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Abstract We consider the optimal stopping problem with non-

linear f -expectation (induced by a BSDE) without making any reg-

ularity assumptions on the payo� process ξ and in the case of a

general �ltration. We show that the value family can be aggregated

by an optional process Y . We characterize the process Y as the Ef -
Snell envelope of ξ. We also establish an in�nitesimal characterization

of the value process Y in terms of a Re�ected BSDE with ξ as the

obstacle. To do this, we �rst establish some useful properties of irreg-

ular RBSDEs, in particular an existence and uniqueness result and a

comparison theorem.

1. Introduction. The classical optimal stopping probem with linear expectations has

been largely studied. General results on the topic can be found in El Karoui (1981) ([12])

where no regularity assumptions on the reward process ξ are made.

In this paper, we are interested in a generalization of the classical optimal stopping problem

where the linear expectation is replaced by a possibly non-linear functional, the so-called

f -expectation (f -evaluation), induced by a BSDE with Lipschitz driver f . For a stopping

time S such that 0 ≤ S ≤ T a.s. (where T > 0 is a �xed terminal horizon), we de�ne

(1.1) V (S) := ess sup
τ∈TS,T

EfS,τ (ξτ ),

where TS,T denotes the set of stopping times valued a.s. in [S, T ] and EfS,τ (·) denotes the

conditional f -expectation/evaluation at time S when the terminal time is τ .

The above non-linear problem has been introduced in [14] in the case of a Brownian

�ltration and a continuous �nancial position/pay-o� process ξ and applied to the (non-

linear) pricing of American options. It has then attracted considerable interest, in particular,

Keywords and phrases: backward stochastic di�erential equation, optimal stopping, f -expectation, non-

linear expectation, aggregation, dynamic risk measure, American option, strong Ef -supermartingale, Snell

envelope, re�ected backward stochastic di�erential equation, comparison theorem, Tanaka-type formula,

general �ltration
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2 M. GRIGOROVA ET AL.

due to its links with dynamic risk measurement (cf., e.g., [3]). In the case of a �nancial

position/payo� process ξ, only supposed to be right-continuous, this non-linear optimal

stopping problem has been studied in [39] (the case of Brownian-Poisson �ltration), and in

[1] where the non-linear expectation is supposed to be convex. To the best of our knowledge,

[17] is the �rst paper addressing the stopping problem (1.1) in the case of a non-right-

continuous process ξ (with a Brownian-Poisson �ltration); in [17] the assumption of right-

continuity of ξ from the previous literature is replaced by the weaker assumption of right-

uppersemicontinuity (r.u.s.c.).

In the present paper, we study problem (1.1) in the case of a general �ltration and without

making any regularity assumptions on ξ, which allows for more �exibility in the modelling

(compared to the cases of more regular payo�s and/or of particular �ltrations).

The usual approach to address the classical optimal stopping problem (i.e., the case f ≡ 0

in (1.1)) is a a direct approach, based on a direct study of the value family (V (S))S∈T0,T .

An important step in this approach is the aggregation of the value family by an optional

process. The approach used in the literature to address the non-linear case (where f is not

necessarily equal to 0) is an RBSDE-approach, based on the study of a related Re�ected

BSDE and on linking directly the solution of the Re�ected BSDE with the value family

(V (S), S ∈ T0,T ) (and thus avoiding, in particular, more technical aggregation questions).

This approach (cf., e.g., [17], [39]) requires at least the uppersemicontinuity of the reward

process ξ which we do not have here (cf. also Remark 10.1).

Neither of the two approaches is applicable in the general framework of the present paper

and we adopt a new approach which combines some aspects of both the approaches. Our

combined approach is the following: First, with the help of some results from the general

theory of processes, we show that the value family (V (S), S ∈ T0,T ) can be aggregated

by a unique right-uppersemicontinuous optional process (Vt)t∈[0,T ]. We characterize the

value process (Vt)t∈[0,T ] as the Ef -Snell envelope of ξ, that is, the smallest strong Ef -
supermartingale greater than or equal to ξ. Then, we turn to establishing an in�nitesimal

characterization of the value process (Vt)t∈[0,T ] in terms of a Re�ected BSDE where the

pay-o� process ξ from (1.1) plays the role of a lower obstacle. We emphasize that this

RBSDE-part of our approach is far from mimicking the one from the r.u.s.c. case; we have

to rely on very di�erent arguments here due to the complete irregularity of the process ξ.

Let us recall that Re�ected BSDEs have been introduced by El Karoui et al. in the

seminal paper [13] in the case of a Brownian �ltration and a continuous obstacle, and then

generalized to the case of a right-continuous obstacle and/or a larger stochastic basis than

the Brownian one in [21], [5], [22], [15], [23], [39]. In [17], we have formulated a notion

of Re�ected BSDE in the case where the obstacle is only right-uppersemicontinuous (but

possibly not right-continuous) and the �ltration is the Brownian-Poisson �ltration have
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shown existence and uniqueness of the solution. In the present paper, we show that the

existence and uniqueness result from [17] still holds in the case of a completely irregular

obstacle and a general �ltration. In the recent preprint [27], existence and uniqueness of

the solution (in the Brownian framework) is shown by using a di�erent approach, namely

a penalization method.

We also establish a comparison result for RBSDEs with irregular obstacles and general

�ltration. Due to the complete irregularity of the obstacles and the presence of jumps,

we are led to using an approach which di�ers from those existing in the literature on

comparison of RBSDEs (cf. also Remark 9.2); in particular, we �rst prove a generalization

of Gal'chouk-Lenglart's formula (cf. [16] and [32]) to the case of convex functions, which

we then astutely apply in our framework in order to establish the comparison theorem. We

also show an Ef -Mertens decomposition for strong Ef -supermartingales, which generalizes

to our framework the ones provided in the literature (cf. [17] or [4]). This result, together

with our comparison theorem, helps in the study of the non-linear operator Reff which

maps a given (completely irregular) obstacle to the solution of the RBSDE with driver f .

By using the properties of the operator Reff , we show that Reff [ξ], that is, the (�rst

component of the) solution to the Re�ected BSDE with irregular obstacle ξ and driver f ,

is equal to the Ef -Snell envelope of ξ, from which we derive that it coincides with the value

process (Vt)t∈[0,T ] of problem (1.1).

Finally, we give a �nancial application to the problem of pricing of American options with

irregular pay-o� in an imperfect market model. In particular, we show that the superhedging

price of the American option with irregular pay-o� ξ is characterized as the solution of an

associated RBSDE (where ξ is the lower obstacle). Some examples of digital American

options are given as particular cases.

The rest of the paper is organized as follows: In Section 2 we give some preliminary def-

initions and some notation. In Section 3 we revisit the classical optimal stopping problem

with irregular pay-o� process ξ and a general �ltration. We �rst give some general results

such as aggregation, Mertens decomposition of the value process, Skorokhod conditions sat-

is�ed by the associated non decreasing processes; then, we characterize the value process

of the classical problem in terms of the solution of a Re�ected BSDE associated with a

general �ltration, with completely irregular obstacle and with a driver f which does not

depend on the solution. In Section 4, we prove existence and uniqueness of the solution for

general Lipschitz driver f , an irregular obstacle ξ and a general �ltration. In Section 5, we

present the formulation or our non-linear optimal stopping problem (1.1). In Section 6, we

provide some results on the particular case where the payo� ξ is right-uppersemicontinuous

(r.u.s.c). , from which we derive an Ef -Mertens decomposition of Ef -strong supermartin-

gales in the (general) framework of a general �ltration (cf. Section 7). We then turn to the
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study of the case where ξ is completely irregular. Section 8 is devoted to the direct part of

our approach to this problem; in particular, we present the aggregation result and the Snell

characterization. Section 9 is devoted to establishing some properties of Re�ected BSDEs

with completely irregular obstacles, which will be used to establish an in�nitesimal charac-

terization of the value process of our problem (1.1) in the completely irregular case; more

precisely, we �rst provide a comparison theorem (Subsection 9.2); then, using this result to-

gether with the Ef -Mertens decomposition, we establish useful properties of the non-linear

operator Reff (Subsection 9.3). In Section 10, using the results shown in the previous

sections, we derive the in�nitesimal characterization of the value of the non-linear optimal

stopping problem (1.1) with a completely irregular payo� ξ in terms of the solution of our

general RBSDE from Section 4. In Section 11 we give a �nancial application to the pricing

of American options with irregular pay-o� in an imperfect market model with jumps; we

also give a useful corollary of the in�nitesimal characterization, namely, a priori estimates

with universal constants for RBSDEs with irregular obstacles and a general �ltration.

2. Preliminaries. Let T > 0 be a �xed positive real number. Let E = Rn \ {0},E =

B(Rn \ {0}), which we equip with a σ-�nite positive measure ν. Let (Ω,F , P ) be a proba-

bility space equipped with a right-continuous complete �ltration IF = {Ft : t ∈ [0, T ]}. Let
W be a one-dimensional IF -Brownian motion W , and let N(dt, de) an IF -Poisson random

measure with compensator dt⊗ ν(de), supposed to be independent from W . We denote by

Ñ(dt, de) the compensated process, i.e. Ñ(dt, de) := N(dt, de)− dt⊗ ν(de). We denote by

P (resp. O) the predictable (resp. optional) σ-algebra on Ω× [0, T ]. The notation L2(FT )

stands for the space of random variables which are FT -measurable and square-integrable.

For t ∈ [0, T ], we denote by Tt,T the set of stopping times τ such that P (t ≤ τ ≤ T ) = 1.

More generally, for a given stopping time S ∈ T0,T , we denote by TS,T the set of stopping

times τ such that P (S ≤ τ ≤ T ) = 1.

We use also the following notation:

• L2
ν is the set of (E ,B(R))-measurable functions ` : E → R such that ‖`‖2ν :=

∫
E |`(e)|

2ν(de) <

∞. For ` ∈ L2
ν , k ∈ L2

ν , we de�ne 〈`, k 〉ν :=
∫
E `(e)k (e)ν(de).

• IH2 is the set of R-valued predictable processes φ with ‖φ‖2IH2 := E
[∫ T

0 |φt|
2dt
]
<∞.

• IH2
ν is the set of R-valued processes l : (ω, t, e) ∈ (Ω × [0, T ] × E) 7→ lt(ω, e) which are

predictable, that is (P⊗E ,B(R))-measurable, and such that ‖l‖2IH2
ν

:= E
[∫ T

0 ‖lt‖
2
ν dt
]
<∞.

• As in [17], we denote by S2 the vector space of R-valued optional (not necessarily cadlag)

processes φ such that |||φ|||2S2 := E[ess supτ∈T0 |φτ |
2] < ∞. By Proposition 2.1 in [17], the

mapping |||·|||S2 is a norm on S2, and S2 endowed with this norm is a Banach space.

• Let M2 be the set of square integrable martingales M = (Mt)t∈[0,T ] with M0 = 0.
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This is a Hilbert space equipped with the scalar product (M,M ′)M2 := E[MTM
′
T ] (=

E[ 〈M,M ′〉T ] = E( [M,M ′]T )), for M,M ′ ∈ M2 (cf., e.g., [37] IV.3). For each M ∈ M2,

we set ‖M‖2M2 := E(M2
T ).

• LetM2,⊥ be the subspace of martingales h ∈ M2 satisfying 〈h,W 〉· = 0, and such that,

for all predictable processes l ∈ IH2
ν ,

(2.1) 〈h,
∫ ·

0

∫
E
ls(e)Ñ(dsde)〉t = 0, 0 ≤ t ≤ T a.s.

Remark 2.1 Note that condition (2.1) is equivalent to the fact that the square bracket

process [h ,
∫ ·

0

∫
E ls(e)Ñ(dsde) ]t is a martingale (cf. the Appendix for additional comments

on condition (2.1)).

Recall also that the condition 〈h,W 〉· = 0 is equivalent to the orthogonality of h (in

the sense of the scalar product (·, ·)M2) with respect to all stochastic integrals of the form∫ ·
0 zsdWs, where z ∈ IH2 (cf. e.g. , [37] IV. 3 Lemma 2). Similarly, the condition (2.1)

is equivalent to the orthogonality of h with respect to all stochastic integrals of the form∫ ·
0

∫
E ls(e)Ñ(dsde), where l ∈ IH2

ν (cf., e.g. , Lemma 12.1 in the Appendix).

We recall the following orthogonal decomposition property of martingales inM2 (cf. Lemma

III.4.24 in [25]).

Lemma 2.1 For each M ∈M2, there exists a unique triplet (Z, l, h) ∈ IH2 × IH2
ν ×M2,⊥

such that

(2.2) Mt =

∫ t

0
ZsdWs +

∫ t

0

∫
E
lt(e)Ñ(dt, de) + ht , ∀ t ∈ [0, T ] a.s.

De�nition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R2 × L2
ν → R

(ω, t, y, z, k ) 7→ f(ω, t, y, z, k ) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• E[
∫ T

0 f(t, 0, 0, 0)2dt] < +∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that

dP ⊗ dt-a.e. , for each (y1, z1, k1) ∈ R2 × L2
ν , (y2, z2, k2) ∈ R2 × L2

ν ,

|f(ω, t, y1, z1, k1)− f(ω, t, y2, z2, k2)| ≤ K(|y1 − y2|+ |z1 − z2|+ ‖k1 − k2‖ν).

De�nition 2.2 (BSDE, conditional f-expectation) We have (cf., e.g., Remark 12.1

in the Appendix) that if f is a Lipschitz driver and if ξ is in L2(FT ), then there exists a

unique solution (X,π, l, h) ∈ S2 × IH2 × IH2
ν ×M2,⊥ to the following BSDE:

−dXt = f(t,Xt, πt, lt)dt− πtdWt −
∫
E lt(e)Ñ(dt, de)− dht; XT = ξ.

For t ∈ [0, T ], the (non-linear) operator Eft,T (·) : L2(FT ) → L2(Ft) which maps a given
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terminal condition ξ ∈ L2(FT ) to the position Xt (at time t) of the �rst component of the

solution of the above BSDE is called conditional f -expectation at time t. As usual, this

notion can be extended to the case where the (deterministic) terminal time T is replaced by

a (more general) stopping time τ ∈ T0,T , t is replaced by a stopping time S such that S ≤ τ
a.s. and the domain L2(FT ) of the operator is replaced by L2(Fτ ).

We now pass to the notion of Re�ected BSDE. Let T > 0 be a �xed terminal time. Let f

be a driver. Let ξ = (ξt)t∈[0,T ] be a process in S2.

We de�ne the process (ξt)t∈]0,T ] by ξt := lim sups↑t,s<t ξs, for all t ∈]0, T ]. We recall

that ξ is a predictable process (cf. [7, Thm. 90, page 225]). The process ξ is left upper-

semicontinuous and is called the left upper-semicontinuous envelope of ξ.

De�nition 2.3 (Re�ected BSDE) A process (Y,Z, k, h,A,C) is said to be a solution to

the re�ected BSDE with parameters (f, ξ), where f is a driver and ξ is a process in S2, if,
1

(Y,Z, k, h,A,C) ∈ S2 × IH2 × IH2
ν ×M2,⊥ × S2 × S2,

− dYt = f(t, Yt, Zt, kt)dt+ dAt + dCt− − ZtdWt −
∫
E
kt(e)Ñ(dt, de)− dht, 0 ≤ t ≤ T,

(2.3)

YT = ξT a.s., and Yt ≥ ξt for all t ∈ [0, T ], a.s.,

A is a nondecreasing right-continuous predictable process with A0 = 0 and such that

∫ T

0
1{Yt−>ξt}

dAct = 0 a.s. and (Yτ− − ξτ )(Adτ −Adτ−) = 0 a.s. for all predictable τ ∈ T0,T ,

(2.4)

C is a nondecreasing right-continuous adapted purely discontinuous process with C0− = 0

and such that (Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0,T .

(2.5)

Here Ac denotes the continuous part of the process A and Ad its discontinuous part.

