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Infinite sized magic square
Antoine Salomon∗

Abstract. We investigate a generalisation of the definition of magic squares, which allows for
infinite sized square grids. If the grid is [0, 1]2, a magic square will be a bijection C from
[0, 1]2 to [0, 1] such that integrals

∫ 1

0
C(x, y)dx (resp.

∫ 1

0
C(x, y)dx) are constant w.r.t. y

(resp. x). We show that such objects exist by means of an explicit construction, and discuss
some of their properties. We also propose explicit constructions of magic squares when the
grid is R2 or some countably infinite set.

Introduction Magic square is one of the most famous recreational mathematical ob-
ject. For a given size n ≥ 1, it consists in an arrangement of integers 1, 2,..., n2 in a
n × n grid such that the sums of numbers of each row, column and diagonal are all
equal. It can be dated back to ancient China [7], and still spawns some publications, for
example in computer science [2]. Many variations have been imagined such as magi-
cal rectangles [4], magic squares labelled with integers or real numbers which are not
1,...,n2 [5], etc... Yet, as far we know, no generalisation to arbitrary, possibly infinite,
square grids has ever been studied. Let us formalize such a generalisation.

Definition. Let (A,A, µ) be a measured space and let B be a subset of R. A magic
square from A to B is a bijection C from A2 to B such that x 7→ C(x, y) (resp.
y 7→ C(x, y)) is integrable for all y (resp. x) and such that there exist α, β ∈ R with:
• ∀x ∈ A,

∫
A
C(x, y)dµ(y) = α,

• ∀y ∈ A,
∫
A
C(x, y)dµ(x) = β.

Note that we do not consider diagonal sums. Indeed, we could require the integral∫
A
C(x, x)dµ(x) to equal a certain constant, but there may be no obvious definition

for the “second” diagonal (e.g. if A = N or R+). Moreover, even if it is not difficult to
define the second diagonal sum ifA = [0, 1] or R, we will see that such considerations
are not really interesting.
This definition underlies all the objects we will study in this article. Thus, what
will be called a magic square of order n is a magic square from {0, . . . , n − 1} to
{0, . . . , n2 − 1}, and the corresponding measure is the counting measure. Up to a
shift in the numbering (the reason of which will appear later), this is equivalent to a
“classical” magic square (which is rather numbered from 1 to n2). A magic square
on [0, 1] (resp. R) will be a magic square from [0, 1] to [0, 1] (resp. R to R), and the
corresponding measure is the Lebesgue measure. Also, a magic square on a countably
infinite set D ⊂ R is a magic square from D to D, and the corresponding measure
is the counting measure. Yet, as we do not want to be overly abstract and formal,
each result will be formulated elementarily without directly referring to the former
definition, and in some cases we will also give particular and simpler definitions.
Constant α will be referred to as the column sum and β as the row sum. When∫
A

∫
A
|C(x, y)|dµ(x)dµ(y) and µ(A) are finite, Fubini’s theorem implies that

α = β = 1
µ(A)

∫
A

∫
A
C(x, y)dµ(x)dµ(y). This always holds for magic squares of

order n and for magic squares on [0, 1], but α may be different from β in other cases.
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Let us give the idea behind our main result, i.e. the construction of a magic square
on [0, 1]. This is based on decomposition of real numbers under a base N ≥ 2:
it is well known that every real of x ∈ [0, 1] can be written as 0.a1a2 . . . ak . . .,
where ak ∈ {0, . . . , N − 1} for all k, and this means that x =

∑
k≥1 akN

−k.
A magic square on [0, 1] can be described as follows: the value at a given point
(x0, y0) ∈ [0, 1]2 is 0.a1a2 . . . ak . . . in a base of the form N = n2, where ak is
the integer of {0, . . . , n2 − 1} spotted by (x0, y0) when [0, 1]2 is regularly split
into n2(k−1) pieces so that a copy of a given magic square of order n (numbered
from 0 to n2 − 1) is “printed” on each piece. For example, in Figure 1 the value
at (x0, y0) of the resulting magic square on [0, 1] is 0.128 . . . in base nine, i.e.
1.9−1 + 2.9−2 + 8.9−3 + . . .
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Figure 1. Illustration of main idea for n = 3.

The constance of column and row sums results from the corresponding property of the
magic square of order n. It is a surjection because every sequence a1, a2, . . . , ak, . . .
can be reached, and an injection because a1 reveals in which of the first n2 parts
of [0, 1]2 (x0, y0) lies, then a2 reveals in which of the n2 parts of the previous part
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(x0, y0) lies, etc... Actually, this is not entirely correct because some real numbers
have two possible decompositions in a given base (e.g. in base ten 1=0.999. . . ). A
significant part of the proof will be devoted to patching this difficulty. Note also that
the “printed” magic square of order n need not be the same at every stage (and it
will not in our formal construction), and we could even choose every “printed” magic
square at any stage arbitrarily.
We will show that this construction ensures that the values of the corresponding magic
square on [0, 1] are uniformly distributed on [0, 1], though this property does not
hold for every magic squares on [0, 1]. Also, our construction of magic squares on
R basically consists in a tessellation of R2 with modified versions of the previously
constructed a magic square on [0, 1]. However, the existence of magic squares on
countably infinite sets is an independent result, and the corresponding construction is
mostly based on manipulations of numerical series.

