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OPTIMAL STOPPING WITH f-EXPECTATIONS: THE IRREGULAR
CASE
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Bielefeld University *, Humboldt University-Berlin |,
Université Cadi Ayyad *, and Université Paris-Diderot $

Abstract  We consider the optimal stopping problem with non-
linear f-expectation (induced by a BSDE) without making any reg-
ularity assumptions on the payoff process £ and in the case of a
general filtration. We show that the value family can be aggregated
by an optional process Y. We characterize the process Y as the &f-
Snell envelope of £&. We also establish an infinitesimal characterization
of the value process Y in terms of a Reflected BSDE with & as the
obstacle. To do this, we first establish some useful properties of irreg-
ular RBSDEs;, in particular an existence and uniqueness result and a
comparison theorem.

1. Introduction. The classical optimal stopping probem with linear expectations has

been largely studied. General results on the topic can be found in El Karoui (1981) ([12])
where no regularity assumptions on the reward process ¢ are made.
In this paper, we are interested in a generalization of the classical optimal stopping problem
where the linear expectation is replaced by a possibly non-linear functional, the so-called
f-expectation (f-evaluation), induced by a BSDE with Lipschitz driver f. For a stopping
time S such that 0 < S < T a.s. (where 7' > 0 is a fixed terminal horizon), we define

(1.1) V(S) ==ess sup & (&),

T€Ts,T

where Tgr denotes the set of stopping times valued a.s. in [S,T] and Egﬁ(-) denotes the
conditional f-expectation/evaluation at time S when the terminal time is 7.

The above non-linear problem has been introduced in [14] in the case of a Brownian
filtration and a continuous financial position/pay-off process { and applied to the (non-
linear) pricing of American options. It has then attracted considerable interest, in particular,

Keywords and phrases: backward stochastic differential equation, optimal stopping, f-expectation, non-
linear expectation, aggregation, dynamic risk measure, American option, strong £f-supermartingale, Snell
envelope, reflected backward stochastic differential equation, comparison theorem, Tanaka-type formula,
general filtration
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due to its links with dynamic risk measurement (cf., e.g., [3]). In the case of a financial
position /payoff process &, only supposed to be right-continuous, this non-linear optimal
stopping problem has been studied in [39] (the case of Brownian-Poisson filtration), and in
[1] where the non-linear expectation is supposed to be convex. To the best of our knowledge,
[17] is the first paper addressing the stopping problem (1.1) in the case of a non-right-
continuous process § (with a Brownian-Poisson filtration); in [17] the assumption of right-
continuity of £ from the previous literature is replaced by the weaker assumption of right-
uppersemicontinuity (r.u.s.c.).

In the present paper, we study problem (1.1) in the case of a general filtration and without
making any regularity assumptions on &, which allows for more flexibility in the modelling
(compared to the cases of more regular payoffs and/or of particular filtrations).

The usual approach to address the classical optimal stopping problem (i.e., the case f =0
in (1.1)) is a a direct approach, based on a direct study of the value family (V(5))ser; ;-
An important step in this approach is the aggregation of the value family by an optional
process. The approach used in the literature to address the non-linear case (where f is not
necessarily equal to 0) is an RBSDE-approach, based on the study of a related Reflected
BSDE and on linking directly the solution of the Reflected BSDE with the value family
(V(S),S € Tor) (and thus avoiding, in particular, more technical aggregation questions).
This approach (cf., e.g., [17], [39]) requires at least the uppersemicontinuity of the reward
process & which we do not have here (cf. also Remark 10.1).

Neither of the two approaches is applicable in the general framework of the present paper
and we adopt a new approach which combines some aspects of both the approaches. Our
combined approach is the following: First, with the help of some results from the general
theory of processes, we show that the value family (V(S),S € Tor) can be aggregated
by a unique right-uppersemicontinuous optional process (Vt)te[o,T]- We characterize the
value process (Vt)te[o,T] as the £7-Snell envelope of &, that is, the smallest strong &f-
supermartingale greater than or equal to £&. Then, we turn to establishing an infinitesimal
characterization of the value process (V;)ieo,7) in terms of a Reflected BSDE where the
pay-off process & from (1.1) plays the role of a lower obstacle. We emphasize that this
RBSDE-part of our approach is far from mimicking the one from the r.u.s.c. case; we have
to rely on very different arguments here due to the complete irregularity of the process &.

Let us recall that Reflected BSDEs have been introduced by El Karoui et al. in the
seminal paper [13] in the case of a Brownian filtration and a continuous obstacle, and then
generalized to the case of a right-continuous obstacle and/or a larger stochastic basis than
the Brownian one in [21], [5], [22], [15], [23], [39]. In [17], we have formulated a notion
of Reflected BSDE in the case where the obstacle is only right-uppersemicontinuous (but
possibly not right-continuous) and the filtration is the Brownian-Poisson filtration have
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shown existence and uniqueness of the solution. In the present paper, we show that the
existence and uniqueness result from [17] still holds in the case of a completely irregular
obstacle and a general filtration. In the recent preprint [27], existence and uniqueness of
the solution (in the Brownian framework) is shown by using a different approach, namely
a penalization method.

We also establish a comparison result for RBSDEs with irregular obstacles and general
filtration. Due to the complete irregularity of the obstacles and the presence of jumps,
we are led to using an approach which differs from those existing in the literature on
comparison of RBSDEs (cf. also Remark 9.2); in particular, we first prove a generalization
of Gal’chouk-Lenglart’s formula (cf. [16] and [32]) to the case of convex functions, which
we then astutely apply in our framework in order to establish the comparison theorem. We
also show an £7-Mertens decomposition for strong £f-supermartingales, which generalizes
to our framework the ones provided in the literature (cf. [17] or [4]). This result, together
with our comparison theorem, helps in the study of the non-linear operator Ref! which
maps a given (completely irregular) obstacle to the solution of the RBSDE with driver f.
By using the properties of the operator Ref/, we show that Reff[¢], that is, the (first
component of the) solution to the Reflected BSDE with irregular obstacle £ and driver f,
is equal to the £7-Snell envelope of &, from which we derive that it coincides with the value
process (V;)ejo,r of problem (1.1).

Finally, we give a financial application to the problem of pricing of American options with
irregular pay-off in an imperfect market model. In particular, we show that the superhedging
price of the American option with irregular pay-off £ is characterized as the solution of an
associated RBSDE (where ¢ is the lower obstacle). Some examples of digital American
options are given as particular cases.

The rest of the paper is organized as follows: In Section 2 we give some preliminary def-
initions and some notation. In Section 3 we revisit the classical optimal stopping problem
with irregular pay-off process £ and a general filtration. We first give some general results
such as aggregation, Mertens decomposition of the value process, Skorokhod conditions sat-
isfied by the associated non decreasing processes; then, we characterize the value process
of the classical problem in terms of the solution of a Reflected BSDE associated with a
general filtration, with completely irregular obstacle and with a driver f which does not
depend on the solution. In Section 4, we prove existence and uniqueness of the solution for
general Lipschitz driver f, an irregular obstacle £ and a general filtration. In Section 5, we
present the formulation or our non-linear optimal stopping problem (1.1). In Section 6, we
provide some results on the particular case where the payoff € is right-uppersemicontinuous
(r.u.s.c)., from which we derive an £f-Mertens decomposition of £7-strong supermartin-
gales in the (general) framework of a general filtration (cf. Section 7). We then turn to the
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study of the case where £ is completely irregular. Section 8 is devoted to the direct part of
our approach to this problem; in particular, we present the aggregation result and the Snell
characterization. Section 9 is devoted to establishing some properties of Reflected BSDEs
with completely irregular obstacles, which will be used to establish an infinitesimal charac-
terization of the value process of our problem (1.1) in the completely irregular case; more
precisely, we first provide a comparison theorem (Subsection 9.2); then, using this result to-
gether with the £/-Mertens decomposition, we establish useful properties of the non-linear
operator Reff (Subsection 9.3). In Section 10, using the results shown in the previous
sections, we derive the infinitesimal characterization of the value of the non-linear optimal
stopping problem (1.1) with a completely irregular payoff £ in terms of the solution of our
general RBSDE from Section 4. In Section 11 we give a financial application to the pricing
of American options with irregular pay-off in an imperfect market model with jumps; we
also give a useful corollary of the infinitesimal characterization, namely, a prior: estimates
with universal constants for RBSDEs with irregular obstacles and a general filtration.

2. Preliminaries. Let 7' > 0 be a fixed positive real number. Let £ = R" \ {0},& =
B(R"™\ {0}), which we equip with a o-finite positive measure v. Let (£, F, P) be a proba-
bility space equipped with a right-continuous complete filtration IF' = {F;: t € [0,T]}. Let
W be a one-dimensional F-Brownian motion W, and let N(dt,de) an IF-Poisson random
measure with compensator dt ® v(de), supposed to be independent from W. We denote by
N(dt, de) the compensated process, i.e. N(dt,de) := N(dt,de) — dt ® v(de). We denote by
P (resp. O) the predictable (resp. optional) o-algebra on 2 x [0, T]. The notation L?(Fr)
stands for the space of random variables which are Fp-measurable and square-integrable.
For t € [0,T], we denote by T; 7 the set of stopping times 7 such that P(t <7 <T) = 1.
More generally, for a given stopping time S € 7o 7, we denote by 7gr the set of stopping
times 7 such that P(S <7 <7T)=1.

We use also the following notation:
e L2 is the set of (&, B(R))-measurable functions ¢ : E — R such that ||¢||2 := [,.|¢(e)|?v(de) <
o0o. For £ € L2, k € L2, we define (¢, k), = [, l(e)k(e)v(de).
e IH? is the set of R-valued predictable processes ¢ with [|¢[%,, := E [fOT |¢t\2dt] < 00.
e IH? is the set of R-valued processes [ : (w,t,e) € (2 x [0,T] x E) ~ I;(w,e) which are
predictable, that is (P® &, B(R))-measurable, and such that ||l||?H3 =F [fOT I12:1|2 dt} < 0.
e As in [17], we denote by S? the vector space of R-valued optional (not necessarily cadlag)
processes ¢ such that [|¢[[%: := Elesssup,cr; |¢-|?] < co. By Proposition 2.1 in [17], the
mapping ||| g2 is a norm on &2, and S? endowed with this norm is a Banach space.
e Let M? be the set of square integrable martingales M = (Mt)eepo,r) with Mo = 0.
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This is a Hilbert space equipped with the scalar product (M, M')ye = E[MrpM)] (=
E[{(M,M"yy] = E([M,M']r)), for M, M' € M? (cf., e.g., [37] IV.3). For each M € M?,
we set ||M|]3\42 = E(M2).

e Let M?1 be the subspace of martingales h € M? satisfying (h, W). = 0, and such that,
for all predictable processes [ € IH2,

(2.1) // N(dsde))y =0, 0<t<T as.
Remark 2.1 Note that condition (2.1) is equivalent to the fact that the square bracket
process [ h fo fE (dsde)]t is a martingale (cf. the Appendiz for additional comments

on condition (2.1)),

Recall also that the condition (h,W). = 0 is equivalent to the orthogonality of h (in
the sense of the scalar product (-,-)pq2) with respect to all stochastic integrals of the form
Jo 2sdWs, where z € H? (cf. e.g., [37] IV. 8 Lemma 2). Similarly, the condition (2.1)
18 equivalent to the orthogonality of h with respect to all stochastic integrals of the form
Jo Jzls(e)N(dsde), where | € H7 (cf., e.g. , Lemma 12.1 in the Appendiz).

