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Behaviour of impact oscillator with soft and preloaded stop

Frantis�sek Peterka

Institute of Thermomechanics, Academy of Sciences of the Czech Republic Dolejss�kova 5, 182 00 Prague 8, Czech Republic 

New phenomena of the dynamics of oscillators with impacts, when the stiffness of the stop changes from zero to

infinity, are described. Dynamics of one example of the system with soft impacts, as the model of the piercing machine,

is explained in more detail by bifurcation diagrams, time series, phase trajectories and Poincar�ee maps of periodic and

chaotic impact motions. Optimal combinations of system parameters are found for the obtaining of maximum before-

impact velocities.

1. Introduction

This work considers the dynamics of oscillators with soft impacts, see Fig. 1(b). Soft in this context is used for

impacts where the duration of impact is impossible to neglect, unlike the �rigid� impact described by the Newton ele-

mentary theory with coefficient of restitution, see Fig. 1(c). The transition from the linear oscillator (Fig. 1(a)) into

oscillator with rigid impacts can be accomplished by means of this conception, when the stiffness k2 changes in interval

06 k2 61. The dynamics of both boundary cases is well known [4].

There exist a large variety of mathematical models of soft impacts (e.g. schemes in Fig. 2, where F denotes the

contact force in dependence on deformation of the soft stop) corresponding to real practical situation. Some of them

were studied, e.g. the Kelvin–Voigt model (Fig. 2(a)) in [1], [12] or [2], the piecewise linear model (Fig. 2(b)) in [13,14]

and the Hertz model (Fig. 2(c)) in [15,16].

Results obtained were generalised in [8] and the influence of the hardening of impacts (k2 increases from zero to

infinity) can be expressed as it follows.

(1) The birth of non-linear phenomena on grazing boundary, where impacts appear in impact-less motion. No hyster-

esis regions exist for small values of the stop spring stiffness k2 (Fig. 2(a) and (b)).

(2) Regions of subharmonic and chaotic impact motions become wider and develop from grazing boundary.

(3) Transition across grazing boundary from impact-less into impact motion is continuous and reversible for motion

with soft impacts and very narrow region of impact motion with one weak impact per cycle exists along this bound-

ary. Nevertheless hysteresis region of impact motion into impact-less motion region exists. It is caused by the ex-

istence of saddle-node stability boundary, where the regime with weak impact jumps into the same regime with

stronger impact. Only this motion exhibits hysteresis phenomenon.

(4) The structure of fundamental and subharmonic impact motions does not depend considerably on the model of soft

impact.
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(5) Regions of existence and stability of periodic subharmonic impact motions, beginning from a certain order, lie only

over the grazing bifurcation boundary. Their appearance is conditioned by a special selection of initial conditions of

the system motion.

One application of the oscillator with soft impacts is assumed in connection with the analysis of motion of a new

type of piercing machine. The model of deformation and dissipative characteristics of forming can be complex (Fig.

2(d)), but a simple model of soft impact with preloaded stop is shown to present when the machine is not supplied by

formed material. Then parts of the impact model (Fig. 2(d)) vanish and is characterized by a very small damping. The

response of forming machine on the periodic excitation can be therefore very diverse [3]. The comparison of the system

behaviour in working and discharged regime is introduced in the paper.

2. Mathematical model of piercing forces and system motion

The simulation of the piercing machine motion and the development of a model for soft impact interactions started

from experimentally ascertained piercing and dry friction forces (Fig. 2(d)). They were accomplished by components

corresponding to the design of a piercing tool (Fig. 3). It is prepared for the piercing of the chain link detail (Fig. 4)

from the thin sheet strip. The tool is inserted between moving bodies of the double impact oscillator [7] and sheet strip is

cut through by punches 1, 2, 3 (Fig. 3).

The detail is moved back using additional pre-stressed springs a, b and the push back 4. The chain link motion is

damped by friction force in cutting tool.

Fig. 2. Examples of force interactions during soft impacts.

Fig. 1. Scheme of transition from linear motion: (a) through motion with soft impacts; (b) into motion with rigid impacts; (c) of one

degree of freedom oscillator.
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Mathematical model of forming force F is composed from several parts (Fig. 5) corresponding to the compression

and tensile test (Fig. 2(d)) as well as additional springs a, b and rigid impacts, when clearances in the tool are taken up.

This model was reconstructed according to the piercing of the hole in the chain link.

Particular phases of mathematical model can be expressed in the form

Phase I

FI ¼
x� r
k1

ðk2 þ k3sign _xxÞ for r < x < r þ s: ð1Þ

Phase II

FIIþ ¼ s
10k1

ðk2 þ k3Þ ¼
s

10k1

ðFIÞmax for x > r þ s; ð2Þ

Fig. 3. Scheme of tool.