Equations (2.4) and (2.5) are referred to as minimality conditions or Skorokhod conditions.

For real-valued random variables X and Xn, n ∈ IN , the notation "Xn ↑ X" stands for

"the sequence (Xn) is nondecreasing and converges to X a.s.".

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand limit of φ at

1As usual, equation (2.3) means that a.s. , for all t ∈ [0, T ], we have:

Yt = YT +

∫ T

t

f(s, Ys, Zs, ks)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E

ks(e)Ñ(ds, de)− hT + ht +AT −At + CT− − Ct−.
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t. We denote by ∆+φt := φt+−φt the size of the right jump of φ at t, and by ∆φt := φt−φt−
the size of the left jump of φ at t.

Remark 2.2 In the particular case where ξ has left limits, we can replace the process (ξt)

by the process of left limits (ξt−) in the Skorokhod condition (2.4).

Remark 2.3 If (Y, Z, k, h,A,C) is a solution to the RBSDE de�ned above, by (2.3), we

have ∆Ct = Yt − Yt+, which implies that Yt ≥ Yt+, for all t ∈ [0, T ). Hence, Y is r.u.s.c.

Moreover, from Cτ − Cτ− = −(Yτ+ − Yτ ), combined with the Skorokhod condition (2.5),

we derive (Yτ − ξτ )(Yτ+ − Yτ ) = 0, a.s. for all τ ∈ T0,T . This, together with Yτ ≥ ξτ and

Yτ ≥ Yτ+ a.s., leads to Yτ = Yτ+ ∨ ξτ a.s. for all τ ∈ T0,T .

De�nition 2.4 Let τ ∈ T0. An optional process (φt) is said to be right upper-semicontinuous

(resp. left upper-semicontinuous) along stopping times if for all stopping time τ ∈ T0 and

for all non increasing (resp. non decreasing) sequence of stopping times (τn) such that τn ↓ τ
(resp. τn ↑ τ) a.s. , φτ ≥ lim supn→∞ φτn a.s..

3. The classical optimal stopping problem. In this section, we revisit the classical

(linear) optimal stopping problem with irregular pay-o� process and a general �ltration.

3.1. The classical linear optimal stopping problem revisited. Let (ξt)t∈[0,T ] be a process

belonging to S2, called the reward process or the pay-o� process. For each S ∈ T0,T , we

de�ne the value v(S) at time S by

v(S) := ess sup
τ∈TS,T

E[ξτ | FS ].(3.1)

Lemma 3.1 (i) There exists a ladlag optional process (vt)t∈[0,T ] which aggregates the fam-

ily (v(S))S∈T0,T (i.e. vS = v(S) a.s. for all S ∈ T0,T ).

Moreover, the process (vt)t∈[0,T ] is the smallest strong supermartingale greater than or

equal to (ξt)t∈[0,T ].

(ii) We have vS = ξS ∨ vS+ a.s. for all S ∈ T0,T .

(iii) 2 For each S ∈ T0,T and for each λ ∈]0, 1[, the process (vt)t∈[0,T ] is a martingale on

[S, τλS ], where τλS := inf{t ≥ S , λvt(ω) ≤ ξt}.

Proof. These results are due to classical results of optimal stopping theory. For a sketch

of the proof of the �rst two assertions, the reader is referred to the proof of Proposition

A.5 in the Appendix of [17] (which still holds for a general process ξ ∈ S2). The last

2Note that in the case of a not necessarily non-negative pay-o� process ξ this result holds up to a

translation by the martingale XS := E[ess supτ∈T0,T ξ
−
τ |FS ] (cf. e.g. Appendix A in [30]). More precisely,

the property holds for ṽ := v +X and ξ̃ = ξ +X.



8 M. GRIGOROVA ET AL.

assertion corresponds to a result of optimal stopping theory (cf. [33], [12] or Lemma 2.7

in [28]). Its proof is based on a penalization method (used in convex analysis), introduced

by Maingueneau (1978) (cf. the proof of Theorem 2 in [33]), which does not require any

regularity assumption on the reward process ξ. �

Remark 3.1 It follows from (ii) in the above lemma that ∆+vS = 1{vS=ξS}∆+vS a.s.

Remark 3.2 Let us note for further reference that Maingueneau's penalization approach

for showing the martingale property on [S, τλS ] (property (iii) in the above lemma) relies

heavily on the convexity of the problem.

Lemma 3.2 (i) The value process V of Lemma 3.1 belongs to S2 and admits the following

(Mertens) decomposition:

(3.2) vt = v0 +Mt −At − Ct−, for all t ∈ [0, T ] a.s.,

where M ∈ M2, A is a nondecreasing right-continuous predictable process such that

A0 = 0, E(A2
T ) < ∞, and C is a nondecreasing right-continuous adapted purely

discontinuous process such that C0− = 0, E(C2
T ) <∞.

(ii) For each τ ∈ T0,T , we have ∆Cτ = 1{vτ=ξτ}∆Cτ a.s.

(iii) For each predictable τ ∈ T0,T , we have ∆Aτ = 1{vτ−= ξτ}
∆Aτ a.s.

Proof. By Lemma 3.1 (i), the process (vt)t∈[0,T ] is a strong supermartingale. Moreover, by

using martingale inequalities, it can be shown that E[ess supS∈T0,T |VS |
2] ≤ c|||ξ|||2S2 . Hence,

the process (vt)t∈[0,T ] is in S2 (a fortiori, of class (D)). Applying Mertens decomposition for

strong supermartingales of class (D) (cf., e.g., [8, Appendix 1, Thm.20, equalities (20.2)])

gives the decomposition (3.2), where M is a cadlag uniformly integrable martingale, A is a

nondecreasing right-continuous predictable process such that A0 = 0, E(AT ) <∞, and C is

a nondecreasing right-continuous adapted purely discontinuous process such that C0− = 0,

E(CT ) < ∞. Based on some results of Dellacherie-Meyer [8] (cf., e.g., Theorem A.2 and

Corollary A.1 in [17]), we derive that A ∈ S2 and C ∈ S2, which gives the assertion (i).

Let τ ∈ T0,T . By Remark 3.1 together with Mertens decomposition (3.2), we get ∆Cτ =

−∆+vτ a.s. It follows that ∆Cτ = 1{vτ=ξτ}∆Cτ a.s. , which corresponds to (ii).

Assertion (iii) (concerning the jumps of A) is due to El Karoui 3 ([12, Proposition 2.34])

3Note that the proof in El Karoui [12] is given for nonnegative pay-o� ξ. To pass from this to the

more general case where ξ might take also negative values, we apply the result by El Karoui [12] with

ξ̃ := ξ + X (which is non-negative) and ṽ := v + X, where the process X = (Xt) is de�ned by Xt :=

E[ess supτ∈T0,T ξ
−
τ |Ft]. We then notice that the Mertens process (A,C) from the Mertens decomposition

of v is the same as the Mertens process (Ã, C̃) from the Mertens decomposition of ṽ (indeed, only the
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Its proof is based on the equality AS = AτλS
a.s. , for each S ∈ T0,T and for each λ ∈]0, 1[

(which follows from Lemma 3.1 (iii) together with Mertens decomposition (3.2)).

�

The following minimality property for the continuous part Ac is well-known from the

literature in the "more regular" cases (cf., e.g., [29] for the right-uppersemicontinuous case).

In the case of completely irregular ξ, this minimality property was not explicitly available.

Only recently, it was proved by [27] (cf. Proposition 3.7) in the Brownian framework. Here,

we generalize the result of [27] to the case of a general �ltration by using di�erent analytic

arguments.

Lemma 3.3 The continuous part Ac of A satis�es the equality
∫ T

0 1{vt−>ξt}
dAct = 0 a.s.

Proof. As for the discontinuous part of A, the proof is based on Lemma 3.1 (iii) , and also

on some analytic arguments similar to those used in the proof of Theorem D13 in Karatzas

and Shreve (1998) ([26]).

We have to show that
∫ T

0 (vt− − ξt)dAct = 0 a.s.

Lemma 3.1 (iii) yields that for each S ∈ T0,T and for each λ ∈]0, 1[, we have AS = AτλS
a.s.

Without loss of generality, we can assume that for each ω, the map t 7→ Act(ω) is continuous,

that the map t 7→ vt(ω) is left-limited, and that, for all λ ∈]0, 1[∩Q and t ∈ [0, T [∩Q, we
have At(ω) = Aτλt

(ω).

Let us denote by J (ω) the set on which the nondecreasing function t 7→ Act(ω) is ��at�:

J (ω) := {t ∈]0, T [ , ∃δ > 0 with Act−δ(ω) = Act+δ(ω)}

The set J (ω) is clearly open and hence can be written as a countable union of disjoint

intervals: J (ω) = ∪i]αi(ω), βi(ω)[. We consider

(3.3) Ĵ (ω) := ∪i]αi(ω), βi(ω)] = {t ∈]0, T ] , ∃δ > 0 with Act−δ(ω) = Act(ω)}.

We have
∫ T

0 1Ĵ (ω)dA
c
t(ω) =

∑
i(A

c
βi(ω)(ω) − Acαi(ω)(ω)) = 0. Hence, the nondecreasing

function t 7→ Act(ω) is ��at� on Ĵ (ω). We now introduce

K(ω) := {t ∈]0, T ] s.t. vt−(ω) > ξt(ω)}

We next show that for almost every ω, K(ω) ⊂ Ĵ (ω), which clearly provides the desired

result. Let t ∈ K(ω). Let us prove that t ∈ Ĵ (ω). By (3.3), we thus have to show that

martingale parts of the two decompositions di�er by X). Moreover, we see that the set {vτ− = ξτ} is the
same as the set where v is replaced by ṽ and ξ is replaced by ξ̃ (this is due to the fact that X is a martingale

and thus has left limits; so Xt = Xt−).
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there exists δ > 0 such that Act−δ(ω) = Act(ω). Since t ∈ K(ω), we have vt−(ω) > ξt(ω).

Hence, there exists δ > 0 and λ ∈]0, 1[∩Q such that t − δ ∈ [0, T [∩Q and for each r ∈
[t− δ, t[, λvr(ω) > ξr(ω). By de�nition of τλt−δ(ω), it follows that τλt−δ(ω) ≥ t. Now, we have
Ac
τλt−δ

(ω) = Act−δ(ω). Since the map s 7→ Acs(ω) is nondecreasing, we get Act(ω) = Act−δ(ω),

which implies that t ∈ Ĵ (ω). We thus have K(ω) ⊂ Ĵ (ω), which completes the proof. �

Remark 3.3 We note that the martingale property from assertion (iii) of Lemma 3.1 is

crucial for the proof of the minimality conditions for the process A (namely, for the proofs

of Lemma 3.2 assertion (iii), and for Lemma 3.3).

3.2. The classical linear optimal stopping problem with an additional instantaneous re-

ward. In this subsection, we extend the previous results to the case where, besides the

reward process ξ, there is an additional running (or instantaneous) reward process f ∈ IH2.

More precisely, let (ξt)t∈[0,T ] be a process belonging to S2, called the reward process or the

pay-o� process. Let f = (ft)t∈[0,T ] be a predictable process with E[
∫ T

0 f2
t dt] < +∞, called

the instantaneous reward process. For each S ∈ T0,T , we de�ne the value V (S) at time S by

V (S) := ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
fudu | FS ].(3.4)

This is equivalent to

V (S) +

∫ S

0
fudu := ess sup

τ∈TS,T
E[ξτ +

∫ τ

0
fudu | FS ].(3.5)

Hence, the results of the previous subsection can be applied with ξ· replaced by ξ·+
∫ ·

0 fudu

and v(S) replaced by V (S) +
∫ S

0 fudu. Here is a brief summary.

Lemma 3.4 (i) There exists a ladlag optional process (Vt)t∈[0,T ] which aggregates the fam-

ily (V (S))S∈T0,T (i.e. VS = V (S) a.s. for all S ∈ T0,T ).

Moreover, the process (Vt +
∫ t

0 fudu)t∈[0,T ] is the smallest strong supermartingale

greater than or equal to (ξt +
∫ t

0 fudu)t∈[0,T ].

(ii) We have VS = ξS ∨ VS+ a.s. for all S ∈ T0,T .

Remark 3.4 It follows from (ii) in the above lemma that ∆+VS = 1{VS=ξS}∆+VS a.s.

Lemma 3.5 (i) The value process V of Lemma 3.4 belongs to S2 and admits the following

(Mertens) decomposition:

(3.6) Vt = V0 −
∫ t

0
fudu+Mt −At − Ct−, for all t ∈ [0, T ] a.s.,
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where M ∈ M2, A is a nondecreasing right-continuous predictable process such that

A0 = 0, E(A2
T ) < ∞, and C is a nondecreasing right-continuous adapted purely

discontinuous process such that C0− = 0, E(C2
T ) <∞.

(ii) For each τ ∈ T0,T , we have ∆Cτ = 1{Vτ=ξτ}∆Cτ a.s.

(iii) For each predictable τ ∈ T0,T , we have ∆Aτ = 1{Vτ−= ξτ}
∆Aτ a.s.

Lemma 3.6 The continuous part Ac of A satis�es the equality
∫ T

0 1{Vt−>ξt}
dAct = 0 a.s.

3.3. Characterization of the value function as the solution of an RBSDE. In this sub-

section, we show, using the above lemmas, that the value process V of the classical optimal

stopping problem (3.4) solves the RBSDE from De�nition 2.3 with parameters the driver

process (ft) and the obstacle (ξt). We also prove the uniqueness of the solution of this RB-

SDE. To this aim, we �rst provide a priori estimates for RBSDEs in our general framework.

Lemma 3.7 (A priori estimates) Let (Y 1, Z1, k1, h1, A1, C1) (resp. (Y 2, Z2, k2, h2, A2, C2))

∈ S2×IH2×IH2
ν×M2,⊥×S2×S2 be a solution to the RBSDE associated with driver f1(ω, t)

(resp. f2(ω, t)) and with obstacle ξ. We set Ỹ := Y 1 − Y 2, Z̃ := Z1 − Z2, Ã := A1 − A2,

C̃ := C1 − C2, k̃ := k1 − k2, h̃ := h1 − h2, and f̃(ω, t) := f1(ω, t) − f2(ω, t). There exists

c > 0 such that for all ε > 0, for all β ≥ 1
ε2

we have

‖Z̃‖2β ≤ ε2‖f̃‖2β, ‖k̃‖2ν,β ≤ ε2‖f̃‖2β and ‖h̃‖2β,M2 ≤ ε2‖f̃‖2β.(3.7)

|||Ỹ |||2β ≤ 4ε2(1 + 12c2)‖f̃‖2β.(3.8)

Proof. The proof is given in the Appendix. �

Using these a priori estimates, the lemmas from the previous subsection, and the or-

thogonal martingale decomposition (Lemma 2.1), we derive the following "in�nitesimal

characterization" of the value process V .

Theorem 3.1 Let V be the value process of the optimal stopping problem (3.4). Let A

and C be the non decreasing processes associated with the Mertens decomposition (3.6)

of V . There exists a unique triplet (Z, k, h) ∈ IH2 × IH2
ν × M2,⊥ such that the process

(V,Z, k, h,A,C) is a solution of the RBSDE from De�nition 2.3 associated with the driver

process f(ω, t, y, z, k ) = ft(ω) and the obstacle (ξt). Moreover, the solution of this RBSDE

is unique.

Proof. By Lemma 3.4 (ii), the value process V corresponding to the optimal stopping

problem (3.4) satis�es VT = V (T ) = ξT a.s. and Vt ≥ ξt, 0 ≤ t ≤ T , a.s. By Lemma 3.5 (ii),

the process C of the Mertens decomposition of V (3.6) satis�es the minimality condition

(2.5). Moreover, by Lemma 3.5 (iii) and Lemma 3.6, the process A satis�es the minimality
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condition (2.4). By Lemma 2.1, there exists a unique triplet (Z, k, h) ∈ IH2 × IH2
ν ×M2,⊥

such that dMt = ZtdWt +
∫
E kt(e)Ñ(dt, de) + dht. The process (V,Z, k, h,A,C) is thus a

solution of the RBSDE (2.3) associated with the driver process (ft) and the obstacle ξ.