We recall the following orthogonal decomposition property of martingales in M? (cf. Lemma,
I11.4.24 in [25]).

Lemma 2.1 For each M € M?, there exists a unique triplet (Z,1,h) € IH? x H? x M?>+
such that

(2.2) / ZsdW +/ /lt dt de)+ hy, Vte [O,T] a.s.

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

e f:OXx[0,T]xR*x L2 - R
(W, t,y,2,k) = flw,t,y,2 k) is P @ B(R?) ® B(L?)— measurable,
o E[f) f(t.0,0,0)2dt] < +oo.

A driver f is called a Lipschitz driver if moreover there exists a constant K > 0 such that
dP ® dt-a.e., for each (y1,21,Kk1) € R? x L2, (y2, 22, k2) € R? x L2,

|f(w7t7y1>zl> kl) - f(wata Y2, 22, k2)| < K(|y1 - y2| + ‘Zl - ’22| + ||k1 - kQHV)

Definition 2.2 (BSDE, conditional f-expectation) We have (cf., e.g., Remark 12.1
in the Appendiz) that if f is a Lipschitz driver and if & is in L?>(Fr), then there exists a
unique solution (X, m,1,h) € S? x IH? x IH2 x M2+ to the following BSDE:

—dX; = f(t, Xy, m, ly)dt — mdWy — [ li(e)N(dt,de) — dhy;  Xp =&

For t € [0,T], the (non-linear) operator St’T() : L2(Fr) — L*(F;) which maps a given
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terminal condition € € L?(Fr) to the position X; (at time t) of the first component of the
solution of the above BSDE 1is called conditional f-expectation at time t. As usual, this
notion can be extended to the case where the (deterministic) terminal time T is replaced by
a (more general) stopping time T € To.r, t is replaced by a stopping time S such that S < 1
a.s. and the domain L?(Fr) of the operator is replaced by L*(F;).

We now pass to the notion of Reflected BSDE. Let T' > 0 be a fixed terminal time. Let f
be a driver. Let £ = (§t).e[o,7] be a process in S2.

We define the process (&;)iepor) by & = limsupgy o &, for all ¢ €]0,T]. We recall
that € is a predictable process (cf. [7, Thm. 90, page 225]). The process § is left upper-
semicontinuous and is called the left upper-semicontinuous envelope of £.

Definition 2.3 (Reflected BSDE) A process (Y, Z, k, h, A, C) is said to be a solution to
the reflected BSDE with parameters (f,€), where f is a driver and € is a process in S, if,

1

(Y,Z,k,h,A,C) € 8* x H? x H? x M*+ x §? x S,

(2.3)

- d}/t = f(t, ift, Zt, k?t)dt + dAt + dCt_ - thWt - / kt(e)N(dt, de) - dht, 0 S t S T,
E

Yr=~&r as., and Yy > & for allt € [0,T], a.s.,

A is a nondecreasing right-continuous predictable process with Ay = 0 and such that

(2.4)

T
/0 Ly, -, }dA =0 a.s. and (Yo —E)(AL — A% ) =0 a.s. for all predictable T € To,T,
C' s a nondecreasing right-continuous adapted purely discontinuous process with Cy— =0
(2.5)

and such that (Y, — & )(Cr — Cr—) =0 a.s. for all T € To 7.

Here A° denotes the continuous part of the process A and A¢ its discontinuous part.

Equations (2.4) and (2.5) are referred to as minimality conditions or Skorokhod conditions.
For real-valued random variables X and X,,, n € IV, the notation "X,, T X" stands for

"the sequence (X,,) is nondecreasing and converges to X a.s.".

For a ladlag process ¢, we denote by ¢,y and ¢;_ the right-hand and left-hand limit of ¢ at

! As usual, equation (2.3) means that a.s., for all ¢ € [0, T], we have:

T
Yt:YT—f—/ f(s,YS,Zs,ks)ds—/ Z.dW, — //k N(ds,de) — hr + he + Ap — Ay + Cr_ — Cy_.
t t
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t. We denote by Ay ¢; := ¢, — ¢y the size of the right jump of ¢ at ¢, and by A¢y := ¢y —ps—
the size of the left jump of ¢ at t.

Remark 2.2 In the particular case where & has left limits, we can replace the process (£,)
by the process of left limits (§,—) in the Skorokhod condition (2.4).

Remark 2.3 If (Y, Z,k,h, A,C) is a solution to the RBSDE defined above, by (2.3), we
have ACy =Y — Yiy, which implies that Y; > Yy, for all t € [0,T). Hence, Y is r.u.s.c.
Moreover, from C; — Cr— = —(Yr+ — Y;), combined with the Skorokhod condition (2.5),
we derive (Yr — &) (Yry —Y:) =0, a.s. for all 7 € Top. This, together with Y, > & and
Y >Y. 1 as., leads to Y, =Y, V& a.s. forall T € Tor.

Definition 2.4 LetT € Ty. An optional process (¢) is said to be right upper-semicontinuous
(resp. left upper-semicontinuous) along stopping times if for all stopping time 7 € Ty and
for all non increasing (resp. non decreasing) sequence of stopping times (1) such that ™ | T

(resp. T 1 7) a.s., ¢r > limsup,,_ . ¢, a.s..

3. The classical optimal stopping problem. In this section, we revisit the classical
(linear) optimal stopping problem with irregular pay-off process and a general filtration.

3.1. The classical linear optimal stopping problem revisited. Let (§t)e0,r) be a process
belonging to &%, called the reward process or the pay-off process. For each S € To,r, we
define the value v(S) at time S by

(3.1) v(S) :=esssup E[¢; | Fgl.
T€Ts,T

Lemma 3.1 (i) There exists a ladlag optional process (vi)iejo,r) which aggregates the fam-
ily (v(9))sety r (i-e. vs =v(S) a.s. for all S € Tor).
Moreover, the process (vt)ic(o,r) is the smallest strong supermartingale greater than or
equal to (&t)iejo,m)-

(ii) We have vg = &gV vgy a.s. for all S € Tor.

(iii) ? For each S € Tor and for each A €]0,1], the process (vt)iejo,) s a martingale on
[S, 73], where 73 := inf{t > S, My(w) < &}

Proof.  These results are due to classical results of optimal stopping theory. For a sketch
of the proof of the first two assertions, the reader is referred to the proof of Proposition
A5 in the Appendix of [17] (which still holds for a general process & € S?). The last

“Note that in the case of a not necessarily non-negative pay-off process ¢ this result holds up to a
translation by the martingale Xs := Elesssup, .. .. & |Fs] (cf. e.g. Appendix A in [30]). More precisely,

the property holds for v := v + X and 5: E+ X.
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assertion corresponds to a result of optimal stopping theory (cf. [33], [12] or Lemma 2.7
in [28]). Its proof is based on a penalization method (used in convex analysis), introduced
by Maingueneau (1978) (cf. the proof of Theorem 2 in [33]), which does not require any
regularity assumption on the reward process &. O

Remark 3.1 It follows from (ii) in the above lemma that A vs = 11, ¢} Atvg a.s.

Remark 3.2 Let us note for further reference that Maingueneau’s penalization approach
for showing the martingale property on [S, Té\] (property (iii) in the above lemma) relies
heavily on the convexity of the problem.

Lemma 3.2 (i) The value process V of Lemma 3.1 belongs to S? and admits the following
(Mertens) decomposition:

(3.2) vy =vg+ My — Ay — Cy—, forallt €[0,T] a.s.,

where M € M?, A is a nondecreasing right-continuous predictable process such that
Ag = 0, E(A%) < oo, and C is a nondecreasing right-continuous adapted purely
discontinuous process such that Co— = 0, E(C2) < oo.

(ii) For each T € Tor, we have AC: = 1y, ¢ VAC: a.s.

(iii) For each predictable T € Ty, we have AA; = l{vT_:gT}AAT a.s.

Proof. By Lemma 3.1 (i), the process (vt);e[o,7) is a strong supermartingale. Moreover, by
using martingale inequalities, it can be shown that Elesssupger, ,. Vs|?] < c|||£|\|§2 Hence,
the process (vt)epo,r) is in S? (a fortiori, of class (D)). Applying Mertens decomposition for
strong supermartingales of class (D) (cf., e.g., [8, Appendix 1, Thm.20, equalities (20.2)])
gives the decomposition (3.2), where M is a cadlag uniformly integrable martingale, A is a
nondecreasing right-continuous predictable process such that Ag = 0, E(Ar) < oo, and C'is
a nondecreasing right-continuous adapted purely discontinuous process such that Co_ = 0,
E(Cr) < oo. Based on some results of Dellacherie-Meyer [8] (cf., e.g., Theorem A.2 and
Corollary A.1 in [17]), we derive that A € §? and C € §?, which gives the assertion (i).

Let 7 € To,r. By Remark 3.1 together with Mertens decomposition (3.2), we get AC, =
—Ajv; as. It follows that ACr = 1y, —¢ yAC; a.s., which corresponds to (ii).

Assertion (iii) (concerning the jumps of A) is due to El Karoui ® ([12, Proposition 2.34])

3Note that the proof in El Karoui [12] is given for nonnegative pay-off £. To pass from this to the
more general case where  might take also negative values, we apply the result by El Karoui [12] with
€ := £ + X (which is non-negative) and ¥ := v + X, where the process X = (X;) is defined by X, :=
Eless SUP,c7 o &7 | Fi]. We then notice that the Mertens process (A4, C) from the Mertens decomposition

of v is the same as the Mertens process (A, C) from the Mertens decomposition of & (indeed, only the
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Its proof is based on the equality Ag = ATQ a.s., for each S € Ty r and for each A €]0,1]

(which follows from Lemma 3.1 (iii) together with Mertens decomposition (3.2)).
U

The following minimality property for the continuous part A¢ is well-known from the
literature in the "more regular" cases (cf., e.g., [29] for the right-uppersemicontinuous case).
In the case of completely irregular £, this minimality property was not explicitly available.
Only recently, it was proved by [27] (cf. Proposition 3.7) in the Brownian framework. Here,
we generalize the result of [27] to the case of a general filtration by using different analytic

arguments.
Lemma 3.3 The continuous part A of A satisfies the equality fOT l{vt,>Et}dA§ =0 a.s.