The outline of the article is the following. First section is devoted to preliminary
basic results about decomposition of real numbers in a base n and about “classical”
magic squares. In a second section, we show the existence of magic squares on [0, 1]
with an explicit method, and discuss their properties. Then, we construct magic squares
on R and on any countably infinite set dense in [0, 1].
Throughout the paper, the notation [x] stands for the integer part of the real x and
n mod m is the remainder of the euclidean division of the integer n by the integer m.

1. NOTATIONS AND PRELIMINARY RESULTS

Decomposition of a real number in an arbitrary base. Let us fix an integer n ≥ 2.
It is well known that every natural numbermmay be written as a summ =

∑
`∈N x`n

`

with xl ∈ {0, 1, . . . , n− 1}, and that this decomposition is unique. Let us recall the
form of this decomposition for real numbers x ∈ [0, 1).
Every real x ∈ (0, 1) can be decomposed into a sum x =

∑
`≥1

x`
n`

with x` ∈
{0, 1, . . . , n − 1}: the equality holds with x` = [n`x] mod n. Yet, the decompo-
sition is not unique iff there exists an integer ` ≥ 1 such that n`x ∈ N. Precisely, if
such an ` exists there are exactly two possibilities:

• either x` = [n`x]mod n for every ` ≥ 1,
• or x` = [n`x]mod n for all ` ∈ {0, 1, . . . , `0 − 1},
x`0 = ([n`0x] mod n) − 1, and x` = n − 1 for all ` ≥ `0 + 1, where `0 is the
smallest integer ` ≥ 1 such that n`x ∈ N.

Thus, in this case, the sequence (x`)`≥1 is stationary and the corresponding limit is
either 0 or n− 1.
Let us denote Nn the set of the real numbers whose decomposition in base n is not
unique.

Definition. Nn := {x ∈ [0, 1)| ∃` ≥ 1, n`x ∈ N}.

As an example, N10 is the set of decimal numbers of the interval [0, 1).
Note also that, if x = 0, we have x =

∑+∞
`=1

0
n`

and this decomposition is unique.

Conversely, every sequence valued in {0, 1, . . . , n− 1} can be written as ([n`x]mod n)`≥1
for a given x ∈ [0, 1), except for stationary sequences whose limit value is n− 1.
Let us formalize all these classical results in the following definitions and lemmas.

January 2014] INFINITE MAGIC SQUARE 3
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Definition. Let k be an integer of the set {0, 1, . . . , n − 1}. Let us denote by Dk,n

the set of stationary sequences valued in {0, 1, . . . , n− 1} and whose limit is k:

Dk,n :=
{
(x`)`≥1 ∈ {0, 1, . . . , n− 1}N

∗
|∃m ≥ 1, ∀` ≥ m, x` = k

}
.

Also, the set of set of sequences valued in {0, 1, . . . , n− 1} which are not stationary
with limit n− 1 is denoted by En:

En := {0, 1, . . . , n− 1}N
∗
\Dn−1,n.

Definition. Let us define the following functions:

dn :
[0, 1) → {0, 1, . . . , n− 1}N∗

x 7→ ([n`x]mod n)`≥1
,

Sn :
{0, 1, . . . , n− 1}N∗ → [0, 1]

(x`)`≥1 7→
∑

`≥1
x`
n`

.

Proposition 1. The function dn is a bijection from [0, 1) to En such that

• dn(Nn) = D0,n,
• dn([0, 1[\Nn) = {0, 1, . . . , n− 1}N∗ \ (D0,n ∪Dn−1,n),

and the corresponding inverse function (from En to [0, 1)) coincides with Sn.

Let us finish this section with an elementary property.

Proposition 2. Let x, y ∈ [0, 1) and n ≥ 1. One has:

x < y ⇔ ∃` ≥ 1, ∀m ∈ {1, . . . , `− 1}, dn(x)m = dn(y)m and dn(x)` < dn(y)`.

Magic squares Let us first recall the usual definition of (finite) magic squares.

Definition. A magic square of order n is a bijection c from {0, 1, . . . , n − 1}2 to
{0, 1, . . . , n2 − 1} such that:

• ∀i, i′ ∈ {0, 1, . . . , n− 1},
∑n−1

j=0 c(i, j) =
∑n−1

j=0 c(i
′, j),

• ∀j, j′ ∈ {0, 1, . . . , n− 1},
∑n−1

i=0 c(i, j) =
∑n−1

i=0 c(i, j
′).

As already mentioned in the introduction, magic squares are here numbered from 0
to n2 − 1 for convenience, whereas the classical convention dictates to number from 1
to n2. Also, row sums and column sums are always equal. The corresponding constant
does not depend on the magic square of order n considered, and is often called the
magic constant.

Proposition 3. For all magic square c of order n, one has:

∀i0, j0 ∈ {0, 1, . . . , n− 1},
n−1∑
j=0

c(i0, j) =
n−1∑
i=0

c(i, j0) =
n(n2 − 1)

2
.

4 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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To give an idea of how we will prove the existence of magic squares on [0, 1] in the
next section, let us describe a simple construction of high order magic squares.
In the lemma below, we describe a classical way to construct a magic square of or-
der mn from two magic squares of respective orders n and m (see Figure 2 for an
example).

Lemma 1. Let c1 be a magic square of order n and c2 a magic square of orderm. The
function c defined by

c(i, j) := c1(qi, qj)m
2 + c2(ri, rj),

where i = qim+ ri are j = qjm+ rj are respectively the euclidean division of i and
j by m, is a magic square of order mn.

