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Key points 9 

• A methodology to use point flow measurements for parameter estimation is presented 10 

• Tests were made on a set of catchments with various flow conditions 11 

• Better efficiency than classical regionalization approaches with only a few flow 12 

measurements 13 

Abstract 14 

This paper examines catchments that are almost ungaged, i.e. catchments for which only a 15 

small number of point flow measurements are available. In these catchments, hydrologists 16 

may still need to simulate continuous streamflow time series using a rainfall-runoff model, 17 

and the methodology presented here allows using few point measurements for model 18 

parameterization. The method combines regional information (parameter sets of neighboring 19 

gaged stations) and local information (contributed by the point measurements) within a 20 

framework where the relative weight of each source of information is made dependent on the 21 
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number of point measurements available. This approach is tested with two different 22 

hydrological models on a set of 609 catchments in France. The results show that on average a 23 

few flow measurements can significantly improve the simulation efficiency, and that ten 24 

measurements can reduce the performance gap between the gaged and ungaged situations by 25 

more than 50%. Model parameters tend to come closer to the values obtained by calibration in 26 

fully gaged conditions as the number of point flow measurements increases. 27 

Keywords: Rainfall-runoff modeling; Regionalization; Point flow measurements; Ungaged 28 

catchment; Neighborhood; Parameter estimation 29 

1 Introduction 30 

1.1 Parameter estimation on entirely ungaged catchments 31 

Prediction in ungaged basins (PUB) has been one major focus of the hydrological community 32 

in the past decade [Sivapalan, 2003] but still remains a great challenge. A full review of 33 

ungaged basin research is not within the scope of this article and readers are referred to the 34 

recent reviews by Blöschl et al. [2013] and Hrachowitz et al. [2013].  35 

Here, we only mention that the most common parameter estimation techniques to transfer 36 

information from gaged (donor) to ungaged (target) catchments are based on: (1) regression 37 

equations linking parameters to physical and climate catchment characteristics (regressions to 38 

be calibrated on gaged catchments), (2) transfer of parameter sets obtained in gaged 39 

catchments that are similar in terms of physical and climate characteristics to the target 40 

catchment, (3) transfer of parameter sets obtained in geographically close catchments. Many 41 

variants exist, including procedures of regional model calibration [Castiglioni et al., 2010; 42 

Fernandez et al., 2000; Hundecha et al., 2008; Lombardi et al., 2012; Parajka et al., 2007].  43 
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These different approaches have been compared in various contexts, sometimes producing 44 

contradictory results. Parajka et al. [2013] made a cross-analysis of 34 past regionalization 45 

studies, showing that climate conditions or network density can explain differences between 46 

results. In dense network conditions, spatial proximity approaches are often those that 47 

perform the best. 48 

1.2 Point streamflow measurements are ubiquitous 49 

To cope with the difficulties of estimating parameters in ungaged catchments, using 50 

complementary or soft data, i.e. additional measurements or information on the catchment, 51 

was advocated by some authors [Fenicia et al., 2008; Seibert and McDonnell, 2002; 52 

Winsemius et al., 2009]. Among these complementary data, short time series or point 53 

streamflow measurements are increasingly recognized as a valuable source of information for 54 

model parameterization [see e.g. Tada and Beven, 2012]. There are indeed many locations in 55 

the world where it is difficult to maintain long-term flow gauging stations and where only 56 

short series are available [see e.g. Bhatt and Tiwari, 2008; Kim and Kaluarachchi, 2009; Konz 57 

et al., 2007]. Also, when a hydrological question is raised for an ungaged river, practicing 58 

hydrologists may not have the time and resources to install a perennial gauging station, but 59 

they will generally have the opportunity to take a small number of flow measurements.  60 

One can mention a few examples of such situations reported in the literature. Hughes et al. 61 

[2014] made weekly flow measurements on a small stream in South Africa over an 18-month 62 

period and investigated how these data can help better constrain the parameters of the Pitman 63 

hydrological model. Temnerud et al. [2007] carried out point flow measurements at 66 sites 64 

within a 78-km² catchment in northern Sweden during a low-flow period to investigate the 65 

role of spatial patterns in water quality issues. In France, systematic point flow measurement 66 

campaigns have been coordinated by the Rhine-Meuse Water Agency over the last two 67 
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decades to improve the knowledge of low flows [Corbonnois et al., 1999; Decloux and Sary, 68 