Proof.  As for the discontinuous part of A, the proof is based on Lemma 3.1 (iii) , and also
on some analytic arguments similar to those used in the proof of Theorem D13 in Karatzas
and Shreve (1998) (|26]).

We have to show that fOT(vt_ —&)dAS =0 as.
Lemma 3.1 (iii) yields that for each S € 7o and for each X €]0, 1, we have Ag = ATé a.s.
Without loss of generality, we can assume that for each w, the map ¢ — Af(w) is continuous,
that the map t — v(w) is left-limited, and that, for all A €]0,1[NQ and ¢ € [0, T[NQ, we
have A;(w) = A (w).

Let us denote by J(w) the set on which the nondecreasing function ¢ +— A§(w) is “flat”:

J(w) :={t €]0,T[, 36 >0 with Af s5(w) = A7, 5(w)}

The set J(w) is clearly open and hence can be written as a countable union of disjoint
intervals: J(w) = U;]a;(w), Bi(w)]. We consider

(3.3) T (W) := Uilai(w), Bi(w)] = {t €]0,T], 36 > 0 with AS s(w) = A%(w)}.

We have fOT 1j(w)dA§(w) = Zi(Agi(w)(w) - Agi(w)(w)) = 0. Hence, the nondecreasing

function t — A¢(w) is “Aat” on J(w). We now introduce
K(w) :={t €]0,T] s.t. v (w) > & (w)}

We next show that for almost every w, K(w) C J(w), which clearly provides the desired
result. Let ¢ € K(w). Let us prove that t € J(w). By (3.3), we thus have to show that

martingale parts of the two decompositions differ by X). Moreover, we see that the set {v,— = £_} is the
same as the set where v is replaced by ¢ and ¢ is replaced by £ (this is due to the fact that X is a martingale
and thus has left limits; so X; = Xio).
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there exists § > 0 such that AS ;(w) = A¢(w). Since t € K(w), we have v;_(w) > & (w).

Hence, there exists § > 0 and A €]0,1[NQ such that ¢ —§ € [0,7[NQ and for each r €

[t —3,t[, Avp(w) > & (w). By definition of 7} 4(w), it follows that 7 ;(w) > t. Now, we have

ALy 6(w) = AY s5(w). Since the map s — Af(w) is nondecreasing, we get Af(w) = Af_;(w),
o

which implies that t € J(w). We thus have K(w) C J(w), which completes the proof. [

Remark 3.3 We note that the martingale property from assertion (iii) of Lemma 3.1 is
crucial for the proof of the minimality conditions for the process A (namely, for the proofs

of Lemma 3.2 assertion (iii), and for Lemma 3.3).

3.2. The classical linear optimal stopping problem with an additional instantaneous re-
ward. In this subsection, we extend the previous results to the case where, besides the
reward process £, there is an additional running (or instantaneous) reward process f € IH2.
More precisely, let (gt)te[oﬂ be a process belonging to 82, called the reward process or the
pay-off process. Let f = (fi)ico,r) be a predictable process with E[fOT fZdt] < 400, called
the instantaneous reward process. For each S € Ty 1, we define the value V'(S) at time S by

(3.4) V(S) := esssup E[¢; + /T fudu | Fsl.
T€Ts,T S

This is equivalent to

S T
(3.5) V(S)+ /0 fudu :=esssup E[¢, +/0 fudu | Fsl.

TETs,T
Hence, the results of the previous subsection can be applied with & replaced by £ + fo Sfudu
and v(S) replaced by V(S) + fOS fudu. Here is a brief summary.

Lemma 3.4 (i) There exists a ladlag optional process (Vi)icpo,r) which aggregates the fam-
ily (V(S))setyr (i-e- Vs =V(S) a.s. for all S € Tor).
Moreover, the process (Vi + fg fudu)ico,r) is the smallest strong supermartingale
greater than or equal to (& + fot fudu)ieio,m)-

(ii) We have Vg = &gV Vsy a.s. for all S € Tor.

Remark 3.4 It follows from (i) in the above lemma that A1 Vs = 1y ¢} A4 Vs a.s.

Lemma 3.5 (i) The value process V of Lemma 3.4 belongs to S? and admits the following
(Mertens) decomposition:

t
(3.6) Vi=Vy— / fudu+ My — Ay — Cy—, for all t € [0,T] a.s.,
0
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where M € M?, A is a nondecreasing right-continuous predictable process such that
Ay = 0, E(A%) < 00, and C is a nondecreasing right-continuous adapted purely
discontinuous process such that Co— = 0, E(C2) < oo.

(ii) For each T € Tor, we have AC; = 1y, - AC: as.

(iii) For each predictable T € Ty, we have AA; = 1{VT-=ET}AAT a.s.

Lemma 3.6 The continuous part A of A satisfies the equality fOT l{vt,>2t}dA§ =0 a.s.

3.3. Characterization of the value function as the solution of an RBSDE. In this sub-
section, we show, using the above lemmas, that the value process V of the classical optimal
stopping problem (3.4) solves the RBSDE from Definition 2.3 with parameters the driver
process (f) and the obstacle (&). We also prove the uniqueness of the solution of this RB-
SDE. To this aim, we first provide a priori estimates for RBSDEs in our general framework.

Lemma 3.7 (A priori estimates) Let (Y', Z' k', ', A',CY) (resp. (Y2, Z2, k%, h?, A%,C?))
€ S2xIH? x H2 x M?*+ x8?xS? be a solution to the RBSDE associated with driver f'(w,t)
(resp. f2(w,t)) and with obstacle &. We set Y =Y — Y2, Z := 7' — 72, A .= A' — A2
C:=C'—C? k:=k'— k2 h:=h'—h2, and f(w,t) = fYw,t) — f?(w,t). There ewists

¢ > 0 such that for all € > 0, for all g > 6% we have

(3.7) 12113 < 1713, k55 < E2NF1F and A3 0 < 2IIF113-
~ 2 ~
(3.8) Y ll5 < 4€(1 + 12¢%)| 1 f3-
Proof.  The proof is given in the Appendix. O

Using these a priori estimates, the lemmas from the previous subsection, and the or-
thogonal martingale decomposition (Lemma 2.1), we derive the following "infinitesimal
characterization" of the value process V.

Theorem 3.1 Let V be the value process of the optimal stopping problem (3.4). Let A
and C be the non decreasing processes associated with the Mertens decomposition (3.6)
of V.. There exists a unique triplet (Z,k,h) € IH? x IH2 x M** such that the process
(V,Z,k,h, A,C) is a solution of the RBSDE from Definition 2.3 associated with the driver
process f(w,t,y,z, k) = fi(w) and the obstacle (&). Moreover, the solution of this RBSDE
s unique.

Proof. By Lemma 3.4 (ii), the value process V' corresponding to the optimal stopping
problem (3.4) satisfies Vr = V(T') =& as.and V; > &, 0 <t < T, a.s. By Lemma 3.5 (ii),
the process C of the Mertens decomposition of V' (3.6) satisfies the minimality condition
(2.5). Moreover, by Lemma 3.5 (iii) and Lemma 3.6, the process A satisfies the minimality



12 M. GRIGOROVA ET AL.

condition (2.4). By Lemma 2.1, there exists a unique triplet (Z,k, h) € H? x IH? x M?*+
such that dM; = Z,dW; + [ ki(e)N (dt,de) + dhs. The process (V, Z,k, h, A,C) is thus a
solution of the RBSDE (2.3) associated with the driver process (f;) and the obstacle &.

It remains to show the uniqueness of the solution. Using the a priori estimates from
Lemma 3.7, together with classical arguments (cf. step 5 of the proof of Lemma 3.3 in [17]),
we obtain the desired result. O

We are interested in generalizing this result to the case of the optimal stopping problem
(1.1) with non-linear f-expectation (associated with a non-linear driver f(w,t,y,z,k)). To
this purpose, we first establish an existence and uniqueness result for the RBSDE from
Definition 2.3 in the case of a general (non-linear) Lipschitz driver f(w,t,y,z, k).

4. Existence and uniqueness of the solution of the RBSDE with an irregular
obstacle and a general filtration in the case of a general driver. In Theorem 3.1,
we have shown that, in the case where the driver does not depend on y,z, and £, the
RBSDE from Definition 2.3 admits a unique solution. Using this result together with the
above a priori estimates from Lemma 3.7, we derive the following existence and uniqueness
result in the case of a general Lipschitz driver f(¢,vy, z, k).

Theorem 4.1 (Existence and uniqueness) Let ¢ be a process in S% and let f be a Lips-
chitz driver. The RBSDE with parameters (f,€) from Definition 2.3 admits a unique solution
(Y, Z,k,h,A,C) € S? x H? x H? x M>+ x §2? x §2.

Proof.  For each § > 0, we denote by B% the Banach space S? x IH? x IH? which we
equip with the norm H(-,-,-)Hgg defined by ||(Y, Z, k:)||%% = |HY|H% + HZH% + ||l<:|]?,57 for
(Y, Z, k) € 8% x H? x IH2. We define a mapping ® from Bg into itself as follows: for a given
(y,z,10) € Bg, we set ®(y, z,1) := (Y, Z, k), where Y, Z, k are the first three components of the
solution (Y, Z, k, h, A, C) to the RBSDE associated with driver process f(s) := f(s, ys, zs, ls)
and with obstacle £&. The mapping ® is well-defined by Theorem 3.1. Using the a priori
estimates from Lemma 3.7 and similar computations as those from the proof of Theorem
3.4 in [17], we derive that ® is a contraction for the norm || HB?,' By the fixed point theorem

in the Banach space Bg,, the mapping ® thus admits a unique fixed point, which corresponds
to the unique solution of the RBSDE with parameters (f,&). O

Remark 4.1 In [27], the above existence and uniqueness result is shown in a Brownian
framework by using a penalization method. Our approach provides an alternative proof of
this result.
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We now provide a useful property of the solution of an RBSDE, which will be used in
the sequel.

Lemma 4.1 (£/-martingale property of Y) Let £ be a process in S% and let f be a
Lipschitz driver. Let (Y, Z,k, h, A, C) be the solution to the reflected BSDE with parameters
(f,€) as in Definition 2.3. For each S € Tor and for each € > 0, we set

(4.1) ¢ =inf{t > 5.,Y; <&+ ¢}

The process (Y;) is an ' -martingale on [S, 7E].