This elementary result gives a simple method to show that there exist magic squares
of arbitrarily high orders. Yet, one has to use more sophisticated methods to show that
there exist magic squares of any order n ≥ 3, such as De la Loubère method [3] (for
odd orders), W.S. Andrews method [1] (for orders of the form 4n), or Strachey method
[6] (for order of the form 4n+ 2).
Moreover, when this lemma is iterated, a link with the decomposition of integers ap-
pears.

Corollary 1. Let c0, c1, . . . , ck−1 be k magic squares of order n. The function
Ck(c0, c1, . . . , ck−1) defined by

Ck(c0, c1, . . . , ck−1)(i, j) :=
k−1∑
`=0

cl(i`, j`)n
2`,

where i, j ∈ {0, 1, . . . , nk − 1}, and where i0, j0, i1, j1, . . . , ik−1, jk−1 are the
unique integers of {0, 1, . . . , n− 1} such that i =

∑k−1
`=0 i`n

` and j =
∑k−1

`=0 j`n
`, is

a magic square of order nk.

The values taken by the magic squares which result from this method are expressed
in base n2, and the corresponding algorithm has to decompose i and j in base n. In the
next section, we will adapt this method to the decomposition of real numbers of [0, 1)
in a certain base n.

2. MAGIC SQUARES ON [0, 1] In this section, n is an integer greater than 3 and
(ck)k≥1 is an arbitrary sequence of magic squares of order n.

Formal definition For those who have in mind the definition in the introduction,
the object we will study in this section is a magic square from [0, 1] to [0, 1] (w.r.t
Lebesgue measure). Let us recall what it formally means.

Definition. A magic square on [0, 1] is a measurable bijection C from [0, 1]2 to [0, 1]
such that:

• ∀x, x′ ∈ [0, 1],
∫ 1

0
C(x, y)dy =

∫ 1

0
C(x′, y)dy,

• ∀y, y′ ∈ [0, 1],
∫ 1

0
C(x, y)dx =

∫ 1

0
C(x, y′)dy.

As mentioned in the introduction, it easily follows from Fubini’s theorem that row
sums and column sums are equal, i.e.

∫ 1

0
C(x, y0)dx =

∫ 1

0
C(x0, y)dy for all magic

January 2014] INFINITE MAGIC SQUARE 5
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3 8 1
2 4 6
7 0 5

1 6 5
8 4 0
3 2 7

3·9+1 3·9+6 3·9+5 8·9+1 8·9+6 8·9+5 1·9+1 1·9+6 1·9+5
3·9+8 3·9+4 3·9+0 8·9+8 8·9+4 8·9+0 1·9+8 1·9+4 1·9+0
3·9+3 3·9+2 3·9+7 8·9+3 8·9+2 8·9+7 1·9+3 1·9+2 1·9+7
2·9+1 2·9+6 2·9+5 4·9+1 4·9+6 4·9+5 6·9+1 6·9+6 6·9+5
2·9+8 2·9+4 2·9+0 4·9+8 4·9+4 4·9+0 6·9+8 6·9+4 6·9+0
2·9+3 2·9+2 2·9+7 4·9+3 4·9+2 4·9+7 6·9+3 6·9+2 6·9+7
7·9+1 7·9+6 7·9+5 0·9+1 0·9+6 0·9+5 5·9+1 5·9+6 5·9+5
7·9+8 7·9+4 7·9+0 0·9+8 0·9+4 0·9+0 5·9+8 5·9+4 5·9+0
7·9+3 7·9+2 7·9+7 0·9+3 0·9+2 0·9+7 5·9+3 5·9+2 5·9+7

28 33 32 73 78 77 10 15 14
35 31 27 80 76 72 17 13 9
30 29 34 75 74 79 12 11 16
19 24 23 37 42 41 55 60 59
26 22 18 44 40 36 62 58 54
21 20 25 39 38 43 57 56 61
64 69 68 1 6 5 46 51 50
71 67 63 8 4 0 53 49 45
66 65 70 3 2 7 48 47 52

Figure 2. An example of Lemma 1, for n = m = 3 (or of Corollary 1, for k = 2 and n = 3).

square on [0, 1] and all x0, y0 ∈ [0, 1]. Yet, we will see that there is no “magic con-
stant” as in the finite case, which means that the value of the former integrals depends
on C (cf. Proposition 5).

As announced in the former section, we are going to construct a magic square on
[0, 1] thanks to an adaptation of Corollary 1. The main idea is to consider the function1

[0, 1)2 → [0, 1]
(x, y) 7→

∑
`≥1 c`(dn(x)`, dn(y)`)n

−2`.

Yet its domain of definition is not the entire set [0, 1]2, and it is not a bijection. So, our
goal will be to construct a bijection from [0, 1]2 to [0, 1] that coincides with it almost
everywhere.

Construction of a magic square on [0, 1] Let us first modify dn into a bijection from
[0, 1] to {0, 1, . . . , n− 1}N∗ .

Lemma 2. There exists a measurable bijection d′n from [0, 1] to {0, 1, . . . , n− 1}N∗

which coincides almost everywhere with dn.