It remains to show the uniqueness of the solution. Using the a priori estimates from

Lemma 3.7, together with classical arguments (cf. step 5 of the proof of Lemma 3.3 in [17]),

we obtain the desired result. �

We are interested in generalizing this result to the case of the optimal stopping problem

(1.1) with non-linear f -expectation (associated with a non-linear driver f(ω, t, y, z, k )). To

this purpose, we �rst establish an existence and uniqueness result for the RBSDE from

De�nition 2.3 in the case of a general (non-linear) Lipschitz driver f(ω, t, y, z, k ).

4. Existence and uniqueness of the solution of the RBSDE with an irregular

obstacle and a general �ltration in the case of a general driver. In Theorem 3.1,

we have shown that, in the case where the driver does not depend on y, z, and k , the
RBSDE from De�nition 2.3 admits a unique solution. Using this result together with the

above a priori estimates from Lemma 3.7, we derive the following existence and uniqueness

result in the case of a general Lipschitz driver f(t, y, z, k).

Theorem 4.1 (Existence and uniqueness) Let ξ be a process in S2 and let f be a Lips-

chitz driver. The RBSDE with parameters (f, ξ) from De�nition 2.3 admits a unique solution

(Y,Z, k, h,A,C) ∈ S2 × IH2 × IH2
ν ×M2,⊥ × S2 × S2.

Proof. For each β > 0, we denote by B2
β the Banach space S2 × IH2 × IH2

ν which we

equip with the norm ‖(·, ·, ·)‖B2β de�ned by ‖(Y,Z, k)‖2B2β := |||Y |||2β + ‖Z‖2β + ‖k‖2ν,β , for
(Y,Z, k) ∈ S2× IH2× IH2

ν .We de�ne a mapping Φ from B2
β into itself as follows: for a given

(y, z, l) ∈ B2
β , we set Φ(y, z, l) := (Y, Z, k), where Y,Z, k are the �rst three components of the

solution (Y, Z, k, h,A,C) to the RBSDE associated with driver process f(s) := f(s, ys, zs, ls)

and with obstacle ξ. The mapping Φ is well-de�ned by Theorem 3.1. Using the a priori

estimates from Lemma 3.7 and similar computations as those from the proof of Theorem

3.4 in [17], we derive that Φ is a contraction for the norm ‖·‖B2β . By the �xed point theorem

in the Banach space B2
β , the mapping Φ thus admits a unique �xed point, which corresponds

to the unique solution of the RBSDE with parameters (f, ξ). �

Remark 4.1 In [27], the above existence and uniqueness result is shown in a Brownian

framework by using a penalization method. Our approach provides an alternative proof of

this result.
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We now provide a useful property of the solution of an RBSDE, which will be used in

the sequel.

Lemma 4.1 (Ef -martingale property of Y ) Let ξ be a process in S2 and let f be a

Lipschitz driver. Let (Y, Z, k, h,A,C) be the solution to the re�ected BSDE with parameters

(f, ξ) as in De�nition 2.3. For each S ∈ T0,T and for each ε > 0, we set

(4.1) τ εS := inf{t ≥ S , Yt ≤ ξt + ε}.

The process (Yt) is an Ef -martingale on [S, τ εS ].

Proof: The proof in our case of a general �ltration is identical to that of Lemma 4.1

(statement (ii)) in [17] and is given here for the convenience of the reader4. By de�nition

of τ εS , we have: for a.e. ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[, Yt(ω) > ξt(ω) + ε. Hence, by

the Skorokhod condition for A, we have that for a.e. ω ∈ Ω, the function t 7→ Act(ω)

is constant on [S(ω), τ εS(ω)[; by continuity of almost every trajectory of the process Ac,

Ac· (ω) is constant on the closed interval [S(ω), τ εS(ω)], for a.e. ω. Furthermore, (again by

the Skotokhod condition for A), for a.e. ω ∈ Ω, the function t 7→ Adt (ω) is constant on

[S(ω), τ εS(ω)[. Moreover, Y(τεS)− ≥ ξ(τεS)−+ε a.s. , which implies that ∆AdτεS
= 0 a.s. Finally,

for a.e. ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[, ∆Ct(ω) = Ct(ω) − Ct−(ω) = 0; therefore, for a.e.

ω ∈ Ω, for all t ∈ [S(ω), τ εS(ω)[, ∆+Ct−(ω) = Ct(ω) − Ct−(ω) = 0, which implies that,

for a.e. ω ∈ Ω, the function t 7→ Ct−(ω) is constant on [S(ω), τ εS(ω)[. By left-continuity

of almost every trajectory of the process (Ct−), we get that for a.e. ω ∈ Ω, the function

t 7→ Ct−(ω) is constant on the closed interval [S(ω), τ εS(ω)]. Thus, for a.e. ω ∈ Ω, the map

t 7→ At(ω) + Ct−(ω) is constant on [S(ω), τ εS(ω)]. Hence, Y is the solution on [S, τ εS ] of the

BSDE associated with driver f , terminal time τ εS and terminal condition YτεS . The result

follows. �

Remark 4.2 Note that in the case where ξ is nonnegative, the above result holds true also

on the stochastic interval [S, τλS ], where λ ∈ (0, 1) and τλS := inf{t ≥ S : λYt ≤ ξt}. Note
that in the case of non-negative obstacle, we have also Y ≥ 0 (as Y ≥ ξ ≥ 0); hence,

λYT ≤ YT = ξT a.s. and τλS is �nite a.s.

5. Optimal stopping with non-linear f-expectation: formulation of the prob-

lem. Let (ξt)t∈[0,T ] be a process in S2. Let f be a Lipschitz driver. For each S ∈ T0,T , we

4We note that the proof of Lemma 4.1 (statement (ii)) in [17] does not require the assumption of r.u.s.c.

of ξ.
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de�ne the value at time S by

(5.1) V (S) := ess sup
τ∈TS,T

EfS,τ (ξτ ).

We make the following assumption on the driver (cf., e.g., Theorem 4.2 in [38]).

Assumption 5.1 Assume that dP ⊗ dt-a.e. for each (y, z, k1, k2) ∈ R2 × (L2
ν)2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈θy,z,k1,k2t , k1 − k2〉ν ,

where θ : [0, T ]×Ω×R2× (L2
ν)2 → L2

ν ; (ω, t, y, z, k1, k2) 7→ θy,z,k1,k2t (ω, ·) is a P ⊗B(R2)⊗
B((L2

ν)2)-measurable mapping, satisfying ‖θy,z,k1,k2t (·)‖ν ≤ C for all (y, z, k1, k2) ∈ R2 ×
(L2

ν)2, dP ⊗dt-a.e. , where C is a positive constant, and such that θy,z,k1,k2t (e) ≥ −1, for all

(y, z, k1, k2) ∈ R2 × (L2
ν)2, dP ⊗ dt⊗ dν(e)− a.e.

The above assumption is satis�ed if, for example, f is of class C1 with respect to k such

that ∇k f is bounded (in L2
ν) and ∇k f ≥ −1 (cf. Proposition A.2. in [9]).

We recall that under Assumption 5.1 on the driver f , the functional EfS,τ (·) is nonde-

creasing (cf. [38, Thm. 4.2] and Remark 12.1).

As mentioned in the introduction, the above optimal stopping problem has been largely

studied: in [14], and in [3], in the case of a continuous pay-o� process ξ; in [39] and

[1] in the case of a right-continuous pay-o�; and recently in [17] in the case of a right-

uppersemicontinuous pay-o� process ξ. In this section, we do not make any regularity

assumptions on ξ (cf. also Remark 2.2).

If we interpret ξ as a �nancial position process and −Ef (·) as a dynamic risk measure

(cf.,e.g., [36], [40]), then (up to a minus sign) V (S) can be seen as the minimal risk at

time S. As also mentioned in the introduction, the absence of regularity allows for more

�exibility in the modelling. If, for instance, we consider a situation where the jump times

of the Poisson random measure model times of default (which, being totally inaccessible,

cannot be foreseen), then, the complete lack of regularity allows to take into account an

immediate non-smooth, positive or negative, impact on ξ after the default occurs.

If we interpret ξ as a payo� process, and Ef (·) as a non linear pricing rule, then the optimal

stopping problem (5.1) is related to the (non linear) pricing problem of the American option

with payo� ξ. The absence of regularity allows us to deal with the case of American options

with irregular payo�s, such as American digital options (cf. Section 11.1 for details). On the

other hand, the fact that the �ltration is not necessarily the natural �ltration associated

with W and N allows to incorporate some additional information in the modelling (such

as, for example, default risks or other economic factors).

We begin by addressing the simpler case where the payo� is assumed to be right u.s.c. This
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preliminary study of the right u.s.c. case will allow us to establish an Ef -Mertens decom-

position for strong Ef -supermartingales with respect to a general �ltration (extending the

existing results from the literature; cf. [4] and [17]). This will be an important result for the

treatment of the non-linear optimal stopping problem in the case of a completely irregular

pay-o�.

6. Optimal stopping with non-linear f-expectation: the right u.s.c. case. Let

f be a Lipschitz driver satisfying Assumption 5.1. The following result relies crucially on

an assumption of right-uppersemicontinuity of ξ.

Lemma 6.1 Let ξ be a process in S2, supposed to be right u.s.c. Let (Y,Z, k, h,A,C) be the

solution to the re�ected BSDE with parameters (f, ξ) as in De�nition 2.3. Let S ∈ T0,T and

let ε > 0. Let τ εS be the stopping time de�ned by (4.1), that is, τ εS := inf{t ≥ S , Yt ≤ ξt+ε}.
We have

(6.1) YτεS ≤ ξτεS + ε a.s.

Proof: The proof of this result in our case of a general �ltration is identical to that from [17,

Lemma 4.1(i)] in the case of a Brownian-Poisson �ltration. We give again the arguments

here in order to emphasize the important role of the right-uppersemicontinuity assumption

on ξ. By way of contradiction, we suppose P (YτεS > ξτεS+ε) > 0. By the Skorokhod condition

for C, we have ∆CτεS = CτεS − C(τεS)− = 0 on the set {YτεS > ξτεS + ε}. On the other hand,

due to Remark 2.3, ∆CτεS = YτεS − Y(τεS)+. Thus, YτεS = Y(τεS)+ on the set {YτεS > ξτεS + ε}.
Hence,

(6.2) λY(τεS)+ > ξτεS on the set {YτεS > ξτεS + ε}.

We will obtain a contradiction with this statement. Let us �x ω ∈ Ω. By de�nition of τ εS(ω),

there exists a non-increasing sequence (tn) = (tn(ω)) ↓ τ εS(ω) such that Ytn(ω) ≤ ξtn(ω)+ε,

for all n ∈ IN . Hence, lim supn→∞ Ytn(ω) ≤ lim supn→∞ ξtn(ω) + ε. As the process ξ is

right-uppersemicontinuous , we have lim supn→∞ ξtn(ω) ≤ ξτεS (ω). On the other hand, as

(tn(ω)) ↓ τ εS(ω), we have lim supn→∞ Ytn(ω) = Y(τεS)+(ω). Thus, Y(τεS)+(ω) ≤ ξτεS (ω) + ε,

which is in contradiction with (6.2). We conclude that YτεS ≤ ξτεS + ε a.s. �

With the help of the previous lemma together with Lemma 4.1, we derive the following

result.

Theorem 6.1 (Characterization theorem in the r.u.s.c. case) Let (ξt)t∈[0,T ] be a pro-

cess in S2, supposed to be right u.s.c. Let (Y,Z, k, h,A,C) be the solution to the re�ected

BSDE with parameters (f, ξ) as in De�nition 2.3.
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• For each stopping time S ∈ T0, we have 5

(6.3) YS = ess sup
τ∈TS,T

EfS,τ (ξτ ) a.s.

• Moreover, the stopping time τ εS de�ned by (4.1), that is, τ εS = inf{t ≥ S, Yt ≤ ξt + ε},
satis�es

(6.4) YS ≤ EfS,τεS (ξτεS ) + Lε a.s. ,

where L is a constant which only depends on T and the Lipschitz constant K of f .

In other words, τ εS is an Lε-optimal stopping time for problem (6.3).

Proof: The arguments are classical. Let us show the inequality (6.4). Since by Lemma 4.1,

the process (Yt) is an Ef -martingale on [S, τ εS ], we get YS = EfS,τεS (YτεS ) a.s. Since ξ is right

u.s.c. , we can apply Lemma 6.1. Using this, the monotonicity property of the conditional

f -expectation and the a priori estimates for BSDEs (cf. [38] which still hold in our case of

a general �ltration), we derive that

YS = EfS,τεS (YτεS ) ≤ EfS,τεS (ξτεS + ε) ≤ EfS,τεS (ξτεS ) + Lε a.s.,

where L is a positive constant depending only on T and the Lipschitz constant K of the

driver f ; this gives the desired inequality (6.4). Moreover, as ε is an arbitrary nonnegative

number, we get YS ≤ ess supτ∈TS,T E
f
S,τ (ξτ ) a.s.

It remains to show the converse inequality. Let τ ∈ TS,T . By Lemma 12.2 in the Appendix,

the process (Yt) is a strong Ef -supermartingale. Hence, for each τ ∈ TS,T , we have YS ≥
EfS,τ (Yτ ) ≥ EfS,τ (ξτ ) a.s. , where the second inequality follows from the inequality Y ≥ ξ

and the monotonicity property of Ef (·) (with respect to terminal condition). By taking the

supremum over τ ∈ TS,T , we get YS ≥ ess supτ∈TS,T E
f
S,τ (ξτ ) a.s. We thus derive the desired

equality (6.3), which completes the proof. �

We now investigate the question of the existence of optimal stopping times for the optimal

stopping problem (6.3). We �rst provide an optimality criterion.

Lemma 6.2 (Optimality criterion) Let (ξt, 0 ≤ t ≤ T ) be a process 6 in S2 and let f

be a predictable Lipschitz driver satisfying Assumption 5.1. Let S ∈ T0,T and τ∗ ∈ TS,T .
5In other words, the process (Yt) aggregates the value family (V (S), S ∈ T0) de�ned by (5.1), that is

YS = V (S) a.s. for all S ∈ T0,T .
6Let us emphasize that this optimality criterion holds true without an assumption of right-

upppersemicontinuity of the process ξ.
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If Y is a strong Ef -martingale on [S, τ∗] with Yτ∗ = ξτ∗ a.s., then the stopping time τ∗ is

optimal at time S (i.e. YS = EfS,τ∗(ξτ∗) a.s.). The converse statement also holds true, if, in

addition, the inequality from Assumption 5.1 is strict (that is, θy,z,k1,k2t > −1).

Proof: The proof of this result in the case of a Brownian-Poisson �ltration can be found

in [17, Proposition 4.1 ]. The proof in our case of a general �ltration is identical and is

therefore omitted. �

We now show that if ξ is assumed to be r.u.s.c. and also l.u.s.c. along stopping times,

then there exists an optimal stopping time.

Let S ∈ T0. Let us recall the de�nition of τ εS from before:

τ εS := inf{t ≥ S , Yt ≤ ξt + ε}.

We notice that τ εS is non-increasing in ε. Let (εn) be a non-increasing positive sequence

converging to 0. We set

τ̂S := lim
n→∞

↑ τ εnS .

The random time τ̂S is a stopping time in TS .
We also set

τ0
S := inf{t ≥ S , Yt = ξt}.

We notice that τ εnS ≤ τ0
S a.s. for all n. Hence, by passing to the limit, we get τ̂S ≤ τ0

S a.s.