Proof: The proof in our case of a general filtration is identical to that of Lemma 4.1
(statement (i7)) in [17] and is given here for the convenience of the reader®. By definition
of 7§, we have: for a.e. w € Q, for all t € [S(w),75(w)[, Yi(w) > &(w) + €. Hence, by
the Skorokhod condition for A, we have that for a.e. w € Q, the function ¢ — Af(w)
is constant on [S(w),7§(w)[; by continuity of almost every trajectory of the process A€,
A¢(w) is constant on the closed interval [S(w),7§(w)], for a.e. w. Furthermore, (again by
the Skotokhod condition for A), for a.e. w € Q, the function ¢ — Af(w) is constant on
[S(w), 7&(w)[. Moreover, Yirz)- 2 §(r5)- +€ as., which implies that AACTIg =0 a.s. Finally,
for a.e. w € Q, for all t € [S(w), 7¢(w)], ACH(w) = C(w) — C;—(w) = 0; therefore, for a.e.
w e Q, for all t € [S(w),75(w)], AyCi—(w) = Ci(w) — C;—(w) = 0, which implies that,
for a.e. w € Q, the function t — C;_(w) is constant on [S(w),7§(w)[. By left-continuity
of almost every trajectory of the process (Cy—), we get that for a.e. w € 2, the function
t — Cy—(w) is constant on the closed interval [S(w), 7&(w)]. Thus, for a.e. w € €, the map
t — Ay(w) 4+ Cy—(w) is constant on [S(w), 7¢(w)]. Hence, Y is the solution on [S, 7] of the
BSDE associated with driver f, terminal time 7& and terminal condition Yz¢. The result
follows. 0

Remark 4.2 Note that in the case where £ is nonnegative, the above result holds true also
on the stochastic interval [S, 73], where A € (0,1) and 72 := inf{t > S : \Y; < &}. Note
that in the case of non-negative obstacle, we have also Y > 0 (as 'Y > £ > 0); hence,
NYr <Yr=~&r as and Té\ 1s finite a.s.

5. Optimal stopping with non-linear f-expectation: formulation of the prob-
lem. Let (&):c(o,r) be a process in S2. Let f be a Lipschitz driver. For each S € To.r, we

“We note that the proof of Lemma 4.1 (statement (ii)) in [17] does not require the assumption of r.u.s.c.

of &.
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define the value at time S by

(5.1) V(S) :=ess sup SL];’T(&).

TETs,T

We make the following assumption on the driver (cf., e.g., Theorem 4.2 in [38]).
Assumption 5.1 Assume that dP @ dt-a.e. for each (y, z, ki, k2) € R? x (L2)2,

f(ta Y, z, kl) - f(tv Y, z, kZ) 2 <0ij,2,k17k2 3 kl - k2>l/7

where 0 : [0, T] x Q@ x R? x (L2)? = L2 (w,t,y, 2, ki, k2) th’z’kl’b(w, Y is a PR BR?) @
B((L?)?)-measurable mapping, satisfying ||9?Zk1k2()||,, < C for all (y,z,k,k) € R? x
(L2)?, dP ®dt-a.e., where C is a positive constant, and such that eﬁ’zvh’@(e) > —1, for all
(y,2, k1, k) € R?2 x (L2)?, dP @ dt @ dv(e) — a.e.

The above assumption is satisfied if, for example, f is of class C! with respect to £ such
that V¢ f is bounded (in L2) and V¢ f > —1 (cf. Proposition A.2. in [9]).

We recall that under Assumption 5.1 on the driver f, the functional Egﬁ(-) is nonde-
creasing (cf. |38, Thm. 4.2] and Remark 12.1).
As mentioned in the introduction, the above optimal stopping problem has been largely
studied: in [14], and in [3], in the case of a continuous pay-off process &; in [39] and
[1] in the case of a right-continuous pay-off; and recently in [17] in the case of a right-
uppersemicontinuous pay-off process &. In this section, we do not make any regularity
assumptions on & (cf. also Remark 2.2).
If we interpret € as a financial position process and —&7(-) as a dynamic risk measure
(cf.,e.g., [36], [40]), then (up to a minus sign) V(S) can be seen as the minimal risk at
time S. As also mentioned in the introduction, the absence of regularity allows for more
flexibility in the modelling. If, for instance, we consider a situation where the jump times
of the Poisson random measure model times of default (which, being totally inaccessible,
cannot be foreseen), then, the complete lack of regularity allows to take into account an
immediate non-smooth, positive or negative, impact on ¢ after the default occurs.
If we interpret & as a payoff process, and £/(-) as a non linear pricing rule, then the optimal
stopping problem (5.1) is related to the (non linear) pricing problem of the American option
with payoff €. The absence of regularity allows us to deal with the case of American options
with irregular payoffs, such as American digital options (cf. Section 11.1 for details). On the
other hand, the fact that the filtration is not necessarily the natural filtration associated
with W and N allows to incorporate some additional information in the modelling (such
as, for example, default risks or other economic factors).
We begin by addressing the simpler case where the payoff is assumed to be right w.s.c. This
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preliminary study of the right u.s.c. case will allow us to establish an £f-Mertens decom-
position for strong £/-supermartingales with respect to a general filtration (extending the
existing results from the literature; cf. [4] and [17]). This will be an important result for the
treatment of the non-linear optimal stopping problem in the case of a completely irreqular
pay-off.

6. Optimal stopping with non-linear f-expectation: the right u.s.c. case. Let
f be a Lipschitz driver satisfying Assumption 5.1. The following result relies crucially on
an assumption of right-uppersemicontinuity of &.

Lemma 6.1 Let ¢ be a process in S?, supposed to be right u.s.c. Let (Y, Z,k, h, A, C) be the
solution to the reflected BSDE with parameters (f,€) as in Definition 2.3. Let S € Tor and
let e > 0. Let 75 be the stopping time defined by (4.1), that is, 7 :=inf{t > S|V, < & +¢€}.
We have

(6.1) Yie < &z te as.

Proof: The proof of this result in our case of a general filtration is identical to that from [17,
Lemma 4.1(i)] in the case of a Brownian-Poisson filtration. We give again the arguments
here in order to emphasize the important role of the right-uppersemicontinuity assumption
on &. By way of contradiction, we suppose P(YTg > &g +¢) > 0. By the Skorokhod condition
for C, we have AC;s = Crz — C(Tg), = 0 on the set {Y7z > &< +¢}. On the other hand,
due to Remark 2.3, ACrs = Yre — V(o)1 Thus, Yre = Y(;2y, on the set {Yre > &s + €}
Hence,

(6.2) AY(re)+ > &g on the set {Yre > &e + e}

We will obtain a contradiction with this statement. Let us fix w € Q. By definition of 7§(w),
there exists a non-increasing sequence (t,,) = (t,(w)) | 75(w) such that Y (w) < &, (w) +e,
for all n € IN. Hence, limsup,,_,. Y%, (w) < limsup,,_, &, (w) + . As the process £ is
right-uppersemicontinuous , we have limsup,,_,o &, (w) < &¢(w). On the other hand, as
(tn(w)) ¥ 7§(w), we have imsup, o Y3, (W) = Y(7z)1 (w). Thus, Yire), (w) < &g(w) + &,
which is in contradiction with (6.2). We conclude that Y7s < &¢ + € a.s. O

With the help of the previous lemma together with Lemma 4.1, we derive the following
result.

Theorem 6.1 (Characterization theorem in the r.u.s.c. case) Let (&):c(0,1) be a pro-
cess in 8%, supposed to be right w.s.c. Let (Y, Z, k,h, A,C) be the solution to the reflected
BSDE with parameters (f,€) as in Definition 2.35.
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e For cach stopping time S € Ty, we have ®

(6.3) Ys = ess sup 53;7(57) a.s.
T€Tsr

e Moreover, the stopping time 7 defined by (4.1), that is, 75 = inf{t > S, V; < & + ¢},
satisfies

(6.4) Yg < 5§T§(§T§)+Ls a.s.

where L is a constant which only depends on T and the Lipschitz constant K of f.
In other words, 7§ is an Le-optimal stopping time for problem (6.3).

Proof: The arguments are classical. Let us show the inequality (6.4). Since by Lemma 4.1,
the process (Y;) is an £/-martingale on [S, 75|, we get Yg = 5§,T§(YT§) a.s. Since ¢ is right
u.s.c., we can apply Lemma 6.1. Using this, the monotonicity property of the conditional
f-expectation and the a priori estimates for BSDEs (cf. [38] which still hold in our case of

a general filtration), we derive that
Vs =L (Vie) <&l .(6rs4+6)<EL (&) 4+ Le as
5r5Hrg) S €502 (8rg < E5c(&rg 8.

where L is a positive constant depending only on 7' and the Lipschitz constant K of the
driver f; this gives the desired inequality (6.4). Moreover, as € is an arbitrary nonnegative
number, we get Yg < esssup erg . Séﬁ(&) a.s.

It remains to show the converse inequality. Let 7 € Tg 7. By Lemma 12.2 in the Appendix,
the process (V;) is a strong &/-supermartingale. Hence, for each 7 € Tgr, we have Yg >
Eé’T(YT) > Sgﬁ(f.,) a.s., where the second inequality follows from the inequality Y > &
and the monotonicity property of £7(-) (with respect to terminal condition). By taking the
supremum over 7 € Tg, we get Yg > ess SUPreTg 1 Egﬁ (&) a.s. We thus derive the desired
equality (6.3), which completes the proof. O

We now investigate the question of the existence of optimal stopping times for the optimal
stopping problem (6.3). We first provide an optimality criterion.

Lemma 6.2 (Optimality criterion) Let (£,0 <t < T) be a process 5 in S? and let f
be a predictable Lipschitz driver satisfying Assumption 5.1. Let S € Tor and 7° € Tgr.

®In other words, the process (Y;) aggregates the value family (V(S),S € 7o) defined by (5.1), that is
Ys =V(S) as. for all S € To,r.

5Let us emphasize that this optimality criterion holds true without an assumption of right-
upppersemicontinuity of the process &.
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IfY s a strong Ef -martingale on [S,7*] with Yo« = &+ a.s., then the stopping time T* is
optimal at time S (i.e. Yo = 5§ (&) a.s.). The converse statement also holds true, if, in
addition, the inequality from Assumption 5.1 is strict (that is, szhb > —1).