1991; Drogue and Plasse, 2014; François and Sary, 1990; 1994; Plasse et al., 2014]. These 69 

point flow measurements may be useful for a number of objectives, such as low-flow 70 

estimation [Catalogne et al., 2014; Chopart and Sauquet, 2008; Eng and Milly, 2007; 71 

Goodwin and Young, 2007; Laaha and Blöschl, 2005; Oberlin et al., 1973]. 72 

Although the hydrologist needing to calibrate a model will not consider these catchments with 73 

short times series or point flow measurements as properly gaged, they are not strictly 74 

speaking ungaged. In this paper, we will refer to them as almost ungaged.  75 

1.3 Sensitivity of model performance to flow data availability 76 

For gaged or almost ungaged catchments, the robustness of the parameter sets identified 77 

clearly depends on the information content of flows available for calibration [Wagener et al., 78 

2003]. When information is lacking, the mathematical optimum identified during calibration 79 

will be potentially different from the hydrological optimum (i.e. the parameter set that can 80 

reproduce catchment behavior over the long term), with possible problems of over-calibration 81 

on the data at hand [see Andréassian et al., 2012, for a more complete discussion on this 82 

issue]. Hence, increasing the length of the flow series available for calibration generally tends 83 

to produce more robust parameter sets, and several authors advised using series covering 5–8 84 

years to calibrate models [see e.g. Anctil et al., 2004; Yapo et al., 1996]. Similarly, Gill et al. 85 

[2007] showed that increasing the percentage of missing data in a calibration series tends to 86 

produce less robust models. Indeed, longer time series generally encompass a larger variety of 87 

hydrological conditions, which makes the series more informative for calibration. 88 

However, a number of studies tend to indicate that shorter time series may also provide 89 

valuable information. Brath et al. [2004] reported tests using calibration periods ranging from 90 

1.5 to 12 months. The best results in validation were obtained using the parameters calibrated 91 
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in the 12-month period, but acceptable results could be obtained with 3 months of data. 92 

Similarly, Melsen et al. [2014] concluded that 5 months of data are sufficient for parameter 93 

optimization to obtain good results on the full observation period on a Swiss catchment when 94 

applying a two-parameter model. Using discontinuous series, Kim and Kaluarachchi [2009] 95 

tested the sensitivity of a water balance model to decreasing data availability. They showed 96 

that short data series could produce parameter sets which can be effectively transposed in time 97 

as long as some parts of the hydrograph (especially high and low flows) are included in the 98 

series. 99 

The sensitivity of model performance to flow availability was also assessed by Perrin et al. 100 

[2007]. They used from 10 to 1,000 flow data randomly sampled out of long series to 101 

calibrate two hydrological models on 12 US catchments. They showed that the optimized 102 

parameter values became stable for the two models when 350 flow data were available for 103 

calibration (with a significant drop in performance when fewer data were used). 104 

1.4 Making the most of limited flow data 105 

The problem of parameter estimation in almost ungaged catchments has received increasing 106 

attention over the last few years. Several authors suggested making explicit use of point flow 107 

measurements. Montanari and Toth [2007] proposed a practical approach to calibrate rainfall-108 

runoff models with sparse data, using the Whittle estimator as a likelihood function and 109 

calibrating the model in the spectral domain. Seibert and Beven [2009] used point flow 110 

measurements to constrain the choice of model parameters. They concluded that "surprisingly 111 

little runoff data was necessary to identify model parameterizations that provided good results 112 

for the 'ungaged' test periods. These results indicated that a few runoff measurements can 113 

contain much of the information content of continuous runoff time series." Tada and Beven 114 

[2012] tested various optimization options of the TOPMODEL parameters on three Japanese 115 
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catchments using short continuous periods of 4, 8, …, 512 days selected within a 10-year 116 

period. They showed that considering an ensemble of acceptable parameter sets could 117 

improve the results obtained by classic optimization when calibration time series are shorter 118 

than 1 year. Singh and Bardossy [2012] also proposed an approach to identify robust 119 

parameter sets when only short calibration periods are available. Using critical events 120 

identified in a series with a depth function, they showed that calibration on events 121 

representing 6–7% of a 10-year time series provided similar results to calibration on the 122 

whole time series and better results than random selection of events.  123 

1.5 Using regional information in parameter estimation on almost ungaged catchments 124 

Although the previous approaches concentrate on extracting information from the available 125 

flow data only, the knowledge on parameter values gained from gaged catchments was 126 

recognized early as valuable information even in the context of calibration procedures. For 127 

example, Koren et al. [2003] found it beneficial to use the regionalization relationships 128 

established for ungaged catchments as initial estimates of parameter values in the calibration 129 

process. Kuzmin et al. [2008] also underlined the advantage of starting calibration with 130 

already informative initial values and then improving these a priori estimates during the 131 

calibration process. These authors mention that searching in the vicinity of the starting values 132 

using a local search algorithm yields better results than using a global search algorithm, 133 

especially where calibration data are lacking.  134 

These results encouraged hydrologists to develop methods for exploiting regional information 135 

in the case of limited flow information, to better constrain parameter estimation.  136 