In the following theorem we show that, under the additional assumption that ξ is l.u.s.c.

along stopping times, the stopping time τ̂S is an optimal stopping time at time S. We also

show that the stopping times τ̂S and τ0
S coincide.

Theorem 6.2 (Existence of optimal stopping time) Let (ξt, 0 ≤ t ≤ T ) be an r.u.s.c.

process in S2 and let f be a predictable Lipschitz driver satisfying Assumption 5.1. We

assume, in addition, that (ξt) is l.u.s.c. along stopping times. Then, the stopping time τ̂S
is S-optimal, in the sense that it attains the supremum in (6.3). Moreover, τ̂S = τ0

S a.s.

Proof: As (ξt) is l.u.s.c. along stopping times, we have

(6.5) lim sup
n→∞

ξτεnS ≤ ξτ̂S a.s.

By applying Fatou's lemma for (non-re�ected) BSDEs (cf. Lemma A.5 in [11] 7), we obtain

(6.6) lim sup
n→∞

Ef
S,τεnS

(
ξτεnS

)
≤ EfS,τ̂S

(
lim sup
n→∞

ξτεnS

)
≤ EfS,τ̂S

(
ξτ̂S
)
a.s.,

7Note that Fatou's lemma for (non-re�ected) BSDEs, shown in [11] in the case of a Brownian-Poisson

�ltration, still holds true in our framework of a general �ltration.
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where the last inequality follows from (6.5) and from the monotonicity of EfS,τ̂S (·). On the

other hand, from Eq. (6.4) in Theorem 6.1, we have YS ≤ lim supn→∞ E
f
S,τεnS

(
ξτεnS

)
a.s. From

this, together with (6.6), we get YS ≤ EfS,τ̂S
(
ξτ̂S
)
a.s., which shows that τ̂S is an optimal

stopping time.

Let us now prove the equality τ̂S = τ1
S a.s. We have already noticed that τ̂S ≤ τ1

S a.s. It

remains to show the converse inequality. Note that for each S ∈ T0,T , YS is equal a.s. to the

value at time S of the linear optimal stopping problem associated with the pay-o� process

(ξt) and the instantaneous reward process (f̄t) de�ned by f̄t(ω, t) := f(ω, t, Yt−(ω), Zt(ω), kt(ω)),

that is

YS = ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
f̄udu | FS ] a.s..(6.7)

It is not di�cult to see that τ̂S is also optimal for this linear optimal stopping problem.

Now, from classical results on linear optimal stopping, τ0
S is the minimal optimal stopping

time for problem (6.7); hence, we have τ̂S ≥ τ0
S a.s., which completes the proof.

�

Proposition 6.1 Let (ξt, 0 ≤ t ≤ T ) be an r.u.s.c. process in S2 and let f be a predictable

Lipschitz driver. We assume, in addition, that (ξt) is l.u.s.c. along stopping times. Let

(Y,Z, k, h,A,C) be the solution to the re�ected BSDE with parameters (f, ξ) as in De�nition

2.3. Then, the process A is continuous.

Proof: Given the solution (Y,Z, k, h,A,C) to the re�ected BSDE with parameters (f, ξ),

we de�ne the process f̄ by

f̄(ω, t) := f(ω, t, Yt−(ω), Zt(ω), kt(ω)).

The process f̄ is a predictable process in IH2. From the de�nition of f̄ and from De�nition

2.3, we see that (Y,Z, k, h,A,C) is the solution of the RBSDE with driver process f̄ and

obstacle ξ. By Theorem 3.1 (on RBSDEs with given driver process and linear optimal

stopping), we have that, for all S ∈ T0,

YS = ess sup
τ∈TS,T

E[ξτ +

∫ τ

S
f̄udu | FS ] a.s.,(6.8)

which is equivalent to YS +
∫ S

0 f̄udu = ess supτ∈TS,T E[ξτ +
∫ τ

0 f̄udu | FS ] a.s.

From results on classical optimal stopping with linear expectations, we deduce that A is

continuous, as (ξt) is r.u.s.c. and l.u.s.c. along stopping times (cf., e.g., Proposition B.10 in
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[28] 8). �

7. Ef -Mertens decomposition of strong Ef -supermartingales with respect to

a general �ltration. By using the above characterization of the solution of the RB-

SDE with an r.u.s.c. obstacle as the value function of the non-linear optimal stopping

problem (5.1) (cf. Theorem 6.1), we derive an Ef -Mertens decomposition of strong Ef -
supermartingales, which generalizes the one provided in [17] (cf. Theorem 5.2 in [17]) to

the case of a general �ltration.9

As mentioned before, this is an important property in the present work which will allow

us to address the non-linear optimal stopping problem in the completely irregular case (cf.

Section 9.3, more precisely the proof of Proposition 9.1, and also Theorem 10.1).

Theorem 7.1 (Ef -Mertens decomposition) Let (Yt) be a process in S2. Let f be a

Lipschitz driver satisfying Assumption 5.1. The process (Yt) is a strong Ef -supermartingale

if and only if there exists a nondecreasing right-continuous predictable process A in S2 with

A0 = 0 and a nondecreasing right-continuous adapted purely discontinuous process C in S2

with C0− = 0, as well as three processes Z ∈ IH2, k ∈ H2
ν and h ∈M2,⊥, such that a.s. for

all t ∈ [0, T ],

(7.1) −dYt = f(t, Yt, Zt, kt)dt+dAt+dCt−−ZtdWt−
∫
E
kt(e)Ñ(dt, de)−dht, 0 ≤ t ≤ T.

This decomposition is unique. Moreover, a strong Ef -supermartingale is necessarily r.u.s.c.

Proof: Assume that (Yt) is a strong Ef -supermartingale. By the same arguments as in [17]

(cf. Lemma 5.1 in [17]), it can be shown that the process (Yt) is r.u.s.c. Let S ∈ T0. Since

(Yt) is a strong Ef -supermartingale, we derive that for all τ ∈ TS , we have YS ≥ EfS,τ (Yτ )

a.s. We get YS ≥ ess supτ∈TS E
f
S,τ (Yτ ) a.s. Now, by de�nition of the essential supremum,

YS ≤ ess supτ∈TS E
f
S,τ (Yτ ) a.s. because S ∈ TS . Hence, YS = ess supτ∈TS E

f
S,τ (Yτ ) a.s. By

Theorem 6.1, the process (Yt) coincides with the solution of the re�ected BSDE associated

with the (r.u.s.c.) obstacle (Yt), and thus admits the decomposition (7.1).

The converse follows from Lemma 12.2 in the Appendix. �

8. Optimal stopping with non-linear f-expectation in the completely irregu-

lar case: the direct part of the approach. We now turn to the study of the non-linear

8Note that Proposition B.10 in [28] also holds true in the case where the reward process is not necessarily

nonnegative.
9An Ef -Mertens decomposition was also shown in [4] (at the same time as in [17]) in the case of a driver

f(t, y, z) which does not depend on k by using a di�erent approach.
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optimal stopping problem (5.1) in the more di�cult case where (ξt) is completely irregular.

Since the process (ξt) is not r.u.s.c. , the inequality YτεS ≤ ξτεS + ε (i.e. inequality (6.1))

does not necessarily hold (not even in the simplest case of linear expectations; cf., e.g.,

[12]). This prevents us from adopting here the approach used in the r.u.s.c. case to prove

an in�nitesimal characterization of the value of the non-linear optimal stopping problem

in terms of the solution of an RBSDE. Thus, when ξ is completely irregular, we have to

proceed di�erently. We use a combined approach which consists in a direct part and an

RBSDE-part. This section is devoted to the direct part of our approach to the non-linear

optimal stopping problem (5.1).

8.1. Preliminary results on the value family. Let us �rst introduce the de�nition of an

admissible family of random variables indexed by stopping times in T0,T (or T0,T -system in

the vocabulary of Dellacherie and Lenglart [6]).

De�nition 8.1 We say that a family U = (U(τ), τ ∈ T0,T ) is admissible if it satis�es the

following conditions

1. for all τ ∈ T0,T , U(τ) is a real-valued Fτ -measurable random variable.

2. for all τ, τ ′ ∈ T0,T , U(τ) = U(τ ′) a.s. on {τ = τ ′}.
Moreover, we say that an admissible family U is square-integrable if for all τ ∈ T0,T ,

U(τ) is square-integrable.

Lemma 8.1 (Admissibility of the family V ) The family V = (V (S), S ∈ T0,T ) de�ned

in (5.1) is a square-integrable admissible family.

Proof: The proof uses arguments similar to those used in the "classical" case of linear

expectations (cf., e.g., [31]), combined with some properties of f -expectations.

For each S ∈ T0,T , V(S) is an FS-measurable square-integrable random variable, due to the

de�nitions of the conditional f -expectation and of the essential supremum (cf. [34]). Let

us prove Property 2 of the de�nition of admissibility. Let S and S′ be two stopping times

in T0,T . We set A := {S = S′} and we show that V (S) = V (S′), P -a.s. on A. For each

τ ∈ TS,T , we set τA := τ1A +T1Ac . We have τA ≥ S′ a.s. By using the fact that S = S′ a.s.

on A, the fact that τA = τ a.s. on A, and a standard property of conditional f -expectations

(cf., e.g., Proposition A.3 in [19] which can be extended without di�culty to the framework

of general �ltration), we obtain

1AEfS,τ [ξτ ] = 1AEfS′,τ [ξτ ] = Ef
τ1A

S′,T [ξτ1A] = Ef
τA1A

S′,T [ξτA1A] = 1AEfS′,τA [ξτA ] ≤ 1AV (S′),

where f τ (t, y, z, k ) := f(t, y, z, k )1{t≤τ}. By taking the ess sup over TS,T on both sides, we

get 1AV (S) ≤ 1AV (S′). We obtain the converse inequality by interchanging the roles of S

and S′.
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�

Lemma 8.2 (Optimizing sequence) For each S ∈ T0,T , there exists a sequence (τn)n∈N
of stopping times in TS,T such that the sequence (EfS,τn(ξτn))n∈N is nondecreasing and

V (S) = limn→∞ ↑ EfS,τn(ξτn) a.s.

Proof: Due to a classical result on essential suprema (cf. [34]), it is su�cient to show that,

for each S ∈ T0,T , the family (ES,τ (ξτ ), τ ∈ TS,T ) is stable under pairwise maximization.

Let us �x S ∈ T0,T . Let τ ∈ TS,T and τ ′ ∈ TS,T . We de�ne A := { EfS,τ ′(ξτ ′) ≤ E
f
S,τ (ξτ ) } and

ν := τ1A+τ ′1Ac . We have A ∈ FS and ν ∈ TS,T . We compute 1AEfS,ν(ξν) = Ef
ν1A

S,T (ξν1A) =

Ef
τ1A

S,T (ξτ1A) = 1AEfS,τ (ξτ ) a.s. Similarly, we show 1AcEfS,ν(ξν) = 1AcEfS,τ ′(ξτ ′). It follows
that EfS,ν(ξν) = EfS,τ (ξτ )1A + EfS,τ ′(ξτ ′)1Ac = EfS,τ (ξτ )∨ EfS,τ ′(ξτ ′), which shows the stability

under pairwise maximization and concludes the proof. �

De�nition 8.2 (Ef -supermartingale family) An admissible square-integrable family U :=

(U(S), S ∈ T0,T ) is said to be an Ef -supermartingale family if for all S, S
′ ∈ T0,T such that

S ≤ S′ a.s., EfS,S′(U(S′)) ≤ U(S) a.s.

De�nition 8.3 (Right-uppersemicontinuous family) An admissible family U := (U(S), S ∈
T0,T ) is said to be a right-uppersemicontinuous (along stopping times) family if, for any

(τn) nonincreasing sequence in T0,T and any τ in T0,T such that τ = lim ↓ τn, we have

U(τ) ≥ lim supn→∞ U(τn) a.s.

Lemma 8.3 Let U := (U(S), S ∈ T0,T ) be an Ef -supermartingale family. Then, (U(S), S ∈
T0,T ) is a right-uppersemicontinuous (along stopping times) family.

Proof: Let τ ∈ T0,T and let (τn) ∈ T IN0,T be a nonincreasing sequence of stopping times

such that limn→+∞ τn = τ a.s. and for all n ∈ IN , τn > τ a.s. on {τ < T}, and such

that limn→+∞ U(τn) exists a.s. As U is an Ef -supermartingale family and as the sequence

(τn) is nonincreasing, we have Efτ,τn(U(τn)) ≤ Efτ,τn+1(U(τn+1)) ≤ U(τ) a.s. Hence, the

sequence (Efτ,τn(U(τn)))n is nondecreasing and U(τ) ≥ lim ↑ Efτ,τn(U(τn)). This inequality,

combined with the property of continuity of BSDEs with respect to terminal time and

terminal condition (cf. [38, Prop. A.6] which still holds in the case of a general �ltration)

gives

U(τ) ≥ lim
n→+∞

Efτ,τn(U(τn)) = Efτ,τ ( lim
n→+∞

U(τn)) = lim
n→+∞

U(τn) a.s.
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By Lemma 5 of Dellacherie and Lenglart [6] 10, the family (U(S)) is thus right-uppersemicontinuous

(along stopping times). �

Theorem 8.1 The value family V = (V (S), S ∈ T0,T ) de�ned in (5.1) is an Ef -supermartingale

family. In particular, V = (V (S), S ∈ T0,T ) is a right-uppersemicontinuous (along stopping

times) family in the sense of De�nition 8.3.

Proof: We know from Lemma 8.1 that V = (V (S), S ∈ T0,T ) is a square-integrable admis-

sible family. Let S ∈ T0,T and S′ ∈ TS,T . We will show that EfS,S′(V (S′)) ≤ V (S) a.s., which

will prove that V is an Ef -supermartingale family. By Lemma 8.2, there exists a sequence

(τn)n∈N of stopping times such that τn ≥ S′ a.s. and V (S′) = limn→∞ ↑ EfS′,τn(ξτn) a.s. By

using this equality, the property of continuity of BSDEs, and the consistency of conditional

f -expectation, we get

EfS,S′(V (S′)) = EfS,S′( lim
n→∞

↑ EfS′,τn(ξτn)) = lim
n→∞

EfS,S′(E
f
S′,τn

(ξτn)) = lim
n→∞

EfS,τn(ξτn) ≤ V (S).

Hence, V is an Ef -supermartingale family. This property, together with Lemma 8.3, yields

that V is a right-uppersemicontinuous (along stopping times) family. �

8.2. Aggregation and Snell characterization. Using the above results on the value family

V = (V (S), S ∈ T0,T ), we show the following theorem, which generalizes some results of

classical optimal stopping theory (more precisely, the assertion (i) from Lemma 3.4) to the

case of an optimal stopping problem with f -expectation.

Theorem 8.2 (Aggregation and Snell characterization) There exists a unique right-

uppersemicontinuous optional process, denoted by (Vt)t∈[0,T ], which aggregates the value fam-

ily V = (V (S), S ∈ T0,T ). Moreover, (Vt)t∈[0,T ] is the Ef -Snell envelope of the pay-o�

process ξ, that is, the smallest strong Ef -supermartingale greater than or equal to ξ.

Proof: By Theorem 8.1, the value family V = (V (S), S ∈ T0,T ) is a right-uppersemicontinuous

family (or a right-uppersemicontinuous T0,T -system in the vocabulary of Dellacherie-Lenglart

[6]). Applying Theorem 4 of Dellacherie-Lenglart ([6]), gives the existence of a unique (up to

indistinguishability) right-uppersemicontinuous optional process (Vt)t∈[0,T ] which aggregates

the value family (V (S), S ∈ T0,T ). From this aggregation property, namely the property

VS = V (S) a.s. for each S ∈ T0,T , and from Theorem 8.1, we deduce that the process

10The chronology Θ (in the vocabulary and notation of [6]) which we work with here is the chronology

of all stopping times, that is, Θ = T0,T ; hence [Θ] = Θ = T0,T .
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(Vt)t∈[0,T ] is a strong Ef -supermartingale. Moreover, we have VS = V (S) ≥ ξS a.s. for each

S ∈ T0,T , which implies that Vt ≥ ξt, for all t ∈ [0, T ], a.s.