Proof: The proof of this result in the case of a Brownian-Poisson filtration can be found
in |17, Proposition 4.1 |. The proof in our case of a general filtration is identical and is
therefore omitted. 0

We now show that if £ is assumed to be r.u.s.c. and also l.u.s.c. along stopping times,
then there exists an optimal stopping time.
Let S € Tp. Let us recall the definition of 75 from before:

¢ :=inf{t > S,Y; <& + ¢}

We notice that 7§ is non-increasing in €. Let (g,) be a non-increasing positive sequence
converging to 0. We set

Tg:= lim 175"
n—oo

The random time 7g is a stopping time in Tg.
We also set
79 :=1inf{t > SY; = &}.
We notice that 75" < Tg a.s. for all n. Hence, by passing to the limit, we get 7g < Tg a.s.
In the following theorem we show that, under the additional assumption that & is l.u.s.c.
along stopping times, the stopping time 7g is an optimal stopping time at time S. We also
show that the stopping times 7g and TSO coincide.

Theorem 6.2 (Existence of optimal stopping time) Let (§,0 <t <T) be an r.u.s.c.
process in S% and let f be a predictable Lipschitz driver satisfying Assumption 5.1. We
assume, in addition, that (&) is lu.s.c. along stopping times. Then, the stopping time Ts
is S-optimal, in the sense that it attains the supremum in (6.3). Moreover, Tg = Tg a.s.

Proof: As (&) is l.u.s.c. along stopping times, we have

(6.5) limsup & en < &7 as.

n—oo

By applying Fatou’s lemma for (non-reflected) BSDEs (cf. Lemma A.5 in [11] 7), we obtain

(6.6) h’rrzn—?olip SL];T? (ngn) < ngs(li?rlri)sgp ffgn) < Eg’%s (&) as.,

"Note that Fatou’s lemma for (non-reflected) BSDEs, shown in [11] in the case of a Brownian-Poisson
filtration, still holds true in our framework of a general filtration.
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where the last inequality follows from (6.5) and from the monotonicity of 53;%('). On the

other hand, from Eq. (6.4) in Theorem 6.1, we have Yg < limsup,,_, c‘fg Len
Ts

this, together with (6.6), we get Yy < ng%S (5%5) a.s., which shows that 7g is an optimal

(ngn) a.s. From

stopping time.

Let us now prove the equality 79 = Té a.s. We have already noticed that 79 < 7‘51~ a.s. It
remains to show the converse inequality. Note that for each S € Ty 1, Ys is equal a.s. to the
value at time S of the linear optimal stopping problem associated with the pay-off process
(&) and the instantaneous reward process (f;) defined by f;(w,t) := f(w,t, Y (w), Zi(w), kt(w)),
that is

-
(6.7) Ys = esssup E[¢, -l-/ fudu | Fs] a.s..

TETs,T S
It is not difficult to see that 7g is also optimal for this linear optimal stopping problem.
Now, from classical results on linear optimal stopping, Tg is the minimal optimal stopping

time for problem (6.7); hence, we have 7g > Tg a.s., which completes the proof.
O

Proposition 6.1 Let (£,0 <t <T) be an r.u.s.c. process in S% and let f be a predictable
Lipschitz driver. We assume, in addition, that (&) is lu.s.c. along stopping times. Let
(Y, Z,k,h, A, C) be the solution to the reflected BSDE with parameters (f,€) as in Definition
2.8. Then, the process A is continuous.

Proof: Given the solution (Y, Z, k,h, A, C) to the reflected BSDE with parameters (f, &),
we define the process f by

f(w7t> = f(w7t7 Y;f—(w% Zt(w>v kt(“))'

The process f is a predictable process in IH2. From the definition of f and from Definition
2.3, we see that (Y, Z,k, h, A,C) is the solution of the RBSDE with driver process f and
obstacle £. By Theorem 3.1 (on RBSDEs with given driver process and linear optimal
stopping), we have that, for all S € Ty,

-
(6.8) Ys = esssup E[¢, -l-/ fudu | Fs] a.s.,
TG'KS,T S
which is equivalent to Yg + fOS fudu = ess sup,ers . Bl + [ fudu | Fs] a.s.
From results on classical optimal stopping with linear expectations, we deduce that A is
continuous, as (&) is r.u.s.c. and l.u.s.c. along stopping times (cf., e.g., Proposition B.10 in
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[28] &). O

7. £f-Mertens decomposition of strong £f-supermartingales with respect to
a general filtration. By using the above characterization of the solution of the RB-
SDE with an r.u.s.c. obstacle as the value function of the non-linear optimal stopping
problem (5.1) (cf. Theorem 6.1), we derive an £f-Mertens decomposition of strong &£f-
supermartingales, which generalizes the one provided in [17] (cf. Theorem 5.2 in [17]) to
the case of a general filtration.”

As mentioned before, this is an important property in the present work which will allow
us to address the non-linear optimal stopping problem in the completely irregular case (cf.
Section 9.3, more precisely the proof of Proposition 9.1, and also Theorem 10.1).

Theorem 7.1 (£/-Mertens decomposition) Let (Y;) be a process in S%. Let f be a
Lipschitz driver satisfying Assumption 5.1. The process (Y;) is a strong T -supermartingale
if and only if there exists a nondecreasing right-continuous predictable process A in S? with
Ag = 0 and a nondecreasing right-continuous adapted purely discontinuous process C in S?
with Co_ = 0, as well as three processes Z € H?, k € H2 and h € M>L, such that a.s. for
all t € 10,7,

(7.1) —dY; = f(t,Y;,Zt,kt)dt+dAt+dCt_—thWt—/ ky(e)N(dt,de)—dh,, 0<t<T.
FE

This decomposition is unique. Moreover, a strong Ef—supermartingale 18 necessarily r.u.s.c.

Proof: Assume that (V;) is a strong £/-supermartingale. By the same arguments as in [17]
(cf. Lemma 5.1 in [17]), it can be shown that the process (Y};) is r.u.s.c. Let S € Ty. Since
(Y;) is a strong £f-supermartingale, we derive that for all 7 € Tg, we have Yg > 5£7.,(Y7)
a.s. We get Yg > esssup, ¢ ELJ;’T(YT) a.s. Now, by definition of the essential supremum,
Ys < esssup,er; 5§7T(YT) a.s. because S € Tg. Hence, Y5 = esssup,cr, Eg,T(YT) a.s. By
Theorem 6.1, the process (Y;) coincides with the solution of the reflected BSDE associated
with the (r.u.s.c.) obstacle (Y;), and thus admits the decomposition (7.1).

The converse follows from Lemma 12.2 in the Appendix. O

8. Optimal stopping with non-linear f-expectation in the completely irregu-
lar case: the direct part of the approach. We now turn to the study of the non-linear

®Note that Proposition B.10 in [28] also holds true in the case where the reward process is not necessarily
nonnegative.

9An &7-Mertens decomposition was also shown in [4] (at the same time as in [17]) in the case of a driver
f(t,y, z) which does not depend on £ by using a different approach.
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optimal stopping problem (5.1) in the more difficult case where (&) is completely irregular.
Since the process (&) is not r.us.c., the inequality Yz < & + ¢ (i.e. inequality (6.1))
does not necessarily hold (not even in the simplest case of linear expectations; cf., e.g.,
[12]). This prevents us from adopting here the approach used in the r.u.s.c. case to prove
an infinitesimal characterization of the value of the non-linear optimal stopping problem
in terms of the solution of an RBSDE. Thus, when £ is completely irregular, we have to
proceed differently. We use a combined approach which consists in a direct part and an
RBSDE-part. This section is devoted to the direct part of our approach to the non-linear
optimal stopping problem (5.1).

8.1. Preliminary results on the value family. Let us first introduce the definition of an
admissible family of random variables indexed by stopping times in 7o 7 (or 7o r-system in
the vocabulary of Dellacherie and Lenglart [6]).

Definition 8.1 We say that a family U = (U(7), 7 € Tor) is admissible if it satisfies the
following conditions

1. forall € Tor, U(T) is a real-valued F,-measurable random variable.

2. forallT,7 € Tor, U(T) =U(7") a.s. on {7 =1'}.

Moreover, we say that an admissible family U is square-integrable if for all 7 € Tor,
U(7) is square-integrable.

Lemma 8.1 (Admissibility of the family V') The family V = (V(S),S € Tor) defined

in (5.1) is a square-integrable admissible family.

Proof: The proof uses arguments similar to those used in the "classical" case of linear
expectations (cf., e.g., [31]), combined with some properties of f-expectations.

For each S € Ty 1, V(S) is an Fg-measurable square-integrable random variable, due to the
definitions of the conditional f-expectation and of the essential supremum (cf. [34]). Let
us prove Property 2 of the definition of admissibility. Let S and S’ be two stopping times
in Tor. We set A := {S = 5’} and we show that V(S) = V(S5’), P-a.s. on A. For each
T € Tsr, weset 74 := 714 +T14e. We have 74 > S’ a.s. By using the fact that S = 5" a.s.
on A, the fact that 74 = 7 a.s. on A, and a standard property of conditional f-expectations
(cf., e.g., Proposition A.3 in [19] which can be extended without difficulty to the framework
of general filtration), we obtain

1aE8L (6] = 148l &) = €L 7 [6:14) = EL 714 €, 1a) = 14EL,  [62,] < 1aV(S),

where f7(t,y, 2, k) :== f(t,y, 2z, K)1{1<;}- By taking the esssup over 751 on both sides, we
get 14V (S) < 14V(S"). We obtain the converse inequality by interchanging the roles of S
and S’.
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O

Lemma 8.2 (Optimizing sequence) For each S € Tor, there exists a sequence (Tp)neN
of stopping times in Tsr such that the sequence (é’g 7. (67, ))nen is mondecreasing and

V(S) =limy o0 T €L (&5,) aus.

Proof: Due to a classical result on essential suprema (cf. [34]), it is sufficient to show that,
for each S € Tor, the family (€5, (¢-), 7 € Tsr) is stable under pairwise maximization.

Let us fix S € Tor. Let 7 € Tgr and 7" € Tg 1. We define A := {Sg,T,(fT/) < 5§7T(§T)} and
v:=71g+7"14.. We have A € Fg and v € Tg . We compute 1A5§,u(fv) = Eé’uTlA(gl,lA) =
SéfleA (&:14) = 1,455,7({7) a.s. Similarly, we show lAcgg’V(ﬁl,) = lACSKJ;T, (&). Tt follows
that &f,(6,) = &L (&) 1a+ EL (&) Lae = L (&-)V EL (&), which shows the stability
under pairwise maximization and concludes the proof. (|

Definition 8.2 (£f-supermartingale family) An admissible square-integrable family U :=
(U(S), S € Tor) is said to be an E/ -supermartingale family if for all S, S e To,r such that
S<S as., &L, (US)) <U(S) as.

Definition 8.3 (Right-uppersemicontinuous family) An admissible family U := (U(S), S €
Tor) is said to be a right-uppersemicontinuous (along stopping times) family if, for any

(Tn) nonincreasing sequence in Tor and any T in Tor such that T = lim | 7,, we have

U(r) > limsup,,_,., U(m,) a.s.