One solution is to limit the exploration of the parameter space during calibration. Perrin et al. 137 

[2008] showed that the drop in performance caused by shortening calibration time series was 138 

effectively attenuated by searching for the optimal parameter set in pre-sampled parameter 139 
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space, i.e. within a collection of parameter sets previously obtained in other gaged 140 

catchments. The authors showed that this approach outperforms the classic calibration 141 

approaches when only short-flow time series are available. The results of Andréassian et al. 142 

[2014] corroborate these findings: they found that choosing parameters within a short-list of 143 

27 parameter sets was more robust than making full calibration of the GR4J model when less 144 

than 1 year of flow data is available.  145 

From a different perspective, Seibert and McDonnell [2013] proposed an approach combining 146 

the use of point flow measurements and soft data (user-defined fuzzy rules of acceptance of 147 

groundwater contributions). They used data collected over a 3-month period and showed that 148 

a single event or ten observations during high flows provided the same information as the 149 

continuous 3 months. Winsemius et al. [2009] also proposed a framework to integrate hard 150 

and soft data to constrain the estimation of parameters. Their results confirm the potential of 151 

their method to be used for almost ungaged catchments.  152 

Another option is to combine parameters estimated by regionalization and point flow 153 

measurement. Among the first attempts, Rojas-Serna et al. [2006] presented a method 154 

merging the use of regionalized parameter values and optimization to parameterize a model 155 

when only a few point measurements were available. More recently, Viviroli and Seibert 156 

[2015] proposed a framework to improve parameter constraints with point flow 157 

measurements. On a set of catchments in Switzerland, they showed that even a few flow 158 

measurements help constrain parameters and improve model performance over purely 159 

regionalized parameters. 160 

The above studies suggest that regional sources of information can be useful for parameter 161 

estimation even in the classic case of model calibration at a long-term gauging station. In 162 

almost ungaged stations, on which this paper focuses, starting from regional hydrological 163 

knowledge appears promising. 164 

Author-produced version of the article published in Water Resources Research (2016), vol. 52, n° 6 p. 4765-4784 
The original publication is available at http://onlinelibrary.wiley.com/doi/10.1002/2015WR018549/epdf ©.    



1.6 Scope of the paper 165 

The above review suggests that parameters can be estimated using a limited number of flow 166 

observations (not necessarily contiguous but possibly spread out in time), but that classic 167 

optimization algorithms are insufficient for model parameterization when only a few flow 168 

data are available for calibration. Exploiting the prior knowledge gained at a regional level (in 169 

physically or spatially neighboring gauging catchments) is a valid alternative for parameter 170 

identification.  171 

This paper presents a new parameter estimation approach for almost ungaged catchments, 172 

which specifically combines regional information transferred from neighboring gaged 173 

catchments with local information contributed by a limited number of flow measurements. 174 

The framework we present in this paper intends to make use of these measurements for the 175 

identification of hydrological model parameters, thus making a bridge between the fully 176 

ungaged and gaged cases, as illustrated in Figure 1.  177 
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1 2 3 N … 
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Possibility to compute model errors 

 178 
Figure 1. Comparison of the ungaged, almost ungaged and gaged conditions for the estimation of model 179 
parameters (N corresponds to the number of flow observations under which the application of classic estimation 180 
procedures are no longer robust) 181 