Proof. The setNn is countably infinite, and so are the setsDk,n. Thus, setsNn ∪ {1}
and D0,n ∪Dn−1,n are both countably infinite, and there exists a bijection σn from

1As in the example in the introduction, the construction could be simpler and only use one magic
square of order n, rather than a sequence (ck)k≥1. On the contrary, it could be more general and be based
on a sequence (ck,`,m)k≥1,0≤`≤nk−1−1,0≤m≤nk−1−1, so that the corresponding expression would be∑

`≥1 c`,[n`−1x],[n`−1y](dn(x)`, dn(y)`)n
−2`. None of these changes significantly affect our proofs.
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Nn ∪ {1} to D0,n ∪Dn−1,n.2

Let us then define the function d′n as follows:

d′n :
[0, 1] → {0, 1, . . . , n− 1}N∗

x 7→
{
dn(x) if x ∈ [0, 1) \Nn

σn(x) if x ∈ Nn ∪ {1}
.

Thanks to Proposition 1, d′n is bijective, and it is also measurable by construction.
It coincides with dn on [0, 1) \Nn, hence almost everywhere because Nn ∪ {1} is
countable.

Lemma 3. Let C0 denote the function

[0, 1]2 → [0, 1]
(x, y) 7→

∑
`≥1 c`(d

′
n(x)`, d

′
n(y)`)n

−2`.

There exists a measurable bijection C from [0, 1]2 to [0, 1] such that, for all y ∈ [0, 1]
(resp. x ∈ [0, 1]), x 7→ C(x, y) coincides with x 7→ C0(x, y) (resp. y 7→ C0(x, y))
almost everywhere.

Proof. Thanks to Lemma 2, it is easy to construct a bijection rn from [0, 1]2 to
{0, 1, . . . , n− 1}N∗ × {0, 1, . . . , n− 1}N∗ , by simply setting:

rn(x, y) := (d′n(x), d
′
n(y)).

Let us also define the following function:

Fn :
{0, 1, . . . , n− 1}N∗ × {0, 1, . . . , n− 1}N∗ → {0, 1, . . . , n2 − 1}N∗

((x`)`≥1, (y`)`≥1) 7→ (c`(x`, y`))`≥1
.

As functions c` are bijective, Fn is also bijective.
The composed function Sn2 ◦ Fn ◦ rn then coincides with C0 (everywhere), but is not
bijective because the image of Fn is not restricted to En2 (cf. Proposition 1). More-
over, the image of C has to be the entire set [0, 1] (and not [0, 1), as in Proposition 1).
Consequently, we are going to define C as a slight modification of Sn2 ◦ Fn ◦ rn, as
follows.
First, let us remark that the constant sequence (n − 1)`≥1 is the unique sequence of
{0, 1, . . . , n − 1}N∗ whose image by Sn is 1. Consequently, Sn can be seen as bi-
jection from En ∪ {(n− 1)`≥1} to [0, 1] (cf. Proposition 1). Then, let us consider a
bijection γn fromD0,n ∪Dn−1,n toD0,n ∪ {(n− 1)`≥1}, which is made possible by
the fact that we are dealing with countably infinite sets. The function bn defined by

bn :
{0, 1, . . . , n− 1}N∗ → En ∪ {(n− 1)`≥1}

(x`)`≥1 7→
{
γn((x`)`≥1) if (x`)`≥1 ∈ D0,n ∪Dn−1,n
(x`)`≥1 otherwise

.

is then bijective, and we set C := Sn2 ◦ bn2 ◦ Fn ◦ rn. Indeed, with this definition, C
is measurable by construction, and is also bijective as a composition of bijective func-
tions. Moreover, bn2 and the identity function coincides everywhere but a countable
set. Hence the result.

2It is not difficult to describe explicitly such a bijection. This applies to the whole article: all results can be
made entirely explicit, and in particular there is no need for the axiom of choice.
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Theorem 1. There exists a magic square on [0, 1], which coincides almost everywhere
with (x, y) 7→

∑
`≥1 c`(dn(x)`, dn(y)`)n

−2`.

Proof. Let us show that the function C given by Lemma 3 is indeed the magic square
on [0, 1] we are looking for. Thanks to Lemmas 2 and 3, we only need to prove the
constance of row and column sums. One has, for all x ∈ [0, 1]:

∫ 1

0

C(x, y)dy =

∫ 1

0

∑
`≥1

c`(d
′
n(x)`, d

′
n(y)`)n

−2`dy

=

∫ 1

0

∑
`≥1

c`(d
′
n(x)`, dn(y)`)n

−2`dy

=
∑
`≥1

n−2`
∫ 1

0

c`(d
′
n(x)`, dn(y)`)dy

=
∑
`≥1

n−2`
∫ 1

0

c`(d
′
n(x)`, [n

`y]mod n)dy

=
∑
`≥1

n−2`
n`−1∑
j=0

∫ j+1

n`

j

n`

c`(d
′
n(x)`, [n

`y]mod n)dy

=
∑
`≥1

n−2`
n`−1∑
j=0

∫ j+1

n`

j

n`

c`(d
′
n(x)`, j mod n)dy

=
∑
`≥1

n−2`
n`−1∑
j=0

1

n`
c`(d

′
n(x)`, j mod n)

=
∑
`≥1

n−2`
1

n`

n`−1∑
j=0

c`(d
′
n(x)`, j mod n)

=
∑
`≥1

n−2`
1

n`
n`−1

n−1∑
j=0

c`(d
′
n(x)`, j).

By Proposition 3,
∑n−1

j=0 c`(d
′
n(x)`, j) =

n(n2−1)
2

, so that one has:∫ 1

0

C(x, y)dy =
∑
`≥1

n−2`
1

n`
n`−1

n(n2 − 1)

2
=
n2 − 1

2

∑
`≥1

n−2`

=
n2 − 1

2

1

n2

1

1− 1
n2

=
1

2
.