Let us now prove that the process (Vt)t∈[0,T ] is the smallest strong Ef -supermartingale

greater than or equal to ξ. Let (V ′t )t∈[0,T ] be a strong Ef -supermartingale such that V ′t ≥ ξt,
for all t ∈ [0, T ], a.s. Let S ∈ T0,T . We have V ′τ ≥ ξτ a.s. for all τ ∈ TS,T . Hence, EfS,τ (V ′τ ) ≥
EfS,τ (ξτ ) a.s., where we have used the monotonicity of the conditional f -expectation. On the

other hand, by using the strong Ef -supermartingale property of the process (V ′t )t∈[0,T ], we

have V ′S ≥ E
f
S,τ (V ′τ ) a.s. for all τ ∈ TS,T . Hence, V ′S ≥ E

f
S,τ (ξτ ) a.s. for all τ ∈ TS,T . By taking

the essential supremum over τ ∈ TS,T in the inequality, we get V ′S ≥ ess supτ∈TS,T E
f
S,τ (ξτ ) =

V (S) = VS a.s. Hence, for all S ∈ T0,T , we have V ′S ≥ VS a.s., which yields that V ′t ≥ Vt,

for all t ∈ [0, T ], a.s. The proof is thus complete. �

9. Non-linear Re�ected BSDE with completely irregular obstacle and general

�ltration: useful properties. Our aim now is to establish an in�nitesimal characteriza-

tion for the non-linear problem (5.1) in terms of the solution of a non-linear RBSDE (thus

generalizing Theorem 3.1 from the classical linear case to the non-linear case). In order to

do so, we need to establish �rst some results on non-linear RBSDEs with completely irreg-

ular obstacles, in particular, a comparison result for such RBSDEs. This section is devoted

to these results (this is the RBSDE-part of our approach to problem (5.1)). The results

from this section extend and complete our work from [17], where an assumption of right-

uppersemicontinuity on the obstacle is made. Let us note that the proof of the comparison

theorem from [17] cannot be adapted to the completely irregular framework considered here;

instead, we rely on a Tanaka-type formula for strong (irregular) semimartingales which we

also establish.

Remark 9.1 (A "bottle-neck" of the direct approach) One might wonder whether the in-

�nitesimal characterization for the non-linear optimal stopping problem (5.1) can be ob-

tained by pursuing the direct study of the value process (Vt) of problem (5.1), similarly to

what was done in the classical linear case in Sub-section 3.1. In the classical case, we applied

Mertens decomposition for (Vt); then, we showed directly the minimality properties for the

processes Ad and Ac (cf. Lemmas 3.2 and 3.3) by using the martingale property on the inter-

val [S, τλS ] from Lemma 3.1(iii), which itself relies on Maingueneau's penalization approach

(cf. also Remarks 3.3 and 3.2). In the non-linear case, Mertens decomposition is gener-

alized by the Ef -Mertens decomposition (cf. Theorem 7.1). However, the analogue in the

non-linear case of the martingale property of Lemma 3.4[(iii)] (namely, the Ef -martingale

property) cannot be obtained via Maingueneau's approach (not even in the case of nonnega-

tive ξ and under the additional assumption f(t, 0, 0, 0) = 0 which ensures the non-negativity
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of Ef ) due to the lack of convexity of the functional Ef .

9.1. Tanaka-type formula. The following lemma will be used in the proof of the compar-

ison theorem for RBSDEs with irregular obstacles. The lemma can be seen as an extension

of Theorem 66 of [37, Chapter IV] from the case of right-continuous semimartingales to the

more general case of strong optional semimartingales.

Lemma 9.1 (Tanaka-type formula) Let X be a (real-valued) strong optional semimartin-

gale with decomposition X = X0+M+A+B, whereM is a local (cadlag) martingale, A is a

right-continuous adapted process of �nite variation such that A0 = 0, B is a left-continuous

adapted purely discontinuous process of �nite variation such that B0 = 0. Let f : R −→ R

be a convex function. Then, f(X) is a strong optional semimartingale. Moreover, denoting

by f ′ the left-hand derivative of the convex function f , we have

f(Xt) = f(X0) +

∫
]0,t]

f ′(Xs−)d(As +Ms) +

∫
[0,t[

f ′(Xs)dBs+ +Kt,

where K is a nondecreasing adapted process (which is in general neither left-continuous nor

right-continuous) such that

∆Kt = f(Xt)− f(Xt−)− f ′(Xt−)∆Xt and ∆+Kt = f(Xt+)− f(Xt)− f ′(Xt)∆+Xt.

Proof: Our proof follows the proof of Theorem 66 of [37, Chapter IV] with suitable changes.

Step 1. We assume that X is bounded; more precisely, we assume that there exists N ∈ IN
such that |X| ≤ N . We know (cf. [37]) that there exists a sequence (fn) of twice continuously

di�erentiable convex functions such that (fn) converges to f , and (f ′n) converges to f ′ from

below. By applying Gal'chouk-Lenglart's formula (cf., e.g., Theorem A.3 in [17]) to fn(Xt),

we obtain for all τ ∈ T0,T

(9.1) fn(Xτ ) = fn(X0) +

∫
]0,τ ]

f ′n(Xs−)d(As +Ms) +

∫
[0,τ [

f ′n(Xs)dBs+ +Kn
τ , a.s., where

(9.2)

Kn
τ :=

∑
0<s≤τ

[
fn(Xs)− fn(Xs−)− f ′n(Xs−)∆Xs

]
+
∑

0≤s<τ

[
fn(Xs+)− fn(Xs)− f ′n(Xs)∆+Xs

]
+

1

2

∫
]0,τ ]

f ′′n(Xs−)d〈M c,M c〉s a.s.

We show that (Kn
τ ) is a convergent sequence by showing that the other terms in Equation

(9.1) converge. The convergence
∫

]0,τ ] f
′
n(Xs−)d(As + Ms) −→

n→∞

∫
]0,τ ] f

′(Xs−)d(As + Ms)
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is shown by using the same arguments as in the proof of [37, Thorem 66, Ch. IV]. The

convergence of the term
∫

[0,τ [ f
′
n(Xs)dBs+, which is speci�c to the non-right-continuous

case, is shown by using dominated convergence. We conclude that (Kn
τ ) converges and we

set Kτ := limn→∞K
n
τ . The process (Kt) is adapted as the limit of adapted processes.

Moreover, we have from Eq. (9.2) and from the convexity of fn that, for each n, Kn
t is

nondecreasing in t. Hence, the limit Kt is nondecreasing.

Step 2.We treat the general case where X is not necessarily bounded by using a localization

argument similar to that used in [37, Th. 66, Ch. IV]. �

9.2. Comparison theorem.

Theorem 9.1 (Comparison) Let ξ ∈ S2, ξ′ ∈ S2 be two processes. Let f and f ′ be Lip-

schitz drivers satisfying Assumption 5.1. Let (Y, Z, k, h,A,C) (resp. (Y ′, Z ′, k′, h′, A′, C ′))

be the solution of the RBSDE associated with obstacle ξ (resp. ξ′) and with driver f (resp.

f ′). If ξt ≤ ξ′t, 0 ≤ t ≤ T a.s. and f(t, Y ′t , Z
′
t, k
′
t) ≤ f ′(t, Y ′t , Z ′t, k′t), 0 ≤ t ≤ T dP ⊗ dt-a.s.,

then, Yt ≤ Y ′t , 0 ≤ t ≤ T a.s.

Proof: We set Ȳt = Yt − Y ′t , Z̄t = Zt − Z ′t, k̄t = kt − k′t, Āt = At − A′t, C̄t = Ct − C ′t,
h̄t = ht − h′t, and f̄t = f(t, Yt−, Zt, kt)− f ′(t, Y ′t−, Z ′t, k′t). Then,

−dȲt = f̄tdt+ dĀt + dC̄t− − Z̄tdWt −
∫
E
k̄t(e)Ñ(dt, de)− dh̄t, with ȲT = 0.

Applying Lemma 9.1 to the positive part of Ȳt, we obtain

(9.3)

Ȳ +
t =−

∫
]t,T ]

1{Ȳs−>0}Z̄sdWs −
∫

]t,T ]

∫
E
1{Ȳs−>0}k̄s(e)Ñ(ds, de)−

∫
]t,T ]

1{Ȳs−>0}dh̄s

+

∫
]t,T ]

1{Ȳs−>0}f̄sds+

∫
]t,T ]

1{Ȳs−>0}dĀs +

∫
[t,T [

1{Ȳs>0}dC̄s + (Kt −KT ).

We set δt :=
f(t,Yt−,Zt,kt)−f(t,Y ′t−,Zt,kt)

Yt−−Y ′t−
1{Ȳt− 6=0} and βt :=

f(t,Y ′t−,Zt,kt)−f(t,Y ′t−,Z
′
t,kt)

Zt−Z′t
1{Z̄t 6=0}.

Due to the Lipschitz-continuity of f , the processes δ and β are bounded. We note that f̄t =

δtȲt + βtZ̄t + f(Y ′t−, Z
′
t, kt)− f(Y ′t−, Z

′
t, k
′
t) +ϕt, where ϕt := f(Y ′t−, Z

′
t, k
′
t)− f ′(Y ′t−, Z ′t, k′t).

Using this, together with Assumption 5.1, we obtain

(9.4) f̄t ≤ δtȲt + βtZ̄t + 〈γt , k̄t〉ν ,+ϕt 0 ≤ t ≤ T, dP ⊗ dt− a.e.,

where we have set γt := θ
Y ′t−,Z

′
t,k
′
t,kt

t . For τ ∈ T0,T , let Γτ,· be the unique solution of the

following forward SDE dΓτ,s = Γτ,s−[δsds+βsdWs+
∫
E γs(e)Ñ(ds, de)] with initial condition

(at the initial time τ) Γτ,τ = 1. To simplify the notation, we denote Γτ,s by Γs for s ≥ τ .
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By applying Gal'chouk-Lenglart's formula to the product (ΓtȲ
+
t ), and by using that

〈hc,W 〉 = 0, we get

(9.5)

Γτ Ȳ
+
τ = −(Mθ −Mτ )−

∫ θ

τ
Γs(Ȳ

+
s−δs + Z̄s1{Ȳs−>0}βs − f̄s1{Ȳs−>0})ds

+

∫ θ

τ
Γs−1{Ȳs−>0}dĀ

c
s +

∑
τ<s≤θ

Γs−1{Ȳs−>0}∆Ās −
∫ θ

τ
Γs−dK

c
s −

∫ θ

τ
Γs−dK

d,−
s

+

∫ θ

τ
Γs1{Ȳs>0}dC̄s −

∫ θ

τ
ΓsdK

d,+
s −

∑
τ<s≤θ

∆Γs∆Ȳ
+
s .

where the processM is de�ned byM := MW+MN+Mh, withMW
t :=

∫ t
0 Γs−(1{Ȳs−>0}Z̄s+

Ȳ +
s−βs)dWs, andM

N
t :=

∫ t
0

∫
E Γs−(k̄s(e)1{Ȳs−>0}+Ȳ

+
s−γs(e))Ñ(ds, de), andMh

t :=
∫ t

0 Γs−1{Ȳs−>0}dh̄s.

Note that by classical arguments (which use Burkholder-Davis-Gundy inequalities), the

stochastic integrals MW , MN and Mh are martingales. Hence, M is a martingale (equal

to zero in expectation).

By de�nition of Γ, we have Γτ = 1, which gives that Γτ Ȳ
+
τ = Ȳ +

τ . Moreover, we have∫ θ
τ Γs1{Ȳs>0}dC̄s =

∫ θ
τ Γs1{Ȳs>0}dCs −

∫ θ
τ Γs1{Ȳs>0}dC

′
s. For the �rst term, it holds∫ θ

τ Γs1{Ȳs>0}dCs = 0. Indeed, {Ȳs > 0} = {Ys > Y ′s} ⊂ {Ys > ξs} (as Y ′s ≥ ξ′s ≥
ξs). This, together with the Skorokhod condition for C gives the equality. For the sec-

ond term, it holds −
∫ θ
τ Γs1{Ȳs>0}dC

′
s ≤ 0, as Γ ≥ 0 and dC ′ is a nonnegative mea-

sure. Hence,
∫ θ
τ Γs1{Ȳs>0}dC̄s ≤ 0. Similarly, we obtain

∫ θ
τ Γs−1{Ȳs−>0}dĀ

c
s ≤ 0. Indeed,∫ θ

τ Γs−1{Ȳs−>0}dĀ
c
s =

∫ θ
τ Γs−1{Ȳs−>0}dA

c
s−
∫ θ
τ Γs−1{Ȳs−>0}dA

′c
s . For the �rst term, we have∫ θ

τ Γs−1{Ȳs−>0}dA
c
s = 0. This is due to the fact that {Ȳs− > 0} = {Ys− > Y ′s−} ⊂ {Ys− >

ξs} (as Y ′s ≥ ξ′s ≥ ξs, and hence Y ′s− ≥ ξs), together with the Skorokhod condition for Ac.

For the second term, we have −
∫ θ
τ Γs−1{Ȳs−>0}dA

′c
s ≤ 0. We also have −

∫ θ
τ Γs−dK

c
s ≤ 0

and −
∫ θ
τ ΓsdK

d,+
s ≤ 0. Hence,

(9.6)

Ȳ +
τ ≤− (Mθ −Mτ )−

∫ θ

τ
Γs(Ȳ

+
s−δs + Z̄s1{Ȳs−>0}βs − f̄s1{Ȳs−>0})ds

+
∑
τ<s≤θ

Γs−1{Ȳs−>0}∆Ās −
∫ θ

τ
Γs−dK

d,−
s −

∑
τ<s≤θ

∆Γs∆Ȳ
+
s .

We compute the last term
∑

τ<s≤θ ∆Γs∆Ȳ
+
s .

Let (ps) be the point process associated with the Poisson random measure N (cf. [8,

VIII Section 2. 67], or [24, Section III �d]). We have ∆Γs = Γs−γs(ps) and ∆Ȳ +
s =
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1{Ȳs−>0}k̄s(ps)− 1{Ȳs−>0}∆Ās + ∆Kd,−
s + 1{Ȳs−>0}∆h̄s. Hence,

(9.7)∑
τ<s≤θ

∆Γs∆Ȳ
+
s =

=
∑
τ<s≤θ

Γs−1{Ȳs−>0}γs(ps)k̄s(ps)−
∑
τ<s≤θ

Γs−γs(ps)(1{Ȳs−>0}∆Ās −∆Kd,−
s − 1{Ȳs−>0}∆h̄s)

=

∫ θ

τ

∫
E

Γs−1{Ȳs−>0}γs(e)k̄s(e)N(ds, de)−
∑
τ<s≤θ

Γs−γs(ps)(1{Ȳs−>0}∆Ās −∆Kd,−
s − 1{Ȳs−>0}∆h̄s)

=

∫ θ

τ

∫
E

Γs−1{Ȳs−>0}γs(e)k̄s(e)Ñ(ds, de) +

∫ θ

τ
Γs−1{Ȳs−>0}〈γs, k̄s〉νds

−
∑
τ<s≤θ

Γs−1{Ȳs−>0}γs(ps)∆Ās +
∑
τ<s≤θ

Γs−γs(ps)∆K
d,−
s +

∑
τ<s≤θ

Γs−1{Ȳs−>0}γs(ps)∆h̄s.