After presenting the methodology (Section 2), we present the data set of 609 catchments and 182 

the two hydrological models used to evaluate the proposed approach (Section 3). The results 183 

are then presented and discussed in Section 4 and conclusions and perspectives are discussed 184 

in Section 5. 185 
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2 Presentation of the parameter estimation method for almost ungaged 186 

catchments 187 

This section outlines the proposed approach and describes how it blends regional knowledge 188 

with point flow measurements in order to address the question of parameter estimation in 189 

almost ungaged catchments. 190 

2.1 Origin of the method 191 

The proposed method builds on two existing approaches that we have merged: 192 

1. The neighborhood approach [see e.g. Oudin et al., 2008] used for entirely ungaged basins, 193 

based on regional information: the parameter set for the target ungaged catchment is 194 

chosen among existing parameter sets, previously calibrated on gaged catchments. A 195 

distance between the ungaged catchment and its gaged neighbors can be defined either 196 

geographically (spatial proximity) or in the space of catchment descriptors (physical 197 

similarity).  198 

2. The DIScrete Parameterization (DISP) approach [Perrin et al., 2008] proposed for gaged 199 

catchments: as in the neighborhood approach, the parameter set for the ungaged catchment 200 

is selected within a collection of existing parameter sets, but here the criterion for 201 

parameter set selection is the value of the model error obtained by running the model with 202 

an existing parameter set on the target catchment. This method has been preferred over 203 

classic optimization algorithms since Perrin et al. [2008] showed that they lead to 204 

overfitting situations on short calibration time series. 205 

These two approaches use the same prior information (a library of parameter sets previously 206 

calibrated on gaged catchments) but differ in the way parameter sets are selected, i.e. the way 207 

they define the distance between the donor gaged catchment and the target ungaged 208 

catchment: in the first case, the distance is either defined in the space of physical descriptors 209 
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or geographically (regional information); in the second case, the distance is a function of the 210 

difference between model simulations and flow observations (local information).  211 

2.2 Prerequisites 212 

In the presentation below, we consider that the lumped continuous rainfall-runoff model we 213 

wish to apply has previously been calibrated on p gaged catchments, providing p parameter 214 

sets that constitute a parameter library. For these p catchments and for the ungaged catchment 215 

studied, a number of physical descriptors (e.g. catchment area, drainage density, mean slope, 216 

vegetation cover, etc.) and geographic coordinates are also available. Based on this regional 217 

information, the proposed approach can be applied using either physical similarity or spatial 218 

proximity as a basis for hypothesizing catchment similarity.  219 

In these neighborhood methods, a pool of M best parameter sets instead of a single best set 220 

can be used, since this often gives better model results [Goswami et al., 2007]. Pools of 221 

parameter sets are generally applied by averaging the corresponding simulated model outputs: 222 

the model is applied on the ungaged catchment with each of the M parameter sets before 223 

averaging the M outputs. This option indeed performs better than averaging the M parameter 224 

sets before applying the model, given the non-linearity of simulated processes [Oudin et al., 225 

2008]. 226 

In terms of data availability, we assume that the continuous time series of areal precipitation 227 

and potential evapotranspiration (PE) are available in the ungaged target catchment over the 228 

period where individual flow measurements are made, allowing the continuous rainfall-runoff 229 

model to be run over this period.  230 
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2.3 Proposed approach 231 

The method outlined below was found to be the most efficient among many variants that are 232 

not presented here for the sake of brevity. Rojas-Serna [2005] provides full details of these 233 

other attempts, e.g. the design of weighted objective functions based on model errors and the 234 

departure of parameter values from their initial estimates obtained by regionalization. Note 235 

that the framework proposed below is presented using flow as a source of information but 236 

could also be generalized to other variables deemed useful for parameter estimation (soil 237 

moisture, snow cover, etc.). The proposed approach involves three steps: 238 

Step 1: Ranking the library’s p parameter sets 239 

The parameter sets of the p gaged catchments in the library are first ranked using the selected 240 

neighborhood approach. The closest catchment is given rank 1, the most remote is given rank 241 

p. We note reg
jr  the rank of the jth parameter set in the library. It is up to the end-user to define 242 

the neighborhood approach and the associated distance metric. 243 

In parallel, the model is run on the ungaged catchment using each parameter set of the library 244 

in turn and the available precipitation and PE time series. For each flow simulation produced, 245 

a model error F is calculated on the N dates when flow observations are available. It is up to 246 

the user to define the formulation of F, given his knowledge of the model and his modeling 247 

objectives. The p parameter sets are ranked by increasing model error. The parameter set 248 

providing the lowest model error is given rank 1, the one providing the largest error is given 249 

rank p. We note loc
jr  the rank of the jth parameter set in the library. 250 

Step 2: Combining ranks and selecting a pool of M parameter sets 251 

Two distances between the target catchment and the catchments in the library were defined in 252 

the previous step: a distance in terms of neighborhood and a distance in terms of model error. 253 