Similarly, one can show that
∫ 1

0
C(x, y)dx = 1

2
for all y ∈ [0, 1].

Properties
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Proposition 4. Let C be the magic square given by Theorem 1. The law of C, viewed
as a random variable from [0, 1]2 to [0, 1] equipped with their respective Lebesgue
σ-algebras and measures, is the uniform distribution on [0, 1].

Proof. For convenience, we are going to prove the following equivalent formulation of
Proposition 4: if the law of some random variable (X,Y ) is the uniform distribution
on [0, 1]2, then the law of C(X,Y ) is the uniform distribution on [0, 1].

First, as C(X,Y ) =
∑

`≥1 c`(dn(X)`, dn(Y )`)n
−2` a.e., one has:

dn2(C(X,Y ))` = c`(dn(X)`, dn(Y )`) a.e.

Then, let us fix t ∈ [0, 1[. By Proposition 2, the event {C(X,Y ) < t} is then (up to a
null event) the disjoint union of events (indexed by ` ≥ 1) ⋂

m∈{1,...,`−1}

{dn2 (C(X,Y ))m = dn2 (t)m}

 ∩ {dn2 (C(X,Y ))` < dn2 (t)`}

=

 ⋂
m∈{1,...,`−1}

{cm(dn(X)m, dn(Y )m) = dn2 (t)m}

 ∩ {c`(dn(X)`, dn(Y )`) < dn2 (t)`},

and the latter are themselves the disjoint union of the following events (indexed by
k = 0, 1, . . . , dn2(t)` − 1): ⋂

m∈{1,...,`−1}

{cm(dn(X)m, dn(Y )m) = dn2 (t)m}

 ∩ {c`(dn(X)`, dn(Y )`) = k}.

Functions c1, . . . , c` being bijective, the former events correspond to fixing the ` first
values of dn(X) and dn(Y ). Moreover, one has

(X,Y ) =
∑
m≥1

(dn(X)m, dn(Y )m)n
−m p.p.,

so that each of the former event is equivalent to (X,Y ) being in a square whose down
left corner is

(x0, y0) =
`−1∑
m=1

c−1m (dn2(t)m)n
−m + c−1` (k)n−`

and whose sides have length n−`. Consequently, one has:

P(C(X,Y ) < t) =
∑
`≥1

∣∣{0, 1, . . . , dn2(t)` − 1}
∣∣(n−`)2 =∑

`≥1

dn2(t)`n
−2`

= Sn2(dn2(t)) = t.

Hence the result.

We could have proposed an other generalisation of the definition of magic squares,
based on this property of uniformity. Thus, a classical magic square would have been
viewed as a r.v. that uniformly distributes integers 1, . . . , n2 on a n × n grid rather
than as a bijection. Yet, a definition of magic squares on [0, 1] that would only require
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uniformity and constance of row and column sums (and not bijectivity) would have
trivial examples, such as

C0 :
[0, 1]2 → [0, 1]

(x, y) 7→
{

x si y < 1/2
1− x si y ≥ 1/2

.

Moreover, our definition of magic squares on [0, 1] does not imply that they distribute
their values uniformly on [0, 1]. This results from the following proposition.

Proposition 5. There exists a magic square C̃ on [0, 1] such that∫ 1

0

∫ 1

0

C̃(x, y)dxdy 6= 1

2
.

Note that this proposition also implies that row and column sums do not necessarily
equal 1

2
.

Proof. Let us first consider the function C1 defined by C1 := 1
2
C, where C is the

magic square given by Theorem 1. It is a bijection from [0, 1]2 to [0, 1
2
] such that∫ 1

0
C1(x0, y)dy = 1

4
for all x0 ∈ [0, 1] et

∫ 1

0
C1(x, y0)dx = 1

4
for all y0 ∈ [0, 1]. We

can modify C1 into a bijection C̃ from [0, 1]2 to [0, 1] without changing the values of
the former integrals. Indeed, this can be done by modifying C1 on a diagonal of [0, 1]2,
as follows:

C̃ :

[0, 1]2 → [0, 1]

(x, y) 7→


C1(x, y) if x 6= y

C1(2x, 2y) if x = y and x ≤ 1
2

x if x = y et x > 1
2

.

As the function C̃ of the former proof equals 1
2
C almost everywhere, C̃ distributes

its value uniformly over [0, 1
2
], and one could argue that that there may still be a link

between magic squares on [0, 1] and uniform distributions. Yet, a more sophisticated
construction shows that it is not the case. The idea is the same as the sketch in the
introduction, except that the “printed” magic square is a non-uniform one. Figure 3
illustrates this: the values of the corresponding magic square on [0, 1] are written as
0.a1a2 . . . ak . . . in base thirteen, the first table gives the values of a1, the second
gives the value of a2, and the process can be iterated for a3, a4, etc... The value of this
magic square lies in [6.13−1, 7.13−1) iff a1 = 6, so that the corresponding probability
equals the area of [0, 1

2
]× [ 1

2
, 1], which is 1

4
. This differs from 7.13−1 − 6.13−1 = 1

13
,

therefore the distribution is not uniform.
To finish this section, let us make a comment on diagonal sums, i.e.

