, issue.5, pp.604-614, 2011.
DOI : 10.1016/j.nano.2011.01.014

S. Mcmahon, W. Hyland, and M. Muir, Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy, Radiotherapy and Oncology, vol.100, issue.3, pp.412-416, 2011.
DOI : 10.1016/j.radonc.2011.08.026

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study, Int. J. Nanomedicine, vol.6, pp.2859-2864, 2011.

Y. Matsumura and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agents smancs, Cancer Res, vol.46, pp.6387-6392, 1986.

P. Debouttière, S. Roux, and F. Vocanson, Design of Gold Nanoparticles for Magnetic Resonance Imaging, Advanced Functional Materials, vol.120, issue.18, pp.2330-2339, 2006.
DOI : 10.1002/adfm.200600242

C. Alric, I. Miladi, and D. Kryza, The biodistribution of gold nanoparticles designed for renal clearance, Nanoscale, vol.5, issue.13, pp.5930-5939, 2013.
DOI : 10.1038/srep00018

URL : https://hal.archives-ouvertes.fr/hal-00843843

C. Alric, J. Taleb, L. Duc, and G. , Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging, Journal of the American Chemical Society, vol.130, issue.18
DOI : 10.1021/ja078176p

URL : https://hal.archives-ouvertes.fr/hal-00443108

I. Miladi, C. Alric, and S. Dufort, The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents, Small, vol.53, issue.6, pp.1116-1124, 2014.
DOI : 10.1002/smll.201302303

URL : https://hal.archives-ouvertes.fr/hal-01001255

T. Wolfe, D. Chatterjee, and J. Lee, Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, issue.5, pp.1277-1283, 2015.
DOI : 10.1016/j.nano.2014.12.016

M. Brust, J. Fink, D. Bethell, D. Schiffrin, and C. Kiely, Synthesis and reactions of functionalised gold nanoparticles, Journal of the Chemical Society, Chemical Communications, vol.16, issue.16, p.1655, 1995.
DOI : 10.1039/c39950001655

S. Lang, C. Hyde, and I. Reid, Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma, The Prostate, vol.963, issue.4, pp.253-263, 2002.
DOI : 10.1002/pros.10088

T. Puck and P. Marcus, ACTION OF X-RAYS ON MAMMALIAN CELLS, Journal of Experimental Medicine, vol.103, issue.5, pp.653-666, 1956.
DOI : 10.1084/jem.103.5.653

S. Jain, J. Coulter, and A. Hounsell, Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies, International Journal of Radiation Oncology*Biology*Physics, vol.79, issue.2, pp.531-539, 2011.
DOI : 10.1016/j.ijrobp.2010.08.044

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3015172

C. Fleischer and C. Payne, Nanoparticle???Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes, Accounts of Chemical Research, vol.47, issue.8, pp.2651-2659, 2014.
DOI : 10.1021/ar500190q

A. Barran-berdon, D. Pozzi, and G. Caracciolo, Time Evolution of Nanoparticle???Protein Corona in Human Plasma: Relevance for Targeted Drug Delivery, Langmuir, vol.29, issue.21, pp.6485-6494, 2013.
DOI : 10.1021/la401192x

URL : https://hal.archives-ouvertes.fr/pasteur-01026288

V. Nanjappa, J. Thomas, and A. Marimuthu, Plasma Proteome Database as a resource for proteomics research: 2014 update, Nucleic Acids Research, vol.42, issue.D1, pp.959-965, 2014.
DOI : 10.1093/nar/gkt1251

URL : http://doi.org/10.1093/nar/gkt1251

T. Cedervall, I. Lynch, and S. Lindman, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl Acad. Sci. USA, pp.2050-2055, 2007.
DOI : 10.1073/pnas.0608582104

M. Longmire, P. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats, Nanomedicine, vol.3, issue.5, pp.703-717, 2008.
DOI : 10.2217/17435889.3.5.703

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. Bhonde et al., Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview, Langmuir, vol.21, issue.23, pp.10644-10654, 2005.
DOI : 10.1021/la0513712

P. Chandran, M. Naseer, N. Udupa, and N. Sandhyarani, Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH, Nanotechnology, vol.23, issue.1, p.15602, 2011.
DOI : 10.1088/0957-4484/23/1/015602

E. Lam and T. Flaig, Upfront chemotherapy for metastatic prostate cancer, Oncology, vol.29, issue.12, p.214810, 2015.

T. Beer, Weekly High-Dose Calcitriol and Docetaxel in Metastatic Androgen-Independent Prostate Cancer, Journal of Clinical Oncology, vol.21, issue.1, pp.123-128, 2003.
DOI : 10.1200/jco.2003.05.117

S. Cho, Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study, Physics in Medicine and Biology, vol.50, issue.15, pp.163-173, 2005.
DOI : 10.1088/0031-9155/50/15/N01

J. Hainfeld, H. Smilowitz, O. Connor, M. Dilmanian, F. Slatkin et al., Gold nanoparticle imaging and radiotherapy of brain tumors in mice, Nanomedicine, vol.8, issue.10, pp.1601-1609, 2012.
DOI : 10.2217/nnm.12.165

J. Hainfeld, D. Slatkin, and H. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, vol.49, issue.18, pp.309-315, 2004.
DOI : 10.1088/0031-9155/49/18/N03