Both distances contain information on the relevance of the donor catchments and we wish to 254 
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combine them into a single index. As the distances are not expressed in the same unit and do 255 

not vary over the same range in both cases, it is difficult to use their absolute values in the 256 

combination. After testing various solutions [Rojas-Serna, 2005], the option to combine the 257 

previously defined ranks was found to be a good compromise between simplicity and 258 

efficiency. A linear combination of ranks is made: 259 

loc
j

reg
jj rrr ).1(. αα −+=  Eq. (1) 

where jr  is the combined rank of the jth parameter set in the library and α is a weighting 260 

coefficient (varying between 0 and 1) expressing the relative importance of the regional 261 

information compared to the local information. Its value needs to be determined empirically 262 

(see section 4.3). When α equals 1, the method comes down to the neighborhood approach. 263 

When α equals 0, the method only uses point flow information. The combined rank r takes 264 

values between 1 and p. Note that two parameter sets in the library may have the same 265 

combined rank, which means that they will be considered equivalent in the proposed method.  266 

This procedure merges the regional information with the local information gained from point 267 

flow measurements and guides the selection of donor catchments that are eventually both 268 

regionally and locally relevant. Using the combined rank r, a pool of the M closest parameter 269 

sets can be selected (i.e. the M parameter sets ranked first). The choice of M will be discussed 270 

in Section 4.2. 271 

Step 3: Determining the flow in the almost ungaged catchment using the pool of M 272 

parameter sets  273 

Using the available precipitation and PE time series of the almost ungaged catchment, M flow 274 

time series are simulated by the model on the almost ungaged catchment using each M 275 
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selected parameter set. Then the M simulated series are averaged (output averaging) to obtain 276 

the flow simulation for the target catchment. 277 

2.4 Setting rules for applying the method 278 

To practically apply the method when N flow measurements are available, two values must be 279 

defined: 280 

1. the number M of parameter sets selected in the pool to be applied on the target catchment; 281 

2. the value of α, i.e. the weighting coefficient that defines the relative importance of 282 

regional information. 283 

We can expect the values of α to depend on the number N of flow measurements. Indeed, for 284 

large values of N, there will be a lot of information in the flow data, so that we ought to give 285 

more weight to the minimization of model error than to the neighborhood. Consequently, α 286 

should take values closer to 0. The sensitivity of the proposed approach to M and α values is 287 

analyzed in Section 4.  288 

2.5 Options for case study application 289 

In the case study application described in Section 3, the following choices were made. We 290 

used spatial proximity as the neighborhood approach, since it is the best performing method 291 

on our data set [Oudin et al., 2008]. To compute the distance separating the neighboring 292 

catchment from the target ungaged catchment, a distance combining the horizontal Euclidean 293 

distance between the outlets (doutlet) and the horizontal Euclidean distance between the 294 

centroids (dcentroid) was selected. Previous tests [Lebecherel, 2015] showed that using this 295 

distance was beneficial to transfer information between catchments of different sizes. The 296 

distance d considered is therefore defined as: 297 
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𝑑 = 0.2 × 𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 0.8 × 𝑑𝑐𝑜𝑐𝑜𝑐𝑜𝑐𝑐 Eq. (2) 

In terms of model error F, here we selected the root mean square error (RMSE) calculated on 298 

all the available flow measurements: 299 

( )
2

1

1 ∑
=

−=
N

i
ii CQ

N
F  Eq. (3) 

where iQ  and iC  are the observed discharge and the discharge calculated with the model, 300 

respectively, for the date of the ith flow measurement. The root square transformed flows were 301 

used to compute F, because Oudin et al. [2006] showed that this formulation limits the 302 

influence of high flows and provides a more general model.  303 

Obviously, the method can be applied with other options according to the modeler’s choice, in 304 

terms of neighborhood, distance calculation [Gottschalk et al., 2011] or model error 305 

formulation [Crochemore et al., 2015].  306 

3 Data, models and assessment methodology 307 

For a general evaluation of the method, we used a large set of catchments and two rainfall-308 

runoff models.  309 

3.1 Catchments and data set 310 

The proposed approach was tested on a large and varied catchment set for two reasons. First, 311 

when a method is assessed on a large data set, we can have greater confidence in its 312 

applicability and robustness [Andréassian et al., 2006; Gupta et al., 2014]. Second, the 313 

method itself requires a library of parameter sets that should be large enough to be 314 

representative of the conditions of the zone studied [see the discussion by Perrin et al., 2008].  315 
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We used a set of 609 small to medium-size catchments in France (Figure 2). This set 316 

represents a variety of hydrometeorological conditions, as shown in Table 1. Catchments were 317 

selected to have limited gaps in flow series (less than 10% for every year of the series) and 318 

limited snow influence. For the sake of brevity, physical catchment descriptors are not 319 

detailed here since they were not used in the tests, but the catchment set includes various 320 

physical conditions. 321 

Quantiles 0.05 0.25 0.5 0.75 0.95 
Catchment area (km²) 34 109 270 833 4514 
Mean elevation catchment (m) 87 180 375 781 1350 
Annual rainfall, P (mm/yr) 714 863 1003 1209 1688 
Annual potential evapotranspiration (PE) (mm/yr) 533 616 655 687 782 
Annual discharge, Q (mm/yr) 159 272 411 643 1308 