∫ 1

0
C(x, x)dx

and
∫ 1

0
C(x, 1 − x)dx. We did not require these sums to equal a given constant, as

usually required with “classical” magic squares. Indeed it would not be interesting:
as in the former proof, it is not difficult to manipulate the value of diagonal sums,
because changing the values of the magic square on its diagonals does not affect
its row and column sums. Yet, one can show that if all magic squares of order n
of the sequence (ck)k≥1 with which C is constructed in Theorem 1 have this diag-

onal property (i.e.
∑n−1

i=0 ck(i, i) =
∑n−1

i=0 ck(i, n − 1 − i) = n(n2−1)
2

for all k ≥

10 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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Figure 3. Construction of a non-uniform magic square on [0, 1].

0), then
∫ 1

0
C(x, x)dx =

∫ 1

0
C(x, 1 − x)dx =

√
2
2

. Factor
√
2 is consistent with the

Pythagorean theorem.

3. MAGIC SQUARES ON R In this section, we will show the existence of magic
squares on R, i.e. magic square from R to R according to the definition in the introduc-
tion. As the integral of such magic squares on R2 may not be finite, Fubini’s theorem
does not enable to conclude that row and column sums are equal. Actually, any two
arbitrary values can be met, as shown below.

Theorem 2. Let α, β ∈ R. There exists a measurable bijection C from R2 to R such
that:

• ∀x ∈ R,
∫
R C(x, y)dy = α,

• ∀y ∈ R,
∫
R C(x, y)dx = β.

Proof.
Note: in this proof, we will call a magic square from A × B to C (A,B,C ⊂ R) a
bijection that respects the usual conditions on row and column sums.

Construction of magic squares with images of the form [−a,−b) ∪ [a, b).
It is not difficult to go back over the construction behind Theorem 1 to get a magic
square C from [0, 1)2 to [0, 1), and whose row and column sums equal 1

2
.3 Now, let

us consider functions c(p,q),m (p, q ∈ Z, m ∈ R), defined by

c(p,q),m :
R(p,q) → [m− 1

2
,m+ 1

2
)

(x, y) 7→ m− 1
2
+ C(x− p, y − q) ,

where R(p,q) := [p, p+ 1)× [q, q + 1). These are magic squares whose row and col-
umn sums equal m. We can then arrange 16 of these magic squares on [0, 4)× [0, 4),

3Precisely, to do that one has to construct d′n only on [0, 1) (and not [0, 1]), and to restrict the image of bn
to En (and not En ∪ {(n− 1)`≥1}).
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as follows (the integers represent the value ofm on each setR(p,q), p, q ∈ {0, 1, 2, 3}):

-8 -7 8 7
6 3 -6 -3
4 5 -4 -5
-2 -1 2 1

The resulting function is a magic square C ′ from [0, 4)2 to [− 17
2
,− 1

2
) ∪ [ 1

2
, 17

2
),

whose sum is 0. Finally, let us set (p, q ∈ Z, k ∈ N)

c̃(p,q),k :
R(p,q) → [− 1

2.17k
,− 1

2.17k+1 ) ∪ [ 1
2.17k+1 ,

1
2.17k

)
(x, y) 7→ 1

17k+1C
′(x−p

4
, y−q

4
)

.

These are magic squares whose column and row sums equal zero, and their image sets
[− 1

2.17k
,− 1

2.17k+1 ) ∪ [ 1
2.17k+1 ,

1
2.17k

) are a partition of [− 1
2
, 1
2
) \ {0}.

Case α = β = 0.
Let σ be a bijection from N to Z2. The function C ′′ defined as a juxtaposition of
functions c̃σ(k),k (k ∈ N), i.e. C ′′(x, y) = cσ(k),k(x, y) where k is the unique integer
such that (x, y) ∈ Rσ(k), is then a magic square from R2 to [− 1

2
, 1
2
) \ {0}, and its

row and column sums equal zero. Note that the corresponding integrals are convergent
because the values of c̃(p,q),k geometrically decrease with k. One then just need to
extend to the image of C ′′ to R. This can be done by modifying C ′′ on a diagonal, for
example as follows:

C :

R2 → R

(x, y) 7→


C ′′(x, y) si x 6= y

0 si x = y = 0
1
2x

si x = y et x ∈ (−1, 1] \ {0}
C ′′(x− 1, y − 1) si x = y et x > 1
C ′′(x+ 1, y + 1) si x = y et x ≤ −1

.

Case αβ > 0.
Let us first solve the case α = β = 1. The method is similar to the former case. It con-
sists in covering R2 with some functions m+ c̃(p,q),k, the values of m being arranged
as follows:

. . .
...

...
...

...
...

...
. . . 0 0 0 0 1 . . .
. . . 0 0 0 1 0 . . .
. . . 0 0 1 0 0 . . .
. . . 0 1 0 0 0 . . .
. . . 1 0 0 0 0 . . .

...
...

...
...

...
...

. . .

More precisely, we consider a bijection σ1 from N to Z and a bijection σ2 from
N to Z2 \ {(`, `), ` ∈ Z}. The function which results from the juxtaposition of
functions 1 + c̃(σ1(k),σ1(k)),k and functions c̃σ2(k),k is a magic square from R2 to
[− 1

2
, 3
2
) \ {0, 1}, and row (resp. column) sums equal 1, i.e. α = β = 1. As before,

we can then modify this magic square on a diagonal to get a magic square C from R2
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to R.
Any other case left is solved by setting (x, y) 7→ C( x

α
, y
β
) if α, β > 0 and (x, y) 7→

−C(− x
α
,− y

β
) if α, β < 0.

