T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlinear finite elements for continua and structures, 2013.

R. Bhardwaj and R. Mittal, Benchmarking a Coupled Immersed-Boundary-Finite-Element Solver for Large-Scale Flow-Induced Deformation, AIAA Journal, vol.50, issue.7, pp.1638-1642, 2012.
DOI : 10.2514/1.J051621

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, American Journal of Physics, vol.30, issue.5, 1970.
DOI : 10.1119/1.1942035

J. R. Clausen, D. A. Reasor-jr, and C. K. Aidun, Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture, Computer Physics Communications, vol.181, issue.6, pp.1013-1020, 2010.
DOI : 10.1016/j.cpc.2010.02.005

A. Combescure and A. Gravouil, A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.11-12, pp.1129-1157, 2002.
DOI : 10.1016/S0045-7825(01)00190-6

URL : https://hal.archives-ouvertes.fr/hal-00454895

A. Combescure, A. Gravouil, and B. Herry, An algorithm to solve transient structural non-linear problems for non-matching time-space domains, Computers & Structures, vol.81, issue.12, pp.811211-1222, 2003.
DOI : 10.1016/S0045-7949(03)00037-3

URL : https://hal.archives-ouvertes.fr/hal-00454743

A. De-rosis, S. Ubertini, and F. Ubertini, A partitioned approach for two-dimensional fluid???structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary, Journal of Fluids and Structures, vol.45, pp.202-215, 2014.
DOI : 10.1016/j.jfluidstructs.2013.12.009

C. Farhat, L. Crivelli, and M. Géradin, THE SPECTRAL STABILITY OF TIME INTEGRATION ALGORITHMS FOR A CLASS OF CONSTRAINED DYNAMICS PROBLEMS, 34th Structures, Structural Dynamics and Materials Conference, 1993.
DOI : 10.2514/6.1993-1306

C. Farhat and M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Computer Methods in Applied Mechanics and Engineering, vol.182, issue.3-4, pp.499-515, 2000.
DOI : 10.1016/S0045-7825(99)00206-6

C. Farhat, A. Rallu, K. Wang, and T. Belytschko, Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible fluid-structure interaction problems, International Journal for Numerical Methods in Engineering, vol.125, issue.1, pp.73-107, 2010.
DOI : 10.1002/nme.2883

C. Farhat, K. G. Van-der-zee, and P. Geuzaine, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.1973-2001, 2006.
DOI : 10.1016/j.cma.2004.11.031

J. Favier, A. Revell, and A. Pinelli, A Lattice Boltzmann???Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects, Journal of Computational Physics, vol.261, pp.145-161, 2014.
DOI : 10.1016/j.jcp.2013.12.052

URL : https://hal.archives-ouvertes.fr/hal-00822044

C. A. Felippa, K. C. Park, and C. Farhat, Partitioned analysis of coupled mechanical systems, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24-25, pp.3247-3270, 2001.
DOI : 10.1016/S0045-7825(00)00391-1

A. Gravouil and A. Combescure, Multi-time-step and two-scale domain decomposition method for non-linear structural dynamics, International Journal for Numerical Methods in Engineering, vol.17, issue.18, pp.1545-1569, 2003.
DOI : 10.1002/nme.826

URL : https://hal.archives-ouvertes.fr/hal-00454725

A. Gravouil, A. Combescure, and M. Brun, Heterogeneous asynchronous time integrators for computational structural dynamics, International Journal for Numerical Methods in Engineering, vol.133, issue.12, pp.3-4202, 2015.
DOI : 10.1002/nme.4818

Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, vol.65, issue.4, p.46308, 2002.
DOI : 10.1103/PhysRevE.65.046308

T. J. Hughes, The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.

S. Kollmannsberger, S. Geller, A. Düster, J. Tölke, C. Sorger et al., Fixed-grid fluidstructure interaction in two dimensions based on a partitioned lattice Boltzmann and p-FEM approach, International Journal for Numerical Methods in Engineering, issue.7, pp.79817-845, 2009.