Fig. 4. Detail of a chain link.
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FII� ¼ � s
20k1

ðk2 þ k3Þ ¼ � s
20k1

ðFIÞmax for x > r þ s; ð3Þ

FII ¼
s

40k1

ðk2 þ k3Þð1 þ 3sign _xxÞ: ð4Þ

Phase III

FIII ¼ Fp þ
k4

k1

ðx� r � s� vÞ for r þ sþ v < x < r þ sþ vþ e; ð5Þ

Fp¼: 2FIIþ¼:
s

5k1

ðk2 þ k3Þ: ð6Þ

Phase IV

FIV ¼ 1; _xxþ ¼ �R _xx� for x ¼ r þ sþ vþ e; ð7Þ

where _xxþ and _xx� is post- and pre-impact velocity, respectively and R is coefficient of restitution (the Newton model of

impact).

Mathematical model of the impact oscillator (Fig. 1(b)) motion with forming force F is described by equation

m€xxþ b1 _xxþ k1xþ F ¼ F0 cosðxt þ uÞ: ð8Þ

It is solved using numerical simulation [5] after time s ¼ Xt and amplitude X ¼ x=xst transformations, where

X ¼
ffiffiffiffiffiffiffiffiffiffi
k1=m

p
is natural frequency of impact-less motion of the oscillator and xst ¼ F0=k1 is static deflection of mass m.

Results are shown in dependence on important dimensionless parameters g ¼ x=X and q ¼ r=xst. Different regimes of

impact motion are classified by quantity z ¼ p=n, where p is number of impacts and n is number of excitation force

periods T ¼ 2p=x in one period of impact motion. It means also mean number of impacts per one period T for the

chaotic motion.

3. Bifurcation diagrams and motion trajectories

There exist specific problems of the dynamics of impact oscillators, which can be explained by regions ðg; qÞ of

existence of different regimes of the impact oscillator.

More detail information of the practical importance is contained in bifurcation diagrams along sections of men-

tioned regions and in time series and phase trajectories of motion in specific points of plane ðg; qÞ.

Fig. 5. Mathematical model of piercing forces.
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Fig. 6 shows motion amplitudes XmðgÞ and before-impact velocities X 0
- ðgÞ of the impact motion (meaning of these

quantities is shown in Fig. 7) for series values of dimensionless clearance q ¼ 2; 6; 10; . . . ; 22 in frequency interval

(0:8 < g < 1:8) for constant dimensionless parameters

k2=k1 ¼ 21, k3=k1 ¼ 23, k4=k1 ¼ 7––stiffness of force F ,

b1 ¼ b1=2
ffiffiffiffiffiffiffiffi
mk1

p
¼ 0:02––viscous damping of impact-less motion,

b ¼ b=2
ffiffiffiffiffiffiffiffi
mk1

p
¼ 0:09––damping of motion during connection of impacting bodies,

r ¼ s=xst ¼ 0:4––width of pierced material,

r þ m=xst ¼ 0:9––displacement between start of piercing and preloaded stop,

e ¼ e=xst ¼ 5––displacement between start of the preloaded stop action and rigid stop (large value of e is assumed

here for exclusion of rigid impacts),

FIIþ=F0 ¼ rðk2 þ k3Þ=ð10k1Þ ¼ 1:76, FII�=F0 ¼ �rðk2 þ k3Þ=ð20k1Þ ¼ �0:88, Fp=F0 ¼ 10––constant values in

force F .

Fig. 6. Bifurcation diagrams of impact motion without (a) and with (b) piercing.
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Boundary g0 in Fig. 6 represents the frequency response of linear oscillator to periodic excitation. It is simulta-

neously grazing bifurcation boundary, where impactless motion transits into regime with impacts. The impact motion

should exist under boundary g0, where amplitudes of linear motion are higher then clearance q.

The transition cross boundary g0 is continuous under resonance of impact-less motion (g < 1) and different

periodic subharmonic and chaotic impact motions appear (0 < z < 1). These motions stabilise in z ¼ 1 motion on

period doubling bifurcation boundary sPD. On the other hand (1 < g < 2) periodic z ¼ 1 impact motion (Fig. 7) arises

by jump from impact-less motion and is stable up to its saddle-mode bifurcation boundary sSN. This periodic

regime is most important for a practical application and exists in large region between stability boundaries sPD and

sSN.