By plugging this expression in equation (9.6) and by putting together the terms in ”ds”,

the terms in ”dKd,−
s ”, and the terms in ”∆Ās”, we get

(9.8)

Ȳ +
τ ≤− (Mθ −Mτ )−

∫ θ

τ
Γs−(Ȳ +

s−δs + Z̄s1{Ȳs−>0}βs + 1{Ȳs−>0}〈γs, k̄s〉ν − f̄s1{Ȳs−>0})ds

+
∑
τ<s≤θ

Γs−1{Ȳs−>0}(1 + γs(ps))∆Ās −
∑
τ<s≤θ

Γs−(1 + γs(ps))∆K
d,−
s

− (M̃θ − M̃τ )−
∫ θ

τ
d[ h̄ ,

∫ ·
0

∫
E

Γs−1{Ȳs−>0}γs(e)Ñ(ds, de) ]s,

where M̃t :=
∫ t

0

∫
E Γs−1{Ȳs−>0}γs(e)k̄s(e)Ñ(ds, de). Note that by classical arguments (as

for M above), the stochastic integral M̃ is a martingale, equal to zero in expectation.

We have −
∫ θ
τ Γs−(Ȳ +

s−1{Ȳs−>0}δs + Z̄s1{Ȳs−>0}βs + 1{Ȳs−>0}〈γs, k̄s〉ν − f̄s1{Ȳs−>0})ds ≤∫ θ
τ Γs−1{Ȳs−>0}ϕsds, due to the inequality (9.4). The term −

∑
τ<s≤θ Γs−(1+γs(ps))∆K

d,−
s

is nonpositive, as 1 + γs ≥ 0 by Assumption 5.1. The term
∑

τ<s≤θ Γs−1{Ȳs−>0}(1 +

γs(ps))∆Ās is nonpositive, due to 1 + γs ≥ 0, to the Skorokhod condition for ∆As and

to ∆A′s ≥ 0 (the details are similar to those for dC̄ in the reasoning above). Since h̄

∈ M2,⊥, by Remark 2.1, we derive that the expectation of the last term of the above

inequality (9.8) is equal to 0. Moreover, the term
∫ θ
τ Γs−1{Ȳs−>0}ϕsds is nonpositive, as

ϕs = f(Y ′s , Z
′
s, k
′
s)− f ′(Y ′s , Z ′s, k′s) ≤ 0 dP ⊗ ds-a.s. by the assumptions of the theorem. We

conclude that E[Ȳ +
τ ] ≤ 0, which implies Ȳ +

τ = 0 a.s. The proof is thus complete. �

Remark 9.2 Note that due to the irregularity of the obstacles, together with the presence

of jumps, we cannot adopt the approaches used up to now in the literature (see e.g. [13],

[5], [39] and [17]) to show the comparison theorem for our RBSDE.
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9.3. Non-linear operator induced by an RBSDE. Snell characterization. We introduce

the non-linear operator Reff (associated with a given non-linear driver f) and provide

some useful properties. In particular, we show that this non-linear operator coincides with

the Ef -Snell envelope operator (cf. Theorem 9.2).

De�nition 9.1 (Non-linear operator Reff) Let f be a Lipschitz driver. For a process

(ξt) ∈ S2, we denote by Reff [ξ] the �rst component of the solution to the Re�ected BSDE

with (lower) barrier ξ and with Lipschitz driver f .

The operator Reff [·] is well-de�ned due to Theorem 4.1. Moreover, Reff [·] is valued in

S2,rusc, where S2,rusc := {φ ∈ S2 : φ is r.u.s.c.} (cf. Remark 2.3). In the following proposi-

tion we give some properties of the operator Reff . Note that equalities (resp. inequalities)
between processes are to be understood in the "up to indistinguishability"-sense.

We recall the notion of a strong Ef -supermartingale.

De�nition 9.2 Let φ be a process in S2. Let f be a Lipschitz driver. The process φ is

said to be a strong Ef -supermartingale (resp. a strong Ef -martingale) , if Ef
σ,τ

(φτ ) ≤ φσ a.s.

(resp. Ef
σ,τ

(φτ ) = φσ a.s.) on σ ≤ τ , for all σ, τ ∈ T0,T .

Using the above comparison theorem and the Ef -Mertens decomposition for strong

(r.u.s.c.) Ef -supermartingales in the case of a general �ltration (cf. Theorem 7.1), we show

that the operator Reff satis�es the following properties.

Proposition 9.1 (Properties of the operator Reff) Let f be a Lipschitz driver satis-

fying Assumption 5.1. The operator Reff : S2 → S2,rusc, de�ned in De�nition 9.1, has the

following properties:

1. The operator Reff is nondecreasing, that is, for ξ, ξ′ ∈ S2 such that ξ ≤ ξ′ we have

Reff [ξ] ≤ Reff [ξ′].

2. If ξ ∈ S2 is a (r.u.s.c.) strong Ef -supermartingale, then Reff [ξ] = ξ.

3. For each ξ ∈ S2, Reff [ξ] is a strong Ef -supermartingale and satis�es Reff [ξ] ≥ ξ.

Proof: The �rst assertion follows from our comparison theorem for re�ected BSDEs with

irregular obstacles (Theorem 9.1).

Let us prove the second assertion. Let ξ be a (r.u.s.c.) strong Ef -supermartingale in S2.

By de�nition of Reff , we have to show that ξ is the solution of the re�ected BSDE asso-

ciated with driver f and obstacle ξ. By the Ef -Mertens decomposition for strong (r.u.s.c.)

Ef -supermartingales in the case of a general �ltration (Theorem 7.1), together with Lemma

2.1, there exists (Z, k, h,A,C) ∈ IH2 × IH2
ν ×M2,⊥ × S2 × S2 such that
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−dξt = f(t, ξt, Zt, kt)dt− ZtdWt −
∫
E
kt(e)Ñ(dt, de)− dht + dAt + dCt−, 0 ≤ t ≤ T,

where A is predictable right-continuous nondecreasing with A0 = 0, and C is adapted

right-continuous nondecreasing and purely discontinuous, with C0− = 0. Moreover, the

Skorokhod conditions (for RBSDEs) are here trivially satis�ed. Hence, ξ = Reff [ξ], which

is the desired conclusion.

It remains to show the third assertion. By de�nition, the process Reff [ξ] is equal to Y ,

where (Y, Z, k, h,A,C) is the solution our re�ected BSDE. Hence, Reff [ξ] = Y admits

the decomposition (7.1), which, by Theorem 7.1, implies that Reff [ξ] = Y is a strong

Ef -supermartingale. Moreover, by de�nition, Reff [ξ] = Y is greater than or equal to the

obstacle ξ. �

With the help of the above proposition, we show that the process Reff [ξ], that is, the

�rst component of the solution of the RBSDE with (irregular) obstacle ξ, is characterized

in terms of the smallest strong Ef -supermartingale greater than or equal to ξ.

Theorem 9.2 (The operator Reff and the Ef - Snell envelope operator) Let ξ be

a process in S2 and let f be a Lipschitz driver satisfying Assumption 5.1. The �rst com-

ponent Y = Reff [ξ] of the solution to the re�ected BSDE with parameters (ξ, f) coincides

with the Ef -Snell envelope of ξ, that is, the smallest strong Ef -supermartingale greater than

or equal to ξ.

Proof: By the third assertion of Proposition 9.1, the process Y = Reff [ξ] is a strong

Ef -supermartingale satisfying Y ≥ ξ. It remains to show the minimality property. Let Y ′

be a strong Ef -supermartingale such that Y ′ ≥ ξ. We have Reff [Y ′] ≥ Reff [ξ], due to the

nondecreasingness of the operator Reff (cf. Proposition 9.1, 1st assertion). On the other

hand, Reff [Y ′] = Y ′ (due to Proposition 9.1, 2nd assertion) and Reff [ξ] = Y . Hence,

Y ′ ≥ Y , which is the desired conclusion. �

In the case of a right-continuous left-limited obstacle ξ the above characterization has been

established in [39]; it has been generalized to the case of a right-upper-semicontinuous

obstacle in [17, Prop. 4.4]. Let us note however that the arguments of the proofs given in

[39] and in [17] cannot be adapted to our general framework.

10. In�nitesimal characterization of the value process in terms of an RBSDE

in the completely irregular case. The following theorem is a direct consequence of
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Theorem 9.2 and Theorem 8.2. It gives "an in�nitesimal characterization" of the value

process (Vt)t∈[0,T ] of the non-linear problem (5.1).

Theorem 10.1 (Characterization in terms of an RBSDE) Let (ξt)t∈[0,T ] be a pro-

cess in S2 and let f be a Lipschitz driver satisfying Assumption 5.1. The value process

(Vt)t∈[0,T ] aggregating the family V = (V (S), S ∈ T0,T ) de�ned by (5.1) coincides (up to

indistinguishability) with the �rst component (Yt)t∈[0,T ] of the solution of our RBSDE with

driver f and obstacle ξ. In other words, we have, for all S ∈ T0,T ,

(10.1) YS = VS = ess sup
τ∈TS,T

EfS,τ (ξτ ) a.s.

By using this theorem, we derive the following corollary, which generalizes some results of

classical optimal stopping theory (more precisely, the assertions (ii) and (iii) from Lemma

3.4) to the case of an optimal stopping problem with (non-linear) f -expectation.

Remark 10.1 Let us summarize our two-part approach to the non-linear optimal stopping

problem (5.1) in the case where ξ is completely irregular: First, we have applied a direct

approach to the problem (5.1), which consists in showing that the value family (V (S))S∈T0,T
can be aggregated by an optional process (Vt)t∈[0,T ] and, then, in characterizing (Vt) as the

Ef -Snell envelope of the (completely irregular) pay-o� process (ξt). On the other hand, we

have applied an RBSDE-approach which consists in establishing some results on RBSDEs

with completely irregular obstacles (in particular, existence, uniqueness, and a comparison

result) and some useful properties of the operator Reff , 11 and then in using these properties

to show that the unique solution (Yt) of the RBSDE is equal to the Ef -Snell envelope of the

completely irregular obstacle. We have then deduced from those two parts (the direct part and

the RBSDE-part) that (Yt) and (Vt) coincide, which gives an in�nitesimal characterization

for the value process (Vt).

Finally, let us put together some of the results for the non-linear optimal stopping problem

(5.1):

i) • For any reward process ξ ∈ S2, we have the in�nitesimal characterization

Vt = Yt = Refft [ξ], for all t, a.s. (Theorem 10.1).

• Also, (Vt)t∈[0,T ] is the Ef -Snell envelope of the pay-o� process ξ (Theorem 8.2).

ii) If, moreover, ξ is right-u.s.c. , then, for any S ∈ T0,T , for any ε > 0, there exists an Lε-

optimal stopping time for the problem at time S. (Theorem 6.1).

iii) If, moreover, ξ is also left-u.s.c. along stopping times, then, for any S ∈ T0,T , there

exists an optimal stopping time for the problem at time S (Theorem 6.2).

11We emphasize that the proof of these properties (cf. Proposition 9.1) relies heavily on the Ef -Mertens

decomposition for strong Ef -supermartingales (cf. Theorem 7.1), which is obtained as a direct consequence

of the preliminary result (Theorem 6.1) established in the r.u.s.c. case.
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11. Applications of Theorem 10.1.

11.1. Application to American options with a completely irregular payo�. In the follow-

ing example, we set E := R, ν(de) := λδ1(de), where λ is a positive constant, and where δ1

denotes the Dirac measure at 1. The process Nt := N([0, t]×{1}) is then a Poisson process

with parameter λ, and we have Ñt := Ñ([0, t]× {1}) = Nt − λt.
We assume that the �ltration is the natural �ltration associated with W and N .

We consider a �nancial market which consists of one risk-free asset, whose price process

S0 satis�es dS0
t = S0

t rtdt, and two risky assets with price processes S1, S2 satisfying:

dS1
t = S1

t− [µ1
tdt+ σ1

t dWt + β1
t dÑt]; dS2

t = S2
t− [µ2

tdt+ σ2
t dWt + β2

t dÑt].

We suppose that the processes σ1, σ2, β1, β2, r, µ1, µ2 are predictable and bounded, with

βit > −1 for i = 1, 2. Let µt := (µ1, µ2)′ and let Σt := (σt, βt) be the 2× 2-matrix with �rst

column σt := (σ1
t , σ

2
t )
′ and second column βt := (β1

t , β
2
t )′. We suppose that Σt is invertible

and that the coe�cients of Σ−1
t are bounded.

We consider an agent who can invest his/her initial wealth x ∈ R in the three assets.

For i = 1, 2, we denote by ϕit the amount invested in the ith risky asset. A process

ϕ = (ϕ1, ϕ2)′ belonging to H2 ×H2
ν will be called a portfolio strategy.

The value of the associated portfolio (or wealth) at time t is denoted by Xx,ϕ
t (or simply

by Xt). In the case of a perfect market, we have

dXt = (rtXt + ϕ1
t (µ

1
t − rt) + ϕ2

t (µ
2
t − rt))dt+ (ϕ1

tσ
1
t + ϕ2

tσ
2
t )dWt + (ϕ1

tβ
1
t + ϕ2

tβ
2
t )dÑt

= (rtXt + ϕ′t(µt − rt1))dt+ ϕ′tσtdWt + ϕ′tβtdÑt,

where 1 = (1, 1)′. More generally, we will suppose that there may be some imperfections

in the market, taken into account via the nonlinearity of the dynamics of the wealth and

encoded in a Lipschitz driver f satisfying Assumption 5.1 (cf. [14] or [10] for some examples).

More precisely, we suppose that the wealth process Xx,ϕ
t (also Xt) satis�es the forward

di�erential equation:

(11.1) −dXt = f(t,Xt, ϕt
′σt, ϕt

′βt)dt− ϕt′σtdWt − ϕt′βtdÑt, ; X0 = x,

or, equivalently, setting Zt = ϕt
′σt and kt = ϕt

′βt,

(11.2) −dXt = f(t,Xt, Zt, kt)dt− ZtdWt − ktdÑt; X0 = x.

Note that (Zt, kt) = ϕt
′Σt, which is equivalent to ϕt

′ = (Zt, kt) Σ−1
t .

This model includes the case of a perfect market, for which f is a linear driver given by

f(t, y, z, k) = −rty − (z, k) Σ−1
t (µt − rt1).
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Remark 11.1 Note that the wealth process Xx,ϕ is an Ef -martingale, since Xx,ϕ is the

solution of the BSDE with driver f , terminal time T and terminal condition Xx,ϕ
T .

Let us consider an American option associated with terminal time T and payo� given

by a process (ξt) ∈ S2. As is usual in the literature, the option's superhedging price at time

0, denoted by u0, is de�ned as the minimal initial wealth enabling the seller to invest in a

portfolio whose value is greater than or equal to the payo� of the option at all times. More

precisely, for each initial wealth x, we denote by A(x) the set of all portfolio strategies ϕ ∈
H2 ×H2

ν such that Xx,ϕ
t ≥ ξt, for all t ∈ [0, T ] a.s. The superhedging price of the American

option is thus de�ned by

(11.3) u0 := inf{x ∈ R, ∃ϕ ∈ A(x)}.12

Using the in�nitesimal characterization of the value function (5.1) (cf. Theorem 10.1), we

show the following characterizations of the superhedging price u0, as well as the existence

of a superhedging strategy.

Proposition 11.1 Let (ξt) be an optional process such that E[ess supτ∈T0 |ξτ |
2] <∞.

(i) The superhedging price u0 of the American option with payo� (ξt) is equal to the value

function V (0) of our optimal stopping problem (1.1) at time 0, that is

(11.4) u0 = sup
τ∈T0,T

Ef0,τ (ξτ ).

(ii) We have u0 = Y0, where (Y,Z, k, h,A,C) is the solution of the re�ected BSDE (2.3)

(with h = 0).

(iii) The portfolio strategy ϕ̂, de�ned by ϕ̂t
′ = (Zt, kt) Σ−1

t , is a superhedging strategy, that

is, belongs to A(u0).

In the case of a perfect market (for which f is linear) and a regular pay-o�, the above result

reduces to a well-known result from the literature (cf. [20]). Even in the case of a perfect

market, our result for a completely irregular pay-o� is new.