Table 1. Main characteristics of the 609 catchments used to test the approach. 322 

 323 

Figure 2. Location of the 609 French catchments used in this study (dots indicate the gauging stations and solid 324 
lines the catchment boundaries) 325 
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Daily data were available over the 1996–2005 period. Areal catchment rainfall was calculated 326 

using the SAFRAN gridded values provided by Météo-France [Vidal et al., 2010]. Mean 327 

annual curves of potential evapotranspiration were computed using the formula provided by 328 

Oudin et al. [2005] based on air temperature and extra-terrestrial radiation. Streamflow time 329 

series were extracted from the HYDRO national archive (http://hydro.eaufrance.fr). These 330 

data are generally considered to be of good quality. 331 

3.2 Rainfall-runoff models and parameter library 332 

The method outlined in this paper can be applied with any lumped rainfall-runoff model. Here 333 

we used two models to reach more robust conclusions and possibly analyse differences 334 

between models. We applied the four-parameter GR4J model [Perrin et al., 2003] and the 335 

eight-parameter TOPM model [Michel et al., 2003]. A sketch of the model structures is 336 

shown in Figure 3 and the meaning of the parameters is given in Table 2. These two models 337 

were previously used in French catchments showing comparable levels of performance 338 

[Oudin et al., 2008; Perrin et al., 2008].  339 

Parameter Meaning 

G
R

4J
 

X1 Capacity of the production store (mm; positive) 

X2 Water exchange coefficient (mm; positive or negative) 

X3 Capacity of the nonlinear routing store (mm; positive) 

X4 Unit hydrograph time base (day; ≥ 0.5) 

TO
PM

 

X1 Parameter of the exponential store (mm; positive) 

X2 Evapotranspiration parameter (mm; positive or negative) 

X3 Topographic index distribution parameter (mm; positive) 

X4 Pure time delay (day; ≥ 1) 

X5 Topographic index distribution parameter (mm; positive or negative) 

X6 Evapotranspiration parameter (mm; positive) 

X7 Capacity of the interception store (mm; positive) 

X8 Capacity of the routing store (mm; positive) 

Table 2. List of parameters of the GR4J and TOPM models 340 
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 341 

Figure 3. Schematic diagrams of the GR4J (a) and TOPM (b) rainfall-runoff models (PE: potential 342 
evapotranspiration; P: precipitation; Q: streamflow; Xi: model parameter i; other letters are internal state 343 
variables) 344 

To build the library of model parameters, the parameters were calibrated on each catchment 345 

using the optimization algorithm applied by Edijatno et al. [1999]. The objective function 346 

used during optimization is the Nash and Sutcliffe [1970] criterion calculated on root square 347 

transformed flows, consistently with the formulation of F chosen here (see Section 2.5). Other 348 

objective functions [e.g. Gupta et al., 2009] could be used consistently with the choices made 349 

in applying the method. 350 

3.3 Assessment procedure 351 

The proposed approach was successively applied to each catchment considered in turn as 352 

ungaged. Each time, the parameter set of the catchment under study was excluded from the 353 

library to test the approach.  354 
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We applied the split-sample test scheme advised by Klemeš [1986] by splitting the available 355 

record into two periods (1995–2000 and 2000–2005) that were alternatively used for model 356 

parameter identification and model assessment in validation (parameter identification in 357 

period 1 and validation in period 2 and vice-versa). For each period, the first year (1995 and 358 

2000, respectively) was used for model warm-up, which means that model performance was 359 

actually computed in the 1996–2000 and 2001–2005 periods.  360 

Here the flow measurements were randomly drawn in the flow series on each period. The 361 

random option was chosen because it corresponds quite well to the case where one collects 362 

point flow data without following a predefined acquisition strategy. This can be considered as 363 

the “poor-man’s” option, i.e. a baseline strategy. The flow data were drawn incrementally: a 