Other cases.
Case α = 1, β = −1 can be solved as before, with the following arrangement:

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . 0 0 0 0 0 0 0 0 1 0 0 0 . . .

. . . 0 0 0 0 0 0 0 0 1 0 0 0 . . .

. . . 0 0 0 0 0 0 0 1 0 0 0 0 . . .

. . . -1 -1 0 0 0 0 0 1 0 0 0 0 . . .

. . . 0 0 -1 -1 0 0 1 0 0 0 0 0 . . .

. . . 0 0 0 0 -1 -1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 -1 -1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 0 0 -1 -1 0 0 . . .

. . . 0 0 0 0 1 0 0 0 0 0 -1 -1 . . .

. . . 0 0 0 0 1 0 0 0 0 0 0 0 . . .

. . . 0 0 0 1 0 0 0 0 0 0 0 0 . . .

. . . 0 0 0 1 0 0 0 0 0 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Case α = 1, β = 0 is solved as follows:

. . .
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . -1 0 0 0 0 0 0 0 1 0 0 0 . . .

. . . 0 -1 0 0 0 0 0 0 1 0 0 0 . . .

. . . 0 0 -1 0 0 0 0 1 0 0 0 0 . . .

. . . 0 0 0 -1 0 0 0 1 0 0 0 0 . . .

. . . 0 0 0 0 -1 0 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 -1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 -1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 0 -1 0 0 0 0 . . .

. . . 0 0 0 0 1 0 0 0 -1 0 0 0 . . .

. . . 0 0 0 0 1 0 0 0 0 -1 0 0 . . .

. . . 0 0 0 1 0 0 0 0 0 0 -1 0 . . .

. . . 0 0 0 1 0 0 0 0 0 0 0 -1 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

Cases left are again solved be rescaling variables, and/or by transposition (i.e. by con-
sidering (x, y) 7→ C(y, x)).

4. MAGIC SQUARES ON COUNTABLY INFINITE SETS In this section, we
will show the existence of magic squares on some countably infinite set D ⊂ R. For-
mally, such a magic square is a bijection fromD2 toD, with the corresponding condi-
tions on row and column sums. Note that this existence is equivalent to the existence
of similar magic squares where the domain of definition D2 is replaced by a set of the
form N 2, where N is an arbitrary infinitely countable set. Indeed, that results from a
simple use of a bijection between N and D, which does not affect row and column
sums conditions.
Yet, D, as the image set, will have the following properties.
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• To ensure that sums are well-defined, D will only contain positive elements.
• Then, if a magic square onD exists,D has to be bounded. Indeed, the values of row

and column sums are necessarily greater than any arbitrary element of D. Without
loss of generality, we will assume that D is bounded by 1.

• Also, 0 has to be a limit point of D, as D has to contain the terms of convergent
numerical series.

• Finally, we need a density condition on D. Indeed, former conditions are still not
strong enough: for example there can not exist magic square on D = { 1

2n
, n ≥

0} ∪ {3}, as any bijection from D2 to D would have one, and only one, row (resp.
column) sum greater than 3. Thus our construction, which is based on gradual ad-
justments of row and column sums, will require D to contain elements in some
small open sets. That is why we will assume that D is dense in [0, 1].

These requirements being set, any two possible values of the row and column sums
can be met, as in the former section.

Theorem 3. Let D ⊆ [0, 1] be an countably infinite set dense in [0, 1], and let α > 1
and β > 1. There exists a bijection C from D2 to D such that:

• ∀i ∈ D,
∑

j∈D C (i, j) = α,
• ∀j ∈ D,

∑
i∈D C (i, j) = β.

Proof. Let D be described be a sequence (an)n≥1 of pairwise distinct elements. Let
us denote An the set defined by:

An :=
{
(ak, a`)|k, ` ∈ {1, . . . , n}

}
.

We also fix an arbitrary real M > max{0, α− 3, β − 3} and define

∀n, k ≥ 1, Hk,n :=

{ ∑n
`=k+1

1
M+`

if n ≥ k + 1
0 otherwise

.

We will construct C inductively.
Let us first show that if there exists a function Cn such that

• Cn is an injection from An to D,
• a1, . . . , an ∈ Cn(An),
• ∀k ∈ {1, . . . , n}, min(β−1

2
Hk,n, α− β−1

M+n
) ≤

∑n
`=1 Cn(ak, a`) < α

and min(α−1
2
Hk,n, β − α−1

M+n
) ≤

∑n
`=1 Cn(a`, ak) < β,

then there exists a function Cn+1 satisfying the same three conditions for n+ 1, and
also such that Cn(a, a′) = Cn+1(a, a

′) for all (a, a′) ∈ An.
So, let us assume that such a function Cn exists. To construct Cn+1, we just need to
choose appropriate values of Cn+1(an+1, an+1), Cn+1(ak, an+1) and Cn+1(an+1, ak)
for k in {1, . . . , n}.
First, to ensure that an+1 ∈ Cn+1(An+1), we set Cn+1(an+1, an+1) = an+1 if
an+1 /∈ Cn(An) and Cn+1(an+1, an+1) = a otherwise, where a is an arbitrary ele-
ment of D \ Cn(An).
Then, let us assign values to Cn+1(ak, an+1), k ∈ {1, . . . , n}. For each k, this choice
depends on whether

∑n
`=1 Cn(ak, a`) < α− β−1

M+n
or not.

If
∑n

`=1 Cn(ak, a`) < α− β−1
M+n

, we necessarily have
∑n

`=1 Cn(ak, a`) ≥ β−1
2
Hk,n.

