Efficient local search for L$_1$ and L$_2$ binary matrix factorization

Abstract : Rank K Binary Matrix Factorization (BMF) approximates a binary matrix by the product of two binary matrices of lower rank, K. Several researchers have addressed this problem, focusing on either approximations of rank 1 or higher, using either the L 1 or L 2-norms for measuring the quality of the approximation. The rank 1 problem (for which the L 1 and L 2-norms are equivalent) has been shown to be related to the Integer Linear Programming (ILP) problem. We first show here that the alternating strategy with the L 2-norm, at the core of several methods used to solve BMF, can be reformulated as an Unconstrained Binary Quadratic Programming (UBQP) problem. This reformulation allows us to use local search procedures designed for UBQP in order to improve the solutions of BMF. We then introduce a new local search dedicated to the BMF problem. We show in particular that this solution is in average faster than the previously proposed ones. We then assess its behavior on several collections and methods and show that it significantly improves methods targeting the L 2-norms on all the datasets considered; for the L 1-norm, the improvement is also significant for real, structured datasets and for the BMF problem without the binary reconstruction constraint.
Type de document :
Article dans une revue
Intelligent Data Analysis, IOS Press, 2016, 20, pp.783 - 807. 〈10.3233/IDA-160832〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01405186
Contributeur : Alexandre Termier <>
Soumis le : mardi 29 novembre 2016 - 16:03:59
Dernière modification le : mercredi 2 août 2017 - 10:10:56
Document(s) archivé(s) le : lundi 27 mars 2017 - 08:20:14

Fichier

IDA_journal_2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Hamid Mirisaee, Eric Gaussier, Alexandre Termier. Efficient local search for L$_1$ and L$_2$ binary matrix factorization. Intelligent Data Analysis, IOS Press, 2016, 20, pp.783 - 807. 〈10.3233/IDA-160832〉. 〈hal-01405186〉

Partager

Métriques

Consultations de
la notice

393

Téléchargements du document

123