Proof: The proof relies on Theorem 10.1 and similar arguments to those in [10] (in the

case of game options with RCLL payo�s and default). Note �rst that, by Theorem 10.1,

we have supτ∈T0,T E
f
0,τ (ξτ ) = Y0. In order to prove the three �rst assertions of the above

theorem, it is thus su�cient to show that u0 = Y0 and ϕ̂ ∈ A(Y0).

We �rst show that ϕ̂ ∈ A(Y0). By (11.2), the value XY0,ϕ̂ of the portfolio associated with

initial wealth Y0 and strategy ϕ̂ satis�es:

12As shown in assertion (iii) of Proposition 11.1, the in�mum in (11.3) is always attained.
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dXY0,ϕ̂
t = −f(t,XY0,ϕ̂

t , Zt, kt)dt + dMt, with initial condition XY0,ϕ̂
0 = Y0, where Mt :=∫ t

0 ZsdWs +
∫ t

0 ksdÑs. Moreover, since Y is the solution of the re�ected BSDE (2.3) (with

h = 0), we have dYt = −f(t, Yt, Zt, kt)dt + dMt − dAt − dCt−. Applying the comparison

result for forward di�erential equations, we derive that XY0,ϕ̂
t ≥ Yt, for all t ∈ [0, T ] a.s.

Since Yt ≥ ξt, we thus get XY0,ϕ̂
t ≥ ξt for all t ∈ [0, T ] a.s. It follows that ϕ̂ ∈ A(Y0).

We now show that Y0 = u0. Since ϕ̂ ∈ A(Y0), by de�nition of u0 (cf. (11.3)), we derive

that Y0 ≥ u0. Let us now show that u0 ≥ Y0. Let x ∈ R be such that there exists a strategy

ϕ ∈ A(x). We show that x ≥ Y0. Since ϕ ∈ A(x), we have Xx,ϕ
t ≥ ξt, for all t ∈ [0, T ]

a.s. For each τ ∈ T we thus get the inequality Xx,ϕ
τ ≥ ξτ a.s. By the non decreasing

property of Ef together with the Ef -martingale property of Xx,ϕ (cf. Remark 11.1), we

thus get x = Ef0,τ (Xx,ϕ
τ ) ≥ Ef0,τ (ξτ ). By taking the supremum over τ ∈ T0,T , we derive that

x ≥ supτ∈T0,T E
f
0,τ (ξτ ) = Y0, where the equality holds by Theorem 10.1. By de�nition of u0

as an in�mum (cf (11.3)), we get u0 ≥ Y0, which, since Y0 ≥ u0, yields that u0 = Y0. �

We now give some examples of American options with completely irregular pay-o�.

Example 11.1 We consider a pay-o� process (ξt) of the form ξt := h(S1
t ), for t ∈ [0, T ],

where h : R → R is a (possibly irregular) Borel function such that the process (h(St)) is

optional and (h(S1
t )) ∈ S2. In general, the pay-o� (ξt) is a completely irregular process.

By the �rst two statements of Proposition 11.1, the superhedging price of the American

option is equal to the value function of the optimal stopping problem (11.4), and is also

characterized as the solution of the re�ected BSDE (2.3) with obstacle ξt = h(S1
t ).

If h is an uppersemicontinuous function on R, then the process (h(S1
t )) is optional, since

an u.s.c. function can be written as the limit of a (non increasing) sequence of continuous

functions. Moreover, the process (h(S1
t )) is right-u.s.c. and also left-u.s.c. along stopping

times. The right-uppersemicontinuity of (ξt) follows from the fact that the process S1 is right-

continuous; the left-uppersemicontinuity along stopping times of (ξt) follows from the fact

that S1 jumps only at totally inaccessible stopping times. In virtue of Proposition 11.1, last

statement, there exists in this case an optimal exercise time for the American option with

payo� ξt = h(S1
t ). A particular example is given by the American digital call option (with

strike K > 0), where h(x) := 1[K,+∞[(x). The function h is u.s.c. on R. The corresponding

payo� process ξt := 1S1
t≥K is thus r.u.s.c and left-u.s.c. along stopping times in this case,

which implies the existence of an optimal exercise time.

In the case of the American digital put option (with strike K > 0), the corresponding

payo� ξt := 1S1
t<K

is not r.u.s.c. We note that the pay-o� of the American digital call and

put options is in general neither left-limited nor right-limited.
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11.2. An application to RBSDEs. The characterization (Theorem 10.1) is also useful

in the theory of RBSDEs in itself: it allows us to obtain a priori estimates with universal

constants for RBSDEs with completely irregular obstacles.

Proposition 11.2 (A priori estimates with universal constants) Let ξ and ξ′ be two

processes in S2. Let f and f ′ be two Lipschitz drivers satisfying Assumption 5.1 with com-

mon Lipschitz constant K > 0. Let (Y,Z, k) (resp. (Y ′, Z ′, k′)) be the three �rst components

of the solution of the re�ected BSDE associated with driver f (resp. f ′) and obstacle ξ (resp.

ξ′).

Let Y := Y − Y ′, ξ := ξ − ξ′, and δfs := f ′(s, Y ′s , Z
′
s, k
′
s)− f(s, Y ′s , Z

′
s, k
′
s).

Let η, β > 0 with β ≥ 3

η
+ 2K and η ≤ 1

K2
. For each S ∈ T0,T , we have

(11.5) YS
2 ≤ eβ(T−S)E[ess sup

τ∈TS,T
ξτ

2|FS ] + ηE[

∫ T

S
eβ(s−S)(δfs)

2ds|FS ] a.s.

Proof: The proof is divided into two steps.

Step 1: For each τ ∈ T0,T , let (Xτ , πτ , lτ ) (resp. (X
′τ , π

′τ , l
′τ )) be the solution of the

BSDE associated with driver f (resp. f ′), terminal time τ and terminal condition ξτ (resp.

ξ′τ ). Set X
τ

:= Xτ −X ′τ . By an estimate on BSDEs (cf. Proposition A.4 in [38]), we have

(X
τ
S)2 ≤ eβ(T−S)E[ξ

2 | FS ] + ηE[

∫ T

S
eβ(s−S)[(f − f ′)(s,X ′τs , π

′τ
s , l

′τ
s )]2ds | FS ] a.s.

from which we derive

(11.6) (X
τ
S)2 ≤ eβ(T−S)E[ess sup

τ∈TS,T
ξτ

2|FS ] + ηE[

∫ T

S
eβ(s−S)(fs)

2ds|FS ] a.s.,

where fs := supy,z,k |f(s, y, z, k)− f ′(s, y, z, k)|. Now, by Theorem 10.1, we have

YS = ess supτ∈TS,T X
τ
S and Y ′S = ess supτ∈TS,T X

′τ
S . We thus get |Y S | ≤ ess supτ∈TS,T |X

τ
S |.

By (11.6), we derive the inequality (11.5) with δfs replaced by fs.

Step 2: Note that (Y ′, Z ′, k′) is the solution the RBSDE associated with obstacle ξ′ and

driver f(t, y, z, k) + δft. By applying the result of Step 1 to the driver f(t, y, z, k) and the

driver f(t, y, z, k) + δft (instead of f ′), we get the desired result. �

12. Appendix. Let M,M ′ ∈ M2. Recall that MM ′ − [M,M ′] is a martingale, and

that 〈M,M ′〉 is de�ned as the compensator of the integrable �nite variation process [M,M ′].

Using these properties we derive the following equivalent statements (cf., e.g.,[37] IV.3 for
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details):

〈M,M ′〉t = 0, 0 ≤ t ≤ T a.s. ⇔ [M,M ′]· is a martingale ⇔ MM ′ is a martingale. 13

For the convenience of the reader, we state the following equivalences, which, to our

knowledge, are not explicitly speci�ed in the literature.

Lemma 12.1 For each h ∈M2, the following properties are equivalent:

(i) For all predictable process l ∈ IH2
ν , we have 〈h ,

∫ ·
0 ls(e)Ñ(dsde) 〉t = 0, 0 ≤ t ≤ T a.s.

(ii) For all predictable process l ∈ IH2
ν , we have (h ,

∫ ·
0

∫
E ls(e)Ñ(dsde) )M2 = 0.

(iii) MP
N (∆h· |P̃) = 0, where MP

N ( . |P̃) is the conditional expectation given P̃ := P ⊗ E

under the Doleans' measureMP
N associated to probability P and random measure N .14

Proof: Let us show that (i) ⇔ (ii). By de�nition of the scalar product (·, ·)M2 , we have

(h ,
∫ ·

0

∫
E ls(e)Ñ(dsde) )M2 = E[ 〈h ,

∫ ·
0

∫
E ls(e)Ñ(dsde) 〉T ]. Hence, (i) ⇒ (ii). Let us show

that (ii) ⇒ (i). If for all l ∈ IH2
ν , E[ 〈h ,

∫ ·
0 ls(e)Ñ(dsde) 〉T ] = 0, then, for each bounded

predictable process ϕ ∈ IH2, we have

E[

∫ T

0
ϕt d〈h,

∫ ·
0

∫
E
ls(e)Ñ(dsde) 〉t] = E[ 〈h ,

∫ ·
0

∫
E
ϕsls(e)Ñ(dsde) 〉T ] = 0.

since, for each M ∈ M2, ϕ · 〈h,M〉 = 〈h, ϕ.M〉 (using the notation of [8] or [24]). By

[8] (Chap 6 II Th. 64 p141), this implies that the integrable-variation predictable process

A· := 〈h ,
∫ ·

0 ls(e)Ñ(dsde)〉· is equal to 0, which gives that (ii) ⇒ (i). Hence (i) ⇔ (ii).

It remains to show that (ii)⇔ (iii). Note �rst that (h ,
∫ ·

0

∫
E ls(e)Ñ(dsde) )M2 =E([h ,

∫ ·
0

∫
E ls(e)Ñ(dsde) ]T )

= E(
∫

[0,T ]×E ∆hsls(e)N(dsde)) =MP
N (∆h· l·). Property (ii) can thus be written asM

P
N (∆h· l·) =

0 for all l· ∈ IH2
ν , which means that MP

N (∆h· |P̃) = 0. Hence, (ii) ⇔ (iii). �

Proof of Lemma 3.7: Let β > 0 and ε > 0 be such that β ≥ 1
ε2
. We note that ỸT =

ξT−ξT = 0; moreover, we have −dỸt = f̃(t)dt+dÃt+dC̃t−−Z̃tdWt−
∫
E k̃t(e)Ñ(dt, de)−dh̃t.

Thus we see that Ỹ is an optional strong semimartingale in the vocabulary of [16] with

decomposition Ỹ = Ỹ0+M+A+B, whereMt :=
∫ t

0 Z̃sdWs+
∫ t

0

∫
E k̃s(e)Ñ(ds, de)+h̃t, At :=

−
∫ t

0 f̃(s)ds− Ãt and Bt := −C̃t−. Applying Gal'chouk-Lenglart's formula (more precisely

Corollary A.2 in [17]) to eβt Ỹ 2
t , and using that ỸT = 0, and the property 〈hc,W 〉 = 0, we

13In this case, using he terminology of [37] IV.3, the martingales M and M ′ are said to be strongly
orthogonal.

Note also that, if M,M ′ ∈ M2, using the terminology of [37] IV.3, the martingales M and M ′ are said

to be weakly orthogonal if (M ,M ′ )M2 = 0, that is E[MTM
′
T ] = 0.

14For the de�nitions of MP
N and MP

N ( . |P̃) see, e.g. , chapter III.1 (3.10) and (3.25) in [24].
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get, almost surely, for all t ∈ [0, T ],

(12.1)

eβt Ỹ 2
t +

∫
]t,T ]

eβs Z̃2
sds+

∫
]t,T ]

eβs d〈h̃c〉s = −
∫

]t,T ]
β eβs(Ỹs)

2ds+ 2

∫
]t,T ]

eβs Ỹsf̃(s)ds

+ 2

∫
]t,T ]

eβs Ỹs−dÃs − (M̃T − M̃t)−
∑
t<s≤T

eβs(∆Ỹs)
2 + 2

∫
[t,T [

eβs ỸsdC̃s −
∑
t≤s<T

eβs(Ỹs+ − Ỹs)2.

where

(12.2) M̃t := 2

∫
]0,t]

eβs Ỹs−Z̃sdWs + 2

∫
]0,t]

eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de) + 2

∫
]0,t]

eβs Ỹs−dh̃s.

By the same arguments as in [17] (cf. the proof of Lemma 3.2 in [17] for details), since

β ≥ 1
ε2
, we obtain the following estimate for the sum of the �rst and the second term on

the r.h.s. of equality (12.1): −
∫

]t,T ] β eβs(Ỹs)
2ds+2

∫
]t,T ] eβs Ỹsf̃(s)ds ≤ ε2

∫
]t,T ] eβs f̃2(s)ds.

We also have that
∫

[t,T [ eβs ỸsdC̃s ≤ 0 and
∫

]t,T ] eβs Ỹs−dÃs ≤ 0. We give the detailed

arguments for the second inequality (the arguments for the �rst are similar). We have∫
]t,T ] eβs Ỹs−dÃs =

∫
]t,T ] eβs Ỹs−dA

1
s −

∫
]t,T ] eβs Ỹs−dA

2
s. For the �rst term, we write

∫
]t,T ]

eβs Ỹs−dA
1
s =

∫
]t,T ] eβs(Y 1

s−−Y 2
s−)dA1

s =
∫

]t,T ] eβs(Y 1
s−−ξs)dA1

s+
∫

]t,T ] eβs(ξs−Y 2
s−)dA1

s. The

second summand is nonpositive as Y 2
s− ≥ ξs (which is due to Y 2

s ≥ ξs, for all s). The �rst

summand is equal to 0 due to the Skorokhod condition for A1. Hence,
∫

]t,T ] eβs Ỹs−dA
1
s ≤ 0.

By similar arguments, we see that −
∫

]t,T ] eβs Ỹs−dA
2
s ≤ 0. Hence,

∫
]t,T ] eβs Ỹs−dÃs ≤ 0.

The above observations, together with equation (12.1), yield that a.s., for all t ∈ [0, T ],

(12.3)

eβt Ỹ 2
t +

∫
]t,T ]

eβs Z̃2
sds+

∫
]t,T ]

eβs d〈h̃c〉s ≤ ε2

∫
]t,T ]

eβs f̃2(s)ds− (M̃T − M̃t)−
∑
t<s≤T

eβs(∆Ỹs)
2,

from which we derive estimates for ‖Z̃‖2β , ‖k̃‖2ν,β , ‖h̃‖2β,M2 , and then an estimate for |||Ỹ |||2β.

Estimate for ‖Z̃‖2β, ‖k̃‖2ν,β and ‖h̃‖2β,M2 . Note �rst that we have:

∑
t<s≤T

eβs(∆h̃s)
2 +

∫
]t,T ]

eβs ||k̃s||2νds−
∑
t<s≤T

eβs(∆Ỹs)
2 = −

∑
t<s≤T

eβs(∆Ãs)
2

−
∫

]t,T ]
eβs
∫
E
k̃2
s(e)Ñ(ds, de)− 2

∑
t<s≤T

eβs ∆Ãs∆h̃s − 2
∑
t<s≤T

eβs k̃s(ps)∆h̃s,

where, we have used the fact that the processes A· and N(·, de) "do not have jumps in

common", since A (resp. N(·, de)) jumps only at predictable (resp. totally inaccessible)

stopping times.
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By adding the term
∫

]t,T ] eβs ||k̃s||2νds+
∑

t<s≤T eβs(∆h̃s)
2 on both sides of inequality (12.3),

by using the above computation and the well-known equality [h̃]t = 〈h̃c〉t +
∑

(∆h̃)2
s, we

get

(12.4)

eβt Ỹ 2
t +

∫
]t,T ]

eβs Z̃2
sds+

∫
]t,T ]

eβs ||k̃s||2νds+

∫
]t,T ]

eβs d[h̃]s ≤ ε2

∫
]t,T ]

eβs f̃2(s)ds− (M ′T −M ′t)

− 2
∑
t<s≤T

eβs ∆Ãs∆h̃s − 2

∫ T

t
d[h̃ ,

∫ ·
0

∫
E

eβs k̃s(e)Ñ(ds, de) ]s,

with M ′t = M̃t +
∫

]t,T ] eβs
∫
E k̃

2
s(e)Ñ(ds, de) (where M̃ is given by (12.2)).

