R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, vol.10, issue.6, p.744
DOI : 10.1088/0266-5611/10/6/003

M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous 746 coefficients, Annales de l'I.H.P. Analyse non linéaire Pallara, Functions of bounded variation and free discontinuity 749 problems, pp.91-133, 1994.

J. Appell, J. Banas, and N. M. Díaz, Bounded Variation and Around, De Gruyter series in 752 nonlinear analysis and applications, p.753
DOI : 10.1515/9783110265118

H. Attouch, G. Buttazzo, and G. Michaille, Applications to PDEs and optimization, Sobolev and BV spaces 754 of MPS/SIAM Series on Optimization Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert 757 Spaces, p.758, 2006.
DOI : 10.1137/1.9780898718782

M. Benning, C. Schönlieb, T. Valkonen, and V. Vlacic, Explorations on anisotropic regulari- 759 sation of dynamic inverse problems by bilevel optimisation, arXiv preprint, p.760, 2016.

M. Bergounioux and L. Piffet, A Second-Order Model for Image Denoising, Set-Valued and Varia- 761 tional Analysis, pp.277-306, 2010.
DOI : 10.1007/s11228-010-0156-6

URL : https://hal.archives-ouvertes.fr/hal-00440872/document

M. Bergounioux, E. Trélat, M. Bertero, H. Lantéri, L. Zanni et al., Iterative image reconstruction: a point of view, Mathemat- 766 ical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Convergence of best entropy estimates Functional Analysis, Sobolev Spaces and Partial Differential Equations, pp.764-2296, 1991.

E. York, F. Casas, S. H. Tröltzsch, R. Chan, K. B. Khoshabeh et al., Lions, Image recovery via total variation minimization and related problems, 777 Numer Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications 779 to imaging An augmented lagrangian 782 method for total variation video restoration On definitions of bounded variation for functions of two variables, 785 Transactions of the Bregman distances, totally convex functions, and a method for solving operator 788 equations in banach spaces., Abstract and Applied Analysis Convex analysis and variational problems, SIAM Decomposition of images by the anisotropic rudin-osher-fatemi model Measure theory and fine properties of functions Fusco and D. Spector, A remark on an integral characterization of the dual of BV The split Bregman method for L 1 regularized problems On infimal convolution of TV-type functionals and applications to video 800 and image reconstruction Plataniotis, High-accuracy total variation with application to compressed 803 video sensing Analytic Tomography, PDE control, Jahres- 775 bericht der Deutschen Mathematiker-Vereinigung 792 Communications on Pure and Applied Mathematics SIAM Journal on 798 Imaging Sciences29] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, pp.3-44, 1933.

D. Jacqueline, B. Lewis-memorial-lectures, L. Montagner, E. Angelini, J. C. Olivo-marin et al., Video reconstruction using compressed 813 sensing measurements and 3D total variation regularization for bio-imaging applications Mapping properties of the radon transform, Indiana Univ Parallel algorithm and hybrid regular- 818 ization for dynamic PET reconstruction Joint additive Kullback-Leibler residual minimization and reg- 821 ularization for linear inverse problems, 2012 19th 814 IEEE International Conference on Image Processing 822 pp. 1527?1544. 823 [34] W. Ring, Structural Properties of Solutions to Total Variation Regularisation Problems, ESAIM: Mathe- 824 matical Modelling and Numerical Analysis36] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, pp.812-843, 1970.

A. Sawatzky, C. Brune, T. Kösters, F. Wübbeling, M. Burger-holler et al., EM-TV methods for inverse 830 problems with poisson noise, in Level set and PDE based reconstruction methods in imaging Space-time regularization for video decompression Infimal convolution 835 of total generalized variation functionals for dynamic MRI The operation of infimal convolution Image reconstruction for PET/CT scanners: past 844 achievements and future challenges, Gar- 838 reau, L. Galineau, and S. Chalon, In vivo PET quantification of the dopamine trans- 839 porter in rat brain with [18f ]lbt-999 [43] M. Unger, T. Mauthner, T. Pock, and H. Bischof, Tracking as Segmentation of Spatial-Temporal 846, pp.259-268, 1992.