14 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 November 17, 2017 3:19 p.m. magic˙square.tex page 15

In this case, Cn+1(ak, an+1) is chosen among the elements of D which are in
[ β−1
2(M+n+1)

, β−1
M+n+1

] and which have not previously been chosen as a value of Cn+1,
i.e. which are not Cn+1(an+1, an+1), not in the finite set Cn(An) and, assuming
choices has been made in that order, not in {Cn+1(a1, an+1),Cn+1(a2, an+1), · · · ,Cn+1(ak−1, an+1)}.
This is made possible by density of D in [0, 1] and by the fact that β−1

M+n+1
≤ 1, the

latter being a simple consequence of the definition of M . Note also that this choice is
designed to ensure that Cn+1 will be injective. Thus, we have on the one hand

n+1∑
`=1

Cn+1(ak, a`) =
n∑
`=1

Cn+1(ak, a`) + Cn+1(ak, an+1)

=
n∑
`=1

Cn(ak, a`) + Cn+1(ak, an+1)

≥ β − 1

2
Hk,n +

β − 1

2(M + n+ 1)
=
β − 1

2
Hk,n+1

≥ min

(
β − 1

2
Hk,n+1, α−

β − 1

M + n+ 1

)
,

and on the other hand

n+1∑
`=1

Cn+1(ak, a`) =
n∑
`=1

Cn(ak, a`) + Cn+1(ak, an+1)

≤ α− β − 1

M + n
+

β − 1

M + n+ 1
< α.

If, on the contrary,
∑n

`=1 Cn(ak, a`) ≥ α− β−1
M+n

, then Cn+1(ak, an+1) is chosen as
an element of D which has not been previously assigned, lying in the interval[
α−

n∑
`=1

Cn(ak, a`)−
β − 1

M + n+ 1
,min

(
α−

n∑
`=1

Cn(ak, a`),
β − 1

M + n+ 1

))
.

Note that this interval has a non-empty interior, because:

α−
n∑
`=1

Cn(ak, a`)−
β − 1

M + n+ 1
≤ α− (α− β − 1

M + n
)− β − 1

M + n+ 1

=
β − 1

(M + n)(M + n+ 1)

<
β − 1

M + n+ 1
,

and

α−
n∑
`=1

Cn(ak, a`)−
β − 1

M + n+ 1
< α−

n∑
`=1

Cn(ak, a`).
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Thus, we have on the one hand

n+1∑
`=1

Cn+1(ak, a`) =
n∑
`=1

Cn(ak, a`) + Cn+1(ak, an+1)

≥
n∑
`=1

Cn(ak, a`) + α−
n∑
`=1

Cn(ak, a`)−
β − 1

M + n+ 1

≥ α− β − 1

M + n+ 1
≥ min

(
β − 1

2
Hk,n, α−

β − 1

M + n+ 1

)
,

and on the other hand

n+1∑
`=1

Cn+1(ak, a`) =
n∑
`=1

Cn(ak, a`) + Cn+1(ak, an+1)

<
n∑
`=1

Cn(ak, a`) + α−
n∑
`=1

Cn(ak, a`) = α.

We proceed symmetrically to choose the values of Cn+1(an+1, ak) for k in {1, . . . , n},
with an exchange between α and β.
Thus, it has been shown that our construction ensures that

min

(
β − 1

2
Hk,n+1, α−

β − 1

M + n+ 1

)
≤

n+1∑
`=1

Cn+1(ak, a`) < α

and

min

(
α− 1

2
Hk,n+1, β −

α− 1

M + n+ 1

)
≤

n+1∑
`=1

Cn+1(a`, ak) < β

for k in {1, . . . , n}, but we still have to prove these inequalities for k = n+ 1. The
latter result from the fact that Hn+1,n+1 = 0 and that Cn+1(ak, an+1) ≤ β−1

M+n+1
for

all k ∈ {1, . . . , n}, so that

n+1∑
`=1

Cn+1(a`, an+1) =
n∑
`=1

Cn(a`, an+1) + Cn(an+1, an+1)

≤
n∑
`=1

β − 1

M + n+ 1
+ 1 =

n

M + n+ 1
(β − 1) + 1 < β.

Inequality
∑n+1

`=1 Cn+1(an+1, a`) < α is proven similarly, with a simple exchange of
α and β.

So, starting from C1 defined by C1(a1, a1) := a1, we can construct a sequence
(Cn)n≥1 of functions which all satisfy the three conditions of our induction. We then
define C : D2 → D by:

C (ak, a`) := Cmax(k,`)(ak, a`).
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Because of the first two conditions, C is a bijection.
Moreover, as

∑n
`=1 Cn(ak, a`) =

∑n
`=1 C (ak, a`), we have:

∀n, k ≥ 1, min

(
β − 1

2
Hk,n, α−

β − 1

M + n

)
≤

n∑
`=1

C (ak, a`) < α.

BecauseHk,n −−−−→
n→+∞

+∞, we can conclude that
∑

`≥1 C (ak, a`) = α for all k ≥ 1,

and this can be reformulated as:

∀i ∈ D,
∑
j∈D

C (i, j) = α.

Similarly:

∀j ∈ D,
∑
i∈D

C (i, j) = β.

In this theorem, the density of D in [0, 1] is maybe too strong an assumption. A
possible extension of this problem of magic squares with countably infinite grids is
to find weaker conditions on D and/or α and β that ensure that such a magic square
exists.
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