Skip to Main content Skip to Navigation
Journal articles

Hyperspectral Pansharpening: A Review

Abstract : Pansharpening aims at fusing a panchromatic image with a multispectral one, to generate an image with the high spatial resolution of the former and the high spectral resolution of the latter. In the last decade, many algorithms have been presented in the literature for pansharpening using multispectral data. With the increasing availability of hyperspectral systems, these methods are now being adapted to hyperspectral images. In this work, we compare new pansharpening techniques designed for hyperspectral data with some of the state of the art methods for multispectral pansharpening, which have been adapted for hyperspectral data. Eleven methods from different classes (component substitution, multiresolution analysis, hybrid, Bayesian and matrix factorization) are analyzed. These methods are applied to three datasets and their effectiveness and robustness are evaluated with widely used performance indicators. In addition, all the pansharpening techniques considered in this paper have been implemented in a MATLAB toolbox that is made available to the community.
Complete list of metadata

Cited literature [83 references]  Display  Hide  Download
Contributor : Véronique Soullier Connect in order to contact the contributor
Submitted on : Friday, November 25, 2016 - 3:15:34 PM
Last modification on : Friday, October 1, 2021 - 3:34:49 AM
Long-term archiving on: : Monday, March 27, 2017 - 8:56:48 AM


Files produced by the author(s)



Laetitia Loncan, Luís Almeida, José Bioucas-Dias, Xavier Briottet, Jocelyn Chanussot, et al.. Hyperspectral Pansharpening: A Review. IEEE geoscience and remote sensing magazine, IEEE, 2015, 3 (3), pp.27-46. ⟨10.1109/MGRS.2015.2440094⟩. ⟨hal-01403205⟩



Record views


Files downloads