By classical arguments, which use Burkholder-Davis-Gundy inequalities, we can show that

the local martingale M ′ is a martingale. Moreover, since h̃ ∈ M2,⊥, by Remark 2.1, we

derive that the expectation of the last term of the above inequality (12.4) is equal to

0. Furthermore, since h̃ is a martingale, for each predictable stopping time τ , we have

E[∆h̃τ/Fτ−] = 0 (cf., e.g., Chapter I, Lemma (1.21) in [24]). Moreover, since Ã is pre-

dictable, ∆Ãτ is Fτ−-measurable (cf., e.g., Chap I (1.40)-(1.42) in [24]), which implies that

E[∆Ãτ∆h̃τ/Fτ−] = ∆ÃτE[∆h̃τ/Fτ−] = 0. We thus get E[
∑

0<s≤T eβs ∆Ãs∆h̃s] = 0.

By applying (12.4) with t = 0, and by taking expectations on both sides of the resulting

inequality, we obtain Ỹ 2
0 + ‖Z̃‖2β + ‖k̃‖2ν,β + ‖h̃‖2β,M2 ≤ ε2‖f̃‖2β. We deduce that ‖Z̃‖2β ≤

ε2‖f̃‖2β , ‖k̃‖2ν,β ≤ ε2‖f̃‖2β and ‖h̃‖2β,M2 ≤ ε2‖f̃‖2β , which are the desired estimates (3.7).

Estimate for |||Ỹ |||2β. From inequality (12.3) we derive that, for all τ ∈ T0,T , a.s.,

eβτ Ỹ 2
τ ≤ ε2

∫
]τ,T ] eβs f̃2(s)ds− (M̃T − M̃τ ), where M̃ is given by (12.2).

Using �rst Chasles' relation for stochastic integrals, then taking the essential supremum

over τ ∈ T0,T and the expectation on both sides of the above inequality, we obtain

(12.5)

E[ess sup
τ∈T0,T

eβτ Ỹ 2
τ ] ≤ ε2‖f̃‖2β + 2E[ess sup

τ∈T0,T
|
∫ τ

0
eβs Ỹs−Z̃sdWs|] + 2E[ess sup

τ∈T0,T
|
∫ τ

0
eβs Ỹs−dh̃s|]

+ 2E[ess sup
τ∈T0,T

|
∫

]0,τ ]
eβs
∫
E
Ỹs−k̃s(e)Ñ(ds, de)|].

Let us consider the third term of the r.h.s. of the inequality (12.5). By Burkholder-Davis-

Gundy inequalities, we have E[ess supτ∈T0,T |
∫ τ

0 eβs Ỹs−dh̃s|] ≤ cE[
√∫ T

0 e2βs Ỹ 2
s−d[h̃]s]. This

inequality and the trivial inequality ab ≤ 1
2a

2 + 1
2b

2 lead to

2E[ess sup
τ∈T0,T

|
∫ τ

0
eβs Ỹs−dh̃s|] ≤ E

√1

2
ess sup
τ∈T0,T

eβτ Ỹ 2
τ

√
8c2

∫ T

0
eβs d[h̃]s

 ≤ 1

4
|||Ỹ |||2β+4c2‖h̃‖2β,M2 .
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By using similar arguments, we get 2E[ess supτ∈T0,T
∫ τ

0 eβs Ỹs−Z̃sdWs] ≤ 1
4 |||Ỹ |||

2

β+4c2‖Z̃‖2β,
and a similar estimate for the last term in (12.5). By (12.5), we thus have 1

4 |||Ỹ |||
2

β ≤
ε2‖f̃‖2β+4c2(‖Z̃‖2β+‖k̃‖2ν,β+‖h̃‖2β,M2). Using the estimates for ‖Z̃‖2β , ‖k̃‖2ν,β and ‖h̃‖2β,M2(cf.

(3.7)), we thus get |||Ỹ |||2β ≤ 4ε2(1 + 12c2)‖f̃‖2β, which is the desired result. �

Remark 12.1 We note that this proof shows that the estimates (3.7) and (3.8) also hold

in the simpler case of a non re�ected BSDE. From this result, together with Lemma 2.1,

and using the same arguments as in the proof of Theorem 4.1, we easily derive the existence

and the uniqueness of the solution of the non re�ected BSDE with general �ltration from

De�nition 2.2. Similarly, we can show the comparison result for non re�ected BSDEs with

general �ltration under the Assumption 5.1.

Lemma 12.2 Let f be a Lipschitz driver satisfying Assumption 5.1. Let A be a nondecreas-

ing right-continuous predictable process in S2 with A0 = 0 and let C be a nondecreasing

right-continuous adapted purely discontinuous process in S2 with C0− = 0.

Let (Y, Z, k, h) ∈ S2 ×H2 ×H2
ν ×M2,⊥ satisfy

−dYt = f(t, Yt, Zt, kt)dt+ dAt + dCt− − ZtdWt −
∫
E
kt(e)Ñ(dt, de)− dht, 0 ≤ t ≤ T.

Then the process (Yt) is a strong Ef -supermartingale.

The proof is omitted since it relies on the same arguments as those used in the proof of

the same result shown in [17] in the particular case when the �ltration is associated with

W and N (cf. Proposition A.5 in [17]), as well as on some speci�c arguments, due to the

general �ltration, which are similar to those used in the proof of the previous lemma.

13. Complements: The strict value. In this section we give some complements on

a closely related (non-linear) optimal stopping problem.

Let S be a stopping time in T0,T . We denote by TS+ the set of stopping times τ ∈ T0,T with

τ > S a.s. on {S < T} and τ = T a.s. on {S = T}. The strict value V +(S) (at time S) of

the non-linear optimal stopping problem is de�ned by

V +(S) := ess sup
τ∈TS+

EfS,τ (ξτ ).(13.1)

We note that V +(S) = ξT a.s. on {S = T}.
Using the same arguments as for the value family (V (S))S∈T0,T , we show that

Proposition 13.1 The strict value family (V +(S))S∈T0,T is a strong Ef -supermartingale

family. There exists a unique right-uppersemicontinuous optional process, denoted by (V +
t )t∈[0,T ],

which aggregates the family (V +(S))S∈T0,T . The process (V +
t )t∈[0,T ] is a strong Ef -supermartingale.
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The following theorem connects the above strict value process (V +
t )t∈[0,T ] with the process

of right-limits (Vt+)t∈[0,T ], where (Vt) denotes as before the value process of our non-linear

problem (5.1).

Theorem 13.1 (i) The strict value process (V +
t ) is right-continuous.

(ii) For all S ∈ T0,T , V
+
S = VS+ a.s.

(iii) For all S ∈ T0,T , VS = V +
S ∨ ξS a.s.

The proof of the theorem uses the following preliminary result which states that the strict

value process (V +
t ) is right-continuous along stopping times in Ef -conditional expectation.

Lemma 13.1 (Right-continuity along stopping times in Ef -conditional expectation)
The strict value process (V +

t ) is right-continuous along stopping times in Ef -expectation, in
the sense that for each θ ∈ T0,T , and for each sequence of stopping times (θn)n∈N belonging

to T0,T such that θn ↓ θ, we have

(13.2) lim
n→∞

↑ Efθ,θn(V +
θn

) = V +
θ a.s.

For the proof, we recall the following classical statement:

Remark 13.1 Let (Ω,F , P ) be a probability space. Let A ∈ F . Let (Xn) be a sequence of

real valued random variables. Suppose that (Xn) converges a.s. on A to a random variable

X. Then, for each ε > 0, limn→+∞ P ({|X −Xn| < ε} ∩A) = P (A).

From this property, it follows that for each ε > 0, there exists n0 ∈ N such that for all

n ≥ n0, P ({|X −Xn| < ε} ∩A) ≥ P (A)
2 .

Proof of Lemma 13.1: Let n ∈ N. By the consistency property of Ef , we have

(13.3) Efθ,θn(V +
θn

) = Efθ,θn+1

(
Efθn+1,θn

(V +
θn

)
)

a.s.

Now, since the process (V +
t ) is a strong Ef - supermartingale, we have Efθn+1,θn

(V +
θn

) ≤ V +
θn+1

a.s. Using this inequality, together with equality (13.3) and the monotonicity of Efθ,θn+1
, we

obtain

Efθ,θn(V +
θn

) ≤ Efθ,θn+1
(V +
θn+1

) a.s.

Since this inequality holds for each n ∈ N, we derive that the sequence of random variables(
Efθ,θn(V +

θn
)
)
n∈N

is nondecreasing. Moreover, since the process (V +
t ) is a strong Ef - super-

martingale, we have Efθ,θn(V +
θn

) ≤ V +
θ a.s. for each n ∈ N. By taking the limit as n tend to

+∞, we thus get

lim
n→∞

↑ Efθ,θn(V +
θn

) ≤ V +
θ a.s.
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It remains to show the converse inequality:

(13.4) lim
n→∞

↑ Efθ,θn(V +
θn

) ≥ V +
θ a.s.

Suppose, by way of contradiction, that this inequality does not hold. Then, there exists a

constant α > 0 such that the event A de�ned by

A := { lim
n→∞

↑ Efθ,θn(V +
θn

) ≤ V +
θ − α}

satis�es P (A) > 0. By de�nition of A, we have

(13.5) lim
n→∞

↑ Efθ,θn(V +
θn

) + α ≤ V +
θ a.s. on A.

As for the value function, there exists an optimizing sequence (τp)p∈N for the strict value

function V +
θ , that is, such that, for each p ∈ N, τp ∈ Tθ+ , and such that

V +
θ = lim

p→∞
↑ Efθ,τp(ξτp) a.s.

By Remark 13.1 (applied with ε = α
2 ), we derive that there exists p0 ∈ N such that the

event B de�ned by

B := {V +
θ ≤ E

f
θ,τp0

(ξτp0 ) +
α

2
} ∩A

satis�es P (B) ≥ P (A)
2 . Denoting τp0 by θ′, we have

V +
θ ≤ E

f
θ,θ′(ξθ′) +

α

2
a.s. on B.

By the inequality (13.5), we derive that

(13.6) lim
n→∞

↑ Efθ,θn(V +
θn

) +
α

2
≤ Efθ,θ′(ξθ′) a.s. on B.

Let us �rst consider the simpler case where θ < T a.s.

In this case, since θ′ ∈ Tθ+ , we have θ′ > θ a.s. Hence, we have Ω = ∪n∈N ↑ {θ′ > θn} a.s.
De�ne the stopping time θn := θ′1{θ′>θn} + T1{θ′≤θn}. We note that θn ∈ Tθ +

n
for each n

∈ N. Moreover, limn→∞ θn = θ′ a.s. and limn→∞ ξθn = ξθ′ a.s. By the continuity property

of Ef with respect to terminal condition and terminal time, we get

lim
n→∞

Ef
θ,θn

(ξθn) = Efθ,θ′(ξθ′) a.s.

By Remark 13.1, we derive that there exists n0 ∈ N such that the event C de�ned by

C := {|Efθ,θ′(ξθ′)− E
f

θ,θn0
(ξθn0

)| ≤ α

4
} ∩B
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satis�es P (C) > 0. By the inequality (13.6), we derive that

(13.7) lim
n→∞

↑ Efθ,θn(V +
θn

) +
α

4
≤ Ef

θ,θn0
(ξθn0

) a.s. on C.

Now, by the consistency of Ef , we have

Ef
θ,θn0

(ξθn0
) = Efθ,θn0

(
Ef
θn0 ,θn0

(ξθn0
)
)
≤ Efθ,θn0 (V +

θn0
) a.s.,

where the last inequality follows from the fact that θn0 ∈ Tθ +
n0

and from the de�nition of

V +
θn0

. By (13.7), we thus derive that

lim
n→∞

↑ Efθ,θn(V +
θn

) +
α

4
≤ Efθ,θn0 (V +

θn0
) a.s. on C,

which gives a contradiction. Hence, the desired inequality (13.4) holds.

Let us now consider a general θ ∈ T0,T .

On the set {θ = T}, we have θn = θ a.s. for all n. Hence, on {θ = T}, we have

limn→∞ Efθ,θn(V +
θn

) = V +
θ a.s. On the set {θ < T}, using the same arguments as above

with θn = θ′1{θ′>θn}∩{T>θ} + T1{θ′≤θn}∪{T=θ}, we show the inequality (13.4). The proof is

thus complete. �

We are now ready to prove the theorem.

Proof of Theorem 13.1: The proof of (i) is based on the previous Lemma 13.1 and on a

result from the general theory of processes. Let S ∈ T0,T and let (Sn) be a non-increasing

sequence of stopping times in TS+ with lim ↓ Sn = S a.s. By applying Lemma 13.1 and the

continuity property of Ef -expectations with respect to the terminal condition and to the

terminal time, we get

V +
S = lim

n→∞
EfS,Sn(V +

Sn
) = EfS,S( lim

n→∞
V +
Sn

) = lim
n→∞

V +
Sn
,

where we have used that limn→∞ V
+
Sn

exists, as (V +
t ) is a strong Ef -supermartingale, and

hence has right limits. The above equality shows that the process (V +
t ) is right-continuous

along stopping times. By Proposition 2 in [6], we conclude that (V +
t ) is right-continuous.

We now show (ii). Let S ∈ T0,T . Let (Sn) be a non-increasing sequence of stopping times

in TS+ with lim ↓ Sn = S a.s. We know that Vτ ≥ V +
τ a.s., for all τ ∈ T0,T . Hence,

VSn ≥ V +
Sn

a.s., for all n. We derive that limn→∞ VSn ≥ limn→∞ V
+
Sn

a.s. Using this and the

right-continuity of V + established in (i), gives VS+ ≥ V +
S a.s. In order to show the converse

inequality, we �rst show

(13.8) EfS,Sn(VSn) ≤ V +
S a.s. for all n.
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We �x n and we take (τp) ∈ TSn an optimizing sequence for the problem with value VSn ,

i.e. VSn = limp→∞ EfSn,τp(ξτp). We have

(13.9) EfS,Sn(VSn) = EfS,Sn( lim
p→∞

EfSn,τp(ξτp)) = lim
p→∞

EfS,Sn(EfSn,τp(ξτp)) a.s.,

where we have used the continuity property of EfS,Sn(·) with respect to the terminal con-

dition (recall that here n is �xed). Using the consistency property of Ef -expectations,
we get EfS,Sn(EfSn,τp(ξτp)) = EfS,τp(ξτp) ≤ V +

S a.s. (where for the inequality we have used

that τp ∈ TS+). From this, together with equation (13.9), we derive the desired inequality

(13.8). From inequality (13.8), together with the continuity of Ef -expectations with respect

to the terminal time and the terminal condition, we derive V +
S ≥ limn→∞ EfS,Sn(VSn) =

EfS,S(VS+) = VS+ a.s. Hence, V +
S ≥ VS+ a.s., which, together with the previously shown

converse inequality, proves the equality VS+ = V +
S a.s.

Statement (iii) is a direct consequence of part (ii) (which we have just shown), together

with Remark 2.3 and Theorem 10.1.

�

Remark 13.2 By the same arguments as those of the proof of statement (i) in the above

Theorem 13.1, the following general statement can be shown: A strong Ef -supermartingale is

right-continuous if it is right-continuous along stopping times in Ef -conditional expectation.
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