Hysteresis region between boundaries g0 and sSN therefore exists, where both impact-less and z ¼ 1 impact motion

can exist in dependence on motion initial condition, direction of the system parameters changes, etc.

Amplitudes of the system motion increases with increasing clearance q (Fig. 6), but there exist the optimum

clearance q for maximum before-impact velocities. Extreme amplitude Xm and before-impact velocity X 0
- appear near

stability boundary sSN. The motion stability measure, expressed e.g. by the Lyapunov exponent, has similar course [9],

so the more intensive impact motion is more resistant against disturbances or is more stable, nevertheless the estab-

lishing of extreme regime from motion initial conditions is difficult. The establishing certainty of z ¼ 1 impact motion in

hysteresis region increases from zero, on stability boundary sSN, to one on grazing boundary g0. It is proved by the

evaluation of basins of attraction [7]. It follows from this knowledge that the election of system parameters for practical

application of z ¼ 1 impact motion should be a compromise among several aspects and will correspond to some point in

the middle of hysteresis region, for example in points A and B ðg ¼ 1:15; q ¼ 10Þ of Fig. 6. Motion trajectories in points

A, B are shown in Fig. 7.

Figs. 6(a) and 7(a) correspond to the system motion with preloaded stop, without piercing, dry friction forces and

rigid impacts. Figs. 6(b) and 7(b) show similar results for assumed model of piercing (without rigid impacts). Hysteresis

region, motion amplitudes and before-impact velocities of regime with piercing are less in comparison with the regime

without piercing. It can be expected that motion disturbances, caused by the intermittent interruption of the formed

material supply, will not interrupt the regime of z ¼ 1 motion. Not all impact regimes are satisfactory strong for

piercing. Motion with piercing is indicated in Fig. 6(b) by couple of line segments for every clearance q. Longer and

shorter line corresponds to increasing and decreasing frequency g, respectively, which is also expressed by arrows on

line segments.

Fig. 7. Time series and phase trajectories of z ¼ 1 impact motion in points A, B of Fig. 6 for unloaded (a) and working (b) regime,

respectively.
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Small difference between working and unloaded regime is also shown on phase trajectories in Fig. 7. Sections DE
correspond to impacts with preloaded stop. Section X 0

-C and CD in Fig. 7(b) corresponds to piercing and motion with

dry friction forces, respectively.

4. Evaluation of bifurcation diagram

The dynamics of motion with rigid and soft impacts was explained in [4,7,8,12], respectively. The motion with

preloaded stop represents the intermediate case, when impact force is discontinuous, similar as in rigid impacts and

depends on the stop deformation, as in soft impacts. The more detail investigation of such type of impact oscillator is

therefore important also from the point of view of the basic research.

The behaviour of this system will be shown on bifurcation diagram for clearance q ¼ 10 in Fig. 6(a). Results are

presented in Fig. 8 and Table 1 in the form of evaluation of quantity z of all obtained regimes of the system motion.

They are supplemented by time series, phase trajectories and Poincar�ee maps shown in Fig. 9 (Fig. 9(A)–(L) correspond

to frequencies (A)–(L) marked in Fig. 8). Four subintervals (a)–(d) are selected from frequency interval 0:8 < g < 1:8.

There appear bifurcations (1)–(19) marked in Fig. 8 and Table 1 and characterized by abbreviations, the meaning

of which is determined in Table 2.

Changes appearing during bifurcations are characterised also by arrows in Fig. 8. Unidirectional arrow expresses the

inreversible change of the system motion, e.g. change connected with the existence of hysteresis. Bi-directional arrows

correspond to reversible transition, without hysteresis. All bifurcations and transitions between periodic and chaotic

Fig. 8. Bifurcation diagram along curve q ¼ 10 in Fig. 6(a).
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impact motions are explained in [6,10] for oscillator with rigid impacts. This knowledge can be used for explanation of

bifurcations in Figs. 6 and 8.

The typical feature of the system motion, corresponding to motion with soft impacts is the existence of motion

z ¼ ð2=4ÞB (Fig. 9(H)) and motion z ¼ 2=3 (Fig. 9(I)), which cannot be reached by successive, and quasistationary

changes of parameters g, q from impact-less (z ¼ 0) motion. They belong to impact motion with higher level of kinetic

energy. When motion z ¼ ð2=4ÞB is reached, then motion z ¼ 2=3 can be settled from it by quasistationary transition

(bifurcations (16) in Fig. 8).