S. Krenk, Energy conservation in Newmark based time integration algorithms, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.6110-6124
DOI : 10.1016/j.cma.2005.12.001

T. Krüger, F. Varnik, and D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Computers & Mathematics with Applications, vol.61, issue.12, pp.3485-3505, 2011.
DOI : 10.1016/j.camwa.2010.03.057

Z. Li, J. Favier, U. D. Ortona, and S. Poncet, An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows, Journal of Computational Physics, vol.304, pp.424-440
DOI : 10.1016/j.jcp.2015.10.026

URL : https://hal.archives-ouvertes.fr/hal-01225681

Z. Li, J. Leduc, A. Combescure, and F. Leboeuf, Coupling of SPH-ALE method and finite element method for transient fluid???structure interaction, Computers & Fluids, vol.103, pp.6-17, 2014.
DOI : 10.1016/j.compfluid.2014.06.028

Z. Li, J. Leduc, J. Nunez-ramirez, A. Combescure, and J. C. Marongiu, A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion, Computational Mechanics, vol.193, issue.2, pp.697-718, 2015.
DOI : 10.1007/s00466-015-1131-8

Q. Lou, Z. Guo, and B. Shi, Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation, Physical Review E, vol.87, issue.6, p.63301, 2013.
DOI : 10.1103/PhysRevE.87.063301

C. Michler, S. J. Hulshoff, E. H. Van-brummelen, and R. De-borst, A monolithic approach to fluid???structure interaction, Computers & Fluids, vol.33, issue.5-6, pp.5-6839, 2004.
DOI : 10.1016/j.compfluid.2003.06.006

URL : https://hal.archives-ouvertes.fr/hal-00450614

R. Mittal and G. Iaccarino, IMMERSED BOUNDARY METHODS, Annual Review of Fluid Mechanics, vol.37, issue.1, pp.239-261
DOI : 10.1146/annurev.fluid.37.061903.175743

N. M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, vol.85, 1959.

C. S. Peskin, The immersed boundary method, Acta Numerica, vol.11, pp.1-39, 2002.

A. Pinelli, I. Z. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general finite-difference and finite-volume Navier???Stokes solvers, Journal of Computational Physics, vol.229, issue.24, pp.9073-9091, 2010.
DOI : 10.1016/j.jcp.2010.08.021

URL : https://hal.archives-ouvertes.fr/hal-00951516

S. Piperno and C. Farhat, Partitioned procedures for the transient solution of coupled aeroelastic problems ??? Part II: energy transfer analysis and three-dimensional applications, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24-25, pp.3147-3170, 2001.
DOI : 10.1016/S0045-7825(00)00386-8

Y. H. Qian, D. Dhumì, and P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters (EPL), vol.17, issue.6, pp.479-484, 1992.
DOI : 10.1209/0295-5075/17/6/001

A. M. Roma, C. S. Peskin, and M. J. Berger, An Adaptive Version of the Immersed Boundary Method, Journal of Computational Physics, vol.153, issue.2, pp.509-534, 1999.
DOI : 10.1006/jcph.1999.6293

X. Shan, X. F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier???Stokes equation, Journal of Fluid Mechanics, vol.550, issue.-1, pp.413-441, 2006.
DOI : 10.1017/S0022112005008153

A. K. Soti, R. Bhardwaj, and J. Sheridan, Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement, International Journal of Heat and Mass Transfer, vol.84, pp.1070-1081, 2015.
DOI : 10.1016/j.ijheatmasstransfer.2015.01.048

F. B. Tian, H. Dai, H. Luo, J. F. Doyle, and B. Rousseau, Fluid???structure interaction involving large deformations: 3D simulations and applications to biological systems, Journal of Computational Physics, vol.258, pp.451-469, 2014.
DOI : 10.1016/j.jcp.2013.10.047

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884079

S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow, Lecture Notes in Computational Science and Engineering, vol.53, 2006.
DOI : 10.1007/3-540-34596-5_15

J. Wu and C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, Journal of Computational Physics, vol.228, issue.6, pp.1963-1979, 2009.
DOI : 10.1016/j.jcp.2008.11.019

J. Wu and C. Shu, An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows, Journal of Computational Physics, vol.229, issue.13, pp.5022-5042, 2010.
DOI : 10.1016/j.jcp.2010.03.024

Q. Zou and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids, vol.9, issue.6, pp.1591-1598, 1997.
DOI : 10.1063/1.869307