Lemma 8.3 LetU := (U(S), S € Tor) be an &' -supermartingale family. Then, (U(S), S €
To.r) is a right-uppersemicontinuous (along stopping times) family.

Proof: Let 7 € 7o and let (7,) € 76”% be a nonincreasing sequence of stopping times
such that lim, 44007y = 7 as. and for all n € IN, 7, > 7 a.s. on {7 < T}, and such
that lim, o U(7,) exists a.s. As U is an &f -supermartingale family and as the sequence
(7,,) is nonincreasing, we have &, (U(r,)) < 87]—077”+1<U(Tn+1)) < U(r) a.s. Hence, the
sequence (&L, (U(7,)))n is nondecreasing and U(7) > lim 1 &L, (U(r,)). This inequality,
combined with the property of continuity of BSDEs with respect to terminal time and
terminal condition (cf. [38, Prop. A.6] which still holds in the case of a general filtration)
gives
U(r)> lim &_(U(m) =& ( lim U(r)) = lim U(r,) as.

n——too TN > 'n—+o00 n——+o00
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By Lemma 5 of Dellacherie and Lenglart [6] '°, the family (U(S)) is thus right-uppersemicontinuous
(along stopping times). O

Theorem 8.1 The value family V = (V(S), S € Tor) defined in (5.1) is an £/ -supermartingale
family. In particular, V = (V(S), S € Tor) is a right-uppersemicontinuous (along stopping
times) family in the sense of Definition 8.35.

Proof: We know from Lemma 8.1 that V' = (V(5), S € To,r) is a square-integrable admis-
sible family. Let S € 7.7 and S € Tg . We will show that £ ¢, (V(S”)) < V(S) a.s., which
will prove that V is an £/-supermartingale family. By Lemma 8.2, there exists a sequence
(Tn)nen of stopping times such that 7,, > 5" a.s. and V(5’) = lim,,y00 1 Eg, 7. (6r,) as. By
using this equality, the property of continuity of BSDEs, and the consistenéy of conditional
f-expectation, we get

Es V() = Eo(lim t & (€)= lim o (EL,, (6,)) = lim &L (€,) < V(9.

Hence, V is an £f-supermartingale family. This property, together with Lemma 8.3, yields
that V' is a right-uppersemicontinuous (along stopping times) family. O

8.2. Aggregation and Snell characterization. Using the above results on the value family
V = (V(S), S € Tor), we show the following theorem, which generalizes some results of
classical optimal stopping theory (more precisely, the assertion (i) from Lemma 3.4) to the
case of an optimal stopping problem with f-expectation.

Theorem 8.2 (Aggregation and Snell characterization) There exists a unique right-
uppersemicontinuous optional process, denoted by (V})te[O’T], which aggregates the value fam-
iy V.= (V(S), S € Tor). Moreover, (Vi)iejo,r) s the E7-Snell envelope of the pay-off

process &, that is, the smallest strong E7 -supermartingale greater than or equal to €.

Proof: By Theorem 8.1, the value family V = (V(S), S € 7o r) is aright-uppersemicontinuous
family (or a right-uppersemicontinuous 7o 7-system in the vocabulary of Dellacherie-Lenglart
[6]). Applying Theorem 4 of Dellacherie-Lenglart (|6]), gives the existence of a unique (up to
indistinguishability) right-uppersemicontinuous optional process (W)te[o,T} which aggregates
the value family (V(S), S € Tor). From this aggregation property, namely the property
Vs = V(S) as. for each S € T 7, and from Theorem 8.1, we deduce that the process

'"The chronology © (in the vocabulary and notation of [6]) which we work with here is the chronology
of all stopping times, that is, © = To,; hence [0] = 0 = T 7.
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(Vi)tepo,r) is a strong &/-supermartingale. Moreover, we have Vg = V(S) > &5 a.s. for each
S € To.r, which implies that V; > &, for all t € [0,T7, a.s.

Let us now prove that the process (Vi)icor) is the smallest strong Ef-supermartingale
greater than or equal to &. Let (V{);c(o,7] be a strong E7-supermartingale such that V/ > &,
for all t € [0,T7], a.s. Let S € Tor. We have V! > &; a.s. for all 7 € Tg . Hence, 557(‘/7,) >

E é (&) a.s., where we have used the monotonicity of the conditional f-expectation. On the
otfler hand, by using the strong £f-supermartingale property of the process (V/ )tE[O,T]7 we
have V§ > SKJ;T(VT’) a.s. for all 7 € Tg 7. Hence, V§ > 557(57) a.s. for all 7 € Tg 7. By taking
the essential supremum over 7 € Tg r in the inequality, we get V§ > ess SUP; 75 4 557(57) =
V(S) = Vs a.s. Hence, for all S € Ty, we have V{ > Vg a.s., which yields that V/ > V;,
for all ¢ € [0, 71, a.s. The proof is thus complete. O

9. Non-linear Reflected BSDE with completely irregular obstacle and general
filtration: useful properties. Our aim now is to establish an infinitesimal characteriza-
tion for the non-linear problem (5.1) in terms of the solution of a non-linear RBSDE (thus
generalizing Theorem 3.1 from the classical linear case to the non-linear case). In order to
do so, we need to establish first some results on non-linear RBSDEs with completely irreg-
ular obstacles, in particular, a comparison result for such RBSDEs. This section is devoted
to these results (this is the RBSDE-part of our approach to problem (5.1)). The results
from this section extend and complete our work from [17], where an assumption of right-
uppersemicontinuity on the obstacle is made. Let us note that the proof of the comparison
theorem from [17] cannot be adapted to the completely irregular framework considered here;
instead, we rely on a Tanaka-type formula for strong (irregular) semimartingales which we
also establish.

Remark 9.1 (A "bottle-neck" of the direct approach) One might wonder whether the in-
finitesimal characterization for the non-linear optimal stopping problem (5.1) can be ob-
tained by pursuing the direct study of the value process (Vi) of problem (5.1), similarly to
what was done in the classical linear case in Sub-section 3.1. In the classical case, we applied
Mertens decomposition for (V;); then, we showed directly the minimality properties for the
processes A% and A° (cf. Lemmas 3.2 and 3.3) by using the martingale property on the inter-
val [S, 73] from Lemma 3.1(iii), which itself relies on Maingueneau’s penalization approach
(cf. also Remarks 8.3 and 3.2). In the non-linear case, Mertens decomposition is gener-
alized by the ET-Mertens decomposition (cf. Theorem 7.1). However, the analogue in the
non-linear case of the martingale property of Lemma 3.4[(iii)] (namely, the Ef -martingale
property) cannot be obtained via Maingueneau’s approach (not even in the case of nonnega-
tive & and under the additional assumption f(t,0,0,0) = 0 which ensures the non-negativity
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of £T) due to the lack of convexity of the functional E7.

9.1. Tanaka-type formula. The following lemma will be used in the proof of the compar-
ison theorem for RBSDEs with irregular obstacles. The lemma can be seen as an extension
of Theorem 66 of [37, Chapter IV] from the case of right-continuous semimartingales to the
more general case of strong optional semimartingales.

Lemma 9.1 (Tanaka-type formula) Let X be a (real-valued) strong optional semimartin-
gale with decomposition X = Xo+M+ A+ B, where M is a local (cadlag) martingale, A is a
right-continuous adapted process of finite variation such that Ag = 0, B is a left-continuous
adapted purely discontinuous process of finite vartation such that Bg=0. Let f : R — R
be a convex function. Then, f(X) is a strong optional semimartingale. Moreover, denoting
by f’ the left-hand derivative of the conver function f, we have

fXa) = f(Xo)+ | f(Xs)d(As + M)+ | f/(Xs)dBsy + Ky,
10,¢] [0,¢]

where K is a nondecreasing adapted process (which is in general neither left-continuous nor
right-continuous) such that

AKy = f(Xe) = f(Xem) = [(Xe)AXy and Ay Ky = f(Xey) — [(Xp) = f/(X) A Xe.

Proof: Our proof follows the proof of Theorem 66 of [37, Chapter IV] with suitable changes.
Step 1. We assume that X is bounded; more precisely, we assume that there exists N € IV
such that | X| < N. We know (cf. [37]) that there exists a sequence (f,,) of twice continuously
differentiable convex functions such that (f,,) converges to f, and (f},) converges to f’ from
below. By applying Gal’chouk-Lenglart’s formula (cf., e.g., Theorem A.3 in [17]) to f,(X}),
we obtain for all 7 € To 7

(9.1) fu(X7) = fu(Xo) + fT/L(XS—)d(AS + M) + frlz(Xs)st—i- + K7, a.s., where

10,7] [0,7[
(9.2)
K7 = Z [fn(XS) — fa(Xs—) — f;z(Xs—)AXs] + Z [fn(Xs—i—) — fn(Xs) — f’r/L(XS)A'i‘XS]
0<s<T 0<s<T
/ d(M°, M) a.s.
10,7]

We show that (K7') is a convergent sequence by showing that the other terms in Equation
(9.1) converge. The convergence jio . fH(Xs)d(As + M) — f’( _)d(As + M)
) n—oo
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is shown by using the same arguments as in the proof of [37, Thorem 66, Ch. IV]. The
convergence of the term f[O,T[ f1(Xs)dBsy, which is specific to the non-right-continuous
case, is shown by using dominated convergence. We conclude that (K7') converges and we
set K; := lim,_,oo K. The process (K;) is adapted as the limit of adapted processes.
Moreover, we have from Eq. (9.2) and from the convexity of f,, that, for each n, K[ is
nondecreasing in ¢. Hence, the limit K; is nondecreasing.

Step 2. We treat the general case where X is not necessarily bounded by using a localization
argument similar to that used in [37, Th. 66, Ch. IV]. O

9.2. Comparison theorem.

Theorem 9.1 (Comparison) Let & € §%, & € S? be two processes. Let f and f' be Lip-
schitz drivers satisfying Assumption 5.1. Let (Y, Z,k,h, A,C) (resp. (Y',Z',K' W', A",C"))
be the solution of the RBSDE associated with obstacle & (resp. ') and with driver [ (resp.
FIfe <&, 0<t<Tas and f(t,Y/,Z], k) < f'(t,Y/,Z},k;), 0 <t < T dP ® dt-a.s.,
then, Y <Y/, 0<t<T a.s.

Proof: We set E :}Q—Yg, Zt = Zt—Zé, E}t = kt—k‘é, /It = At—Aé, ét = C’t—Cé,
hy = hy — R, and f; = f(t, Y, Zy, ki) — f/(t,Y)_, Z/,k}). Then,
—dﬁ - ﬁdt + dzzlt + dC’t, - thWt - / E‘t(6)N(dt, de) - dﬁt, with YT = 0.
E _
Applying Lemma 9.1 to the positive part of Y;, we obtain

(9.3)
Yt =— / Ly, >0 ZsdWs — / / Liy._soyks(e)N (ds, de) — / Ly, soydhs
1t,7] t,T)JE 1t,1]
* / I{Ye_>0}fsds * / 1{Y5_>0}dA5 + / I{Ys>0}dés + (K — Kr).
1t,7] 1t,7] T
f(t,Y,_,Zz,kt)*f(t,Yt/_,Zt,kt) f(thz/—’Ztvkt)ff(t’Yt/—7Zl7ki)
We set d; := : - 1{3‘@,;&0} and f3; := Zi—27] : 1{Zt7é0}'

Due to the Lipschitz-continuity of f, the processes § and 3 are bounded. We note that f; =
515}7% + BtZt + f(Y;fl—7 Zi{’ kt) - f(Y;f/—v Zlg: ké) + Pt; where Yt = f(Y;f/—a Z){? k‘é) - f/(Y;fl—v Zé? kl/f)
Using this, together with Assumption 5.1, we obtain

(94) th < (Stﬁ + BtZt + <'7t , l_€t>l,, +pt 0<t< T, dP ® dt — a.e.,
Y21k ke i i
where we have set v; := 0, . For 7 € Tor, let I';. be the unique solution of the

following forward SDE dI'; 5 = FT,S_[(SSds—i—BSdWS—I—fE 'ys(e)N(ds, de)] with initial condition
(at the initial time 7) I'; ; = 1. To simplify the notation, we denote I'; s by I's for s > 7.
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By applying Gal’chouk-Lenglart’s formula to the product (I;Y,"), and by using that
(he, W) =0, we get

[4
F—,—YT+ — —(Mg - MT) - / FS(YS'E(;S —I— Zsl{}_/sf>()}165 - fsl{}_/S7>0})dS

¢ 0
(9_5) / Fs—l{y >0}dA + Z Fs_l{y >0}AA / FS_dKSC_/ Fs—ng’_

T<8<60 T

0
+/ Fsl{ys>0}d6_‘5—/ D dK % — Z AT AY.

T<s<0

where the process M is defined by M MW 4+ MN 4+ M with MV = fo l{Y >0}Z +

Y."Bs)dWs, and MY = [ [, s (ks(e)1y, woy+Ya vs(e))N(ds, de), and M} == [ Do Ly _soydhs.

Note that by classical arguments (Whlch use Burkholder-Davis-Gundy inequalities), the
stochastic integrals MW, MY and M" are martingales. Hence, M is a martingale (equal
to zero in expectation).

By definition of T', we have I'; = 1, which gives that I',Y.*¥ = Y.*. Moreover, we have
JP Ty 201dCs = [P Ti1iy 2 0ydCs — [P D1y 4ydCYL. For the first term, it holds
JIT1y 2dCs = 0. Indeed, {V, > 0} = {Y, > Y/} € {Y, > &} (as Y/ > &, >
&s). This, together with the Skorokhod condition for C' gives the equality. For the sec-
ond term, it holds —ff [s1iy,50ydC; < 0, as T' > 0 and dC’ is a nonnegative mea-
sure. Hence, ff Ts1(y,-0ydCs < 0. Similarly, we obtain ff Ts- 1y, s0ydAS < 0. Indeed,
fTH Ty 1y, ~qdAS = ff 51y SopdAs— ff FS_I{YS_>O}dA;F. For the first term, we have
fTe Ts 1y, ~qpdAS = 0. This is due to the fact that {Ys- > 0} = {Ys- >V} C {V;_ >
&} (as Y] > & > &, and hence Y/ > £,), together with the Skorokhod condition for A€.
For the second term, we have — ff FS,I{YS_>O}dA;F < 0. We also have — ff I\ dK: <0

and — ff rJadxdt <o. Hence,

6
V< — (M — M) —/ s(Vi20s + Zilyy, >0y = fslv,_sop)ds

T

(9.6)
+ > Tl oA, — / T dK$™ — > ATAY

T<5<0 T T<5<0

We compute the last term Y- __ ) AT AYF.
Let (ps) be the point process associated with the Poisson random measure N (cf. [8
VIII Section 2. 67], or [24, Section III §d]). We have ATy = T's_vs(ps) and AY,"
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_ — d,— T
1{Y57>0}k5<p5> — 1{{/37>0}AA5 + AKS + 1{)787>0}Ah5. Hence,

(9.7)
> ATAY =
T<8<6
= > Doy soprsoks(ps) = Y Toovs(ps)(Ly,_sqpAAs — AKST = Ly g Ahy)
7<5<0 T<5<60
[
_/ /EFS_l{YS>O}'yS(e)kS() (ds,de) = Y T vs(ps) (Lgy, sy AAs — AKS™ = 1y, L, Aby)

T<5<60

9 —
//F ~ly >0}'VS<) s(e)N (ds de) + /Fs—l{YS>O}<787kS>Vd3

- Z stl{f{g_>o}%(ps)AAs + Z st'Ys(ps)Astr + Z stl{Y9_>0}78(ps)ABs-
T<8<0 T<8<0 T<8<0
By plugging this expression in equation (9.6) and by putting together the terms in ”ds”,
the terms in ”ng’_”, and the terms in "AA,”, we get

(9.8)
0

Yj S_(MG_MT)_/ L (Y Os +Z 1{Y >0}ﬁs+1{Y >0}<’Ys, s> fsl{Y >0})d

T

+ Z FS_1{3757>0}(1+75(p5))AA5— Z FS—(l‘f”Ys(pS))AKg’_

T<5<6 T<5<60

— (Wt — 1 / b Tt e ds.de) .

where M, := fo I5 FS,I{YS_>0}'ys(e)ks~(e)N(ds,de). Note that by classical arguments (as
for M above), the stochastic integral M is a martingale, equal to zero in expectation.

We have — [P Do (Y 1y woy0s + Zlpy, woyBs + Ly oy (Vs Bshy — filgy, >0})ds <
ff Ds- 1y, soypsds, due to the inequality (9.4). The term — > _ Ty (147s(ps)) AKS™
is nonpositive, as 1 + v, > 0 by Assumption 5.1. The term > _ stl{f{g_>o}(1 +
vs(ps))AA, is nonpositive, due to 1 + v5 > 0, to the Skorokhod condition for AA, and
to AA, > 0 (the details are similar to those for dC' in the reasoning above). Since h
e M?*!L by Remark 2.1, we derive that the expectation of the last term of the above
inequality (9.8) is equal to 0. Moreover, the term ff F5_1{3757>0}<p5ds is nonpositive, as
ws = fY, ZL kL) — f/(Y), ZL, kL) <0 dP @ ds-a.s. by the assumptions of the theorem. We
conclude that E[Y,F] < 0, which implies Y, = 0 a.s. The proof is thus complete. O

Remark 9.2 Note that due to the irregularity of the obstacles, together with the presence
of jumps, we cannot adopt the approaches used up to now in the literature (see e.g. [15],

[5], [39] and [17]) to show the comparison theorem for our RBSDE.
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9.3. Non-linear operator induced by an RBSDE. Snell characterization. We introduce
the non-linear operator Reff (associated with a given non-linear driver f) and provide
some useful properties. In particular, we show that this non-linear operator coincides with
the £/-Snell envelope operator (cf. Theorem 9.2).

Definition 9.1 (Non-linear operator Ref/) Let f be a Lipschitz driver. For a process
(&) € 8%, we denote by Reff[€] the first component of the solution to the Reflected BSDE
with (lower) barrier & and with Lipschitz driver f.

The operator Ref/[] is well-defined due to Theorem 4.1. Moreover, Reff[] is valued in
SZruse where S2TU¢ .= {¢p € §? : ¢ is r.us.c.} (cf. Remark 2.3). In the following proposi-
tion we give some properties of the operator Ref/. Note that equalities (resp. inequalities)
between processes are to be understood in the "up to indistinguishability"-sense.

We recall the notion of a strong £/-supermartingale.

Definition 9.2 Let ¢ be a process in S%. Let f be a Lipschitz driver. The process ¢ is
said to be a strong g -supermartingale (resp. a strong Ef—martingale) L if E:T((;ST) < ¢o a.s.

(resp. 5;7(<b7) = ¢ a.5.) ono <7, forallo,7 € Tor.

Using the above comparison theorem and the £/-Mertens decomposition for strong
(raws.c.) & -supermartingales in the case of a general filtration (cf. Theorem 7.1), we show
that the operator Reff satisfies the following properties.

Proposition 9.1 (Properties of the operator Reff) Let f be a Lipschitz driver satis-
fying Assumption 5.1. The operator Reff : 82 — §274s¢_ defined in Definition 9.1, has the
following properties:

1. The operator Ref? is nondecreasing, that is, for &, € S% such that &€ < &' we have
Ref![e] < Ref/ €]

2. If € € 8% is a (r.u.s.c.) strong ET -supermartingale, then Ref/[¢] = €.

3. For each & € S%, Reff[€] is a strong £ -supermartingale and satisfies Reff[€] > €.

Proof: The first assertion follows from our comparison theorem for reflected BSDEs with
irregular obstacles (Theorem 9.1).

Let us prove the second assertion. Let ¢ be a (r.u.s.c.) strong £/-supermartingale in S2.
By definition of Reff, we have to show that ¢ is the solution of the reflected BSDE asso-
ciated with driver f and obstacle £. By the £f-Mertens decomposition for strong (r.u.s.c.)
Ef-supermartingales in the case of a general filtration (Theorem 7.1), together with Lemma
2.1, there exists (Z,k, h, A,C) € IH? x IH? x M?>+ x 82 x 82 such that
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—dgt == f(t, gt, Zt7 kt)dt - thWt - / kt(e)N(dt, de) - dht + ClAt + dCt_, 0 S t S T,
E

where A is predictable right-continuous nondecreasing with A9 = 0, and C is adapted
right-continuous nondecreasing and purely discontinuous, with Cy— = 0. Moreover, the
Skorokhod conditions (for RBSDEs) are here trivially satisfied. Hence, & = Ref7[¢], which
is the desired conclusion.

It remains to show the third assertion. By definition, the process Reff[¢] is equal to Y,
where (Y, Z,k,h, A, C) is the solution our reflected BSDE. Hence, Ref/[¢] = Y admits
the decomposition (7.1), which, by Theorem 7.1, implies that Ref/[¢] = Y is a strong
Ef-supermartingale. Moreover, by definition, Reff[ﬁ] =Y is greater than or equal to the
obstacle &. O

With the help of the above proposition, we show that the process Reff[f], that is, the
first component of the solution of the RBSDE with (irregular) obstacle &, is characterized
in terms of the smallest strong £/-supermartingale greater than or equal to &.