There are several other interests in the considered region of subharmonic and chaotic motions (0:95 < g < 1):

• the existence of ambiguousness of system response (Figs. 8 and 9 and motions (A) and (B) for g ¼ 0:9526475,

motions (D) and (E) for g ¼ 0:95365 and motions (G), (H) and (I) for g ¼ 0; 9875),

• two possible motions z ¼ ð2=4ÞA and z ¼ ð2=4ÞB (Fig. 9(J) and (H)), which differ by the position of impacts marked

by arrows in the motion period (sequences of impacts in consecutive excitation periods T are: 1-0-1-0 in Fig. 9(J) for

regime A and 1-1-0-0 in Fig. 9(H) for regime B),

• the existence of complex periodic motions z ¼ 2=21, z ¼ 1=10, z ¼ 1=9 (Fig. 9(C), (D) and (F) near grazing bifurca-

tion boundary g0.

• PD ! SN (for g ¼ 0:9889––bifurcation 14 in Fig. 8 and Table 1) is the splitting of z ¼ 1 to z ¼ 2=2 motion, which

loses its stability on saddle-node bifurcation boundary. One impact in motion period disappears and z ¼ 1=2 motion

stabilises (Fig. 9(J)),

Table 1

Characteristic of bifurcations in Fig. 8

No. g Transition hyst Type

(a) 1 0.95264175 chaos ! z ¼ 0 Yes OCH

2 0.95265156 z ¼ 0 ! chaos Yes G

3 0.95265475 chaos $ z ¼ 2=21 No ISN

4 0.95265672 z ¼ 1=10 ! z ¼ 2=21 Yes G

5 0.95266678 z ¼ 2=21 ! z ¼ 1=10 Yes G

(b) 6 0.95341005 chaos ! z ¼ 1=10 Yes OCH

7 0.95380362 z ¼ 1=10 ! chaos Yes G

8 0.95406 chaos ! z ¼ 1=9 No IPD

9 0.95542 chaos ! z ¼ 1=9 Yes OCH

10 0.95615 z ¼ 1=9 ! chaos Yes G

(c) 11 0.98305 z ¼ ð2=4ÞB ! chaos Yes G

12 0.98678 z ¼ 2=3 ! chaos Yes G

13 0.98849 chaos $ z ¼ ð2=4ÞA No IPD

14 0.98890 z ¼ 1 ! z ¼ 1=2 Yes PD ! SN

15 0.98899 z ¼ ð2=4ÞA ! z ¼ 1 Yes G

16 0.99273 z ¼ ð2=4ÞB ! ð4=8ÞB ! chaos ! z ¼ 2=3 Yes PD ! ISN ! OCH

(d) 17 1.00544 z ¼ 2=3 ! 4=6 ! chaos ! z ¼ 1 Yes PD ! ISN ! OCH

18 1.04444 z ¼ 0 ! z ¼ 1 Yes G

19 1.37083 z ¼ 1 ! z ¼ 0 Yes SN

Table 2

Characteristic of bifurcation

Bifurcation Characterization

G Grazing-touch of impact-less loop of motion with the stop

SN Saddle-node instability and jump transition to another periodic motion

PD Period doubling of impact motion

ISN Interruption of saddle-node instability process and appearance of intermittency chaos

IPD Interruption of Faigenbaum�s cascade of period doublings and transition into chaos

OCH output from chaotic into periodic motion of the system

PD ! SN PD ! ISN ! OCH Chronological succession of bifurcations which appear after very slight change of

frequency g
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• PD ! ISN ! OCH (for g ¼ 0:99273 and 1.00544––bifurcation 16 and 17, respectively, in Fig. 8 and Table 1) are

similar processes as described bifurcation PD ! SN.

Fig. 9. Examples of different impact motions received by numerical simulation.
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Nevertheless the jump transition (Fig. 9), i.e. the saddle-node instability development, cannot be accomplished due

to the appearance of an additional impact, which interrupts this process (ISN) and causes to happen the reversible

transition into the intermittency chaos [11]. The system motion escapes later from chaotic motion into periodic impact

motion (OCH), which is irreversible.

5. Conclusion

The application of the analysis of strongly non-linear systems with impacts into the field of forming machines re-

quires the selection of a proper model of impact interactions. The question of response of the piercing machine on

disturbances caused by the intermittent interruption of the formed material supply during the work of machine will not

terminate the working regime. The work without piercing leads to the impact model characterized by preloaded stop

and small damping. Many different periodic and chaotic impact regimes exist therefore in a narrow frequency interval.

Bifurcations and transition phenomena between them were explained. Nevertheless there is large region of system

parameters, where practically most impact motion regime appears. Parameters for obtaining maximum before-impact

velocities were ascertained. An intermittent interruption of the forming material supply does not change the optimal

working regime.
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