Nonsmooth modal analysis of piecewise-linear impact systems

Abstract : Periodic solutions of autonomous and conservative second-order dynamical systems of finite dimension n undergoing a single unilateral contact condition are investigated in continuous time. The unilateral constraint is complemented with a purely elastic impact law conserving total energy. The dynamics is linear away from impacts. It is proven that the phase-space is primarily populated by one-dimensional continua of periodic solutions, generating an invariant manifold which can be understood as a nonsmooth mode of vibration in the context of vibration analysis. Additionally, it is shown that nonsmooth modes of vibration can be calculated by solving only $k-1$ equations where $k$ is the number of impacts per period. Results are illustrated on a mass-spring chain whose last mass undergoes a contact condition with an obstacle.
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger
Contributeur : Anders Thorin <>
Soumis le : jeudi 24 novembre 2016 - 18:30:34
Dernière modification le : mercredi 31 octobre 2018 - 16:48:02
Document(s) archivé(s) le : mardi 21 mars 2017 - 04:55:14


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01402551, version 1



Anders Thorin, Pierre Delezoide, Mathias Legrand. Nonsmooth modal analysis of piecewise-linear impact systems. 24th International Congress of Theoretical and Applied Mechanics, Aug 2016, Montreal, Canada. 〈hal-01402551〉



Consultations de la notice


Téléchargements de fichiers