Theorem 9.2 (The operator Ref/ and the £/- Snell envelope operator) Let & be
a process in S? and let f be a Lipschitz driver satisfying Assumption 5.1. The first com-
ponent Y = Refl[£] of the solution to the reflected BSDE with parameters (€, f) coincides
with the £7-Snell envelope of &, that is, the smallest strong £f-supermartingale greater than
or equal to &.

Proof: By the third assertion of Proposition 9.1, the process ¥ = Reff[ﬁ] is a strong
Ef-supermartingale satisfying Y > &. Tt remains to show the minimality property. Let Y’
be a strong £f-supermartingale such that Y’ > ¢. We have Ref/[Y’] > Reff[¢], due to the
nondecreasingness of the operator Reff (cf. Proposition 9.1, 1st assertion). On the other
hand, Reff[Y’] = Y’ (due to Proposition 9.1, 2nd assertion) and Reff[¢] = Y. Hence,
Y’ > Y, which is the desired conclusion. O

In the case of a right-continuous left-limited obstacle £ the above characterization has been
established in [39]; it has been generalized to the case of a right-upper-semicontinuous
obstacle in [17, Prop. 4.4]. Let us note however that the arguments of the proofs given in
[39] and in [17] cannot be adapted to our general framework.

10. Infinitesimal characterization of the value process in terms of an RBSDE
in the completely irregular case. The following theorem is a direct consequence of



30 M. GRIGOROVA ET AL.

Theorem 9.2 and Theorem 8.2. It gives "an infinitesimal characterization" of the value
process (V4).e(o,r) of the non-linear problem (5.1).

Theorem 10.1 (Characterization in terms of an RBSDE) Let (&)cjo,r) be a pro-
cess in S? and let f be a Lipschitz driver satisfying Assumption 5.1. The value process
(Vi)iepo,r) aggregating the family V = (V(S), S € Tor) defined by (5.1) coincides (up to
indistinguishability) with the first component (Y;)icpo1) of the solution of our RBSDE with
driver f and obstacle . In other words, we have, for all S € To 1,
(10.1) Yg = Vg =ess sup gg,r(&) a.s.
T€Ts, T

By using this theorem, we derive the following corollary, which generalizes some results of
classical optimal stopping theory (more precisely, the assertions (ii) and (iii) from Lemma
3.4) to the case of an optimal stopping problem with (non-linear) f-expectation.

Remark 10.1 Let us summarize our two-part approach to the non-linear optimal stopping
problem (5.1) in the case where £ is completely irregular: First, we have applied a direct
approach to the problem (5.1), which consists in showing that the value family (V (S))se7; r
can be aggregated by an optional process (Vi)icjo,r) and, then, in characterizing (Vi) as the
ET-Snell envelope of the (completely irreqular) pay-off process (&). On the other hand, we
have applied an RBSDE-approach which consists in establishing some results on RBSDFEs
with completely irregular obstacles (in particular, existence, uniqueness, and a comparison
result) and some useful properties of the operator Ref!, 11 and then in using these properties
to show that the unique solution (Y;) of the RBSDE is equal to the Ef-Snell envelope of the
completely irregular obstacle. We have then deduced from those two parts (the direct part and
the RBSDE-part) that (Y;) and (Vi) coincide, which gives an infinitesimal characterization
for the value process (V).

Finally, let us put together some of the results for the non-linear optimal stopping problem
(5.1):
i) e For any reward process £ € S?, we have the infinitesimal characterization
Vi=Y = Reftf[ﬂ, for all ¢, a.s. (Theorem 10.1).
e Also, (Vi)iepo,1) is the E7-Snell envelope of the pay-off process ¢ (Theorem 8.2).
ii) If, moreover, ¢ is right-u.s.c., then, for any S € 7o 7, for any € > 0, there exists an Le-
optimal stopping time for the problem at time S. (Theorem 6.1).
iii) If, moreover, ¢ is also left-u.s.c. along stopping times, then, for any S € 7o, there
exists an optimal stopping time for the problem at time S (Theorem 6.2).

'We emphasize that the proof of these properties (cf. Proposition 9.1) relies heavily on the &f-Mertens
decomposition for strong Sf-supermartingales (cf. Theorem 7.1), which is obtained as a direct consequence
of the preliminary result (Theorem 6.1) established in the r.u.s.c. case.
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11. Applications of Theorem 10.1.

11.1. Application to American options with a completely irregular payoff. In the follow-
ing example, we set E := R, v(de) := A1 (de), where A is a positive constant, and where d;
denotes the Dirac measure at 1. The process Ny := N([0,¢] x {1}) is then a Poisson process
with parameter A, and we have Ny := N([0,1] x {1}) = N; — At.

We assume that the filtration is the natural filtration associated with W and N.

We counsider a financial market which consists of one risk-free asset, whose price process
SY satisfies dSY = SPr,dt, and two risky assets with price processes S, S? satisfying:

dS} = St [ptdt + ofdW, + BLANY);  dS? = S2 [p2dt + o2dW; + B2AN).

We suppose that the processes o', 02, B, 52, r, u', u? are predictable and bounded, with
Bi > —1fori=1,2. Let p; := (u*, u?)" and let Xy := (o, B;) be the 2 x 2-matrix with first
column oy := (o}, 0?)" and second column B; := (8}, 7). We suppose that ¥; is invertible
and that the coefficients of 3, L are bounded.

We consider an agent who can invest his/her initial wealth 2 € R in the three assets.

For i = 1,2, we denote by ¢! the amount invested in the i** risky asset. A process
© = (o, ¢?) belonging to H? x H2 will be called a portfolio strategy.

The value of the associated portfolio (or wealth) at time ¢ is denoted by X;"? (or simply

by X3). In the case of a perfect market, we have
dXy = (reXe + oy (g — o) + 97 (i —r0))dt + (pyo) + @fot)dWs + (91 B; + i B} )dN,
= (re Xy + @i (e — rel))dt + Qo dWy + @ Bid Ny,
where 1 = (1,1)". More generally, we will suppose that there may be some imperfections
in the market, taken into account via the nonlinearity of the dynamics of the wealth and
encoded in a Lipschitz driver f satisfying Assumption 5.1 (cf. [14] or [10] for some examples).

More precisely, we suppose that the wealth process X;*¥ (also X;) satisfies the forward
differential equation:

(11.1) —dXy = f(t, Xy, 0/ 00,00 Br)dt — /' o dWy — @i Bid Ny, 3 Xo = w,
or, equivalently, setting Z; = ¢/ 0y and k; = ¢/,
(11.2) —dX; = f(t, Xy, Zy, ky)dt — ZydWy — kydNy; Xo = x.

Note that (Z, ki) = @i/, which is equivalent to ¢,/ = (Zy, kt) E;l.
This model includes the case of a perfect market, for which f is a linear driver given by
f(ta Y, z, k) = =Ty — (Z’ k) E;l(l‘t - Tt].)-
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Remark 11.1 Note that the wealth process X*% is an Ef-martingale, since X% is the
solution of the BSDE with driver f, terminal time T and terminal condition X7%¥.

Let us consider an American option associated with terminal time T and payoff given
by a process (&) € S2. As is usual in the literature, the option’s superhedging price at time
0, denoted by ug, is defined as the minimal initial wealth enabling the seller to invest in a
portfolio whose value is greater than or equal to the payoff of the option at all times. More
precisely, for each initial wealth z, we denote by A(x) the set of all portfolio strategies ¢ €
H? x H2 such that X, > &, for all t € [0,T] a.s. The superhedging price of the American
option is thus defined by

(11.3) ug = inf{z € R, Jp € A(x)}."*

Using the infinitesimal characterization of the value function (5.1) (cf. Theorem 10.1), we
show the following characterizations of the superhedging price ug, as well as the existence
of a superhedging strategy.

Proposition 11.1 Let (&) be an optional process such that Elesssup, o7 &%) < oo.
(1) The superhedging price ug of the American option with payoff (&) is equal to the value
Junction V(0) of our optimal stopping problem (1.1) at time 0, that is

(11.4) up = sup S&T(&).

TG%,T
(1) We have ug = Yy, where (Y, Z, k,h, A,C) is the solution of the reflected BSDE (2.3)
(with h =0).
(i) The portfolio strategy , defined by py' = (Zi, ki) B7 ', is a superhedging strategy, that
is, belongs to A(ug).

In the case of a perfect market (for which f is linear) and a regular pay-off, the above result
reduces to a well-known result from the literature (cf. [20]). Even in the case of a perfect
market, our result for a completely irregular pay-off is new.

Proof: The proof relies on Theorem 10.1 and similar arguments to those in [10]| (in the
case of game options with RCLL payoffs and default). Note first that, by Theorem 10.1,
we have sup.er; . 5({7(57) = Yp. In order to prove the three first assertions of the above
theorem, it is thus sufficient to show that ug = Yy and ¢ € A(Yp).

We first show that ¢ € A(Yp). By (11.2), the value X Yo% of the portfolio associated with
initial wealth Y{ and strategy ¢ satisfies:

12As shown in assertion (iii) of Proposition 11.1, the infimum in (11.3) is always attained.
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dX)0% = —f(t, X}0%, Zy, k;)dt + dM;, with initial condition X)*? = Y,, where M; :=
fg ZdW + fg ksdN,. Moreover, since Y is the solution of the reflected BSDE (2.3) (with
h = 0), we have dY; = —f(t,Ys, Zy, ky)dt + dMy — dAy — dCy—. Applying the comparison
result for forward differential equations, we derive that XtY 09 >y, forallte [0,T] a.s.
Since Y; > &, we thus get XtYO’“Z’ > & for all t € [0,T] a.s. It follows that ¢ € A(Yp).

We now show that Yy = up. Since ¢ € A(Yp), by definition of ug (cf. (11.3)), we derive
that Yy > wug. Let us now show that ug > Yy. Let z € R be such that there exists a strategy
¢ € A(z). We show that x > Y{. Since ¢ € A(z), we have X;"¥ > &, for all t € [0,T]
a.s. For each 7 € T we thus get the inequality X;7¥ > & a.s. By the non decreasing
property of £/ together with the £/-martingale property of X®% (cf. Remark 11.1), we
thus get z = E&T(Xf"p) > 5({7(57). By taking the supremum over 7 € Ty, we derive that
T > SUP e7; 1 &{T(é}) =Yy, where the equality holds by Theorem 10.1. By definition of wug
as an infimum (cf (11.3)), we get ug > Yp, which, since Yy > g, yields that uy = Yp. O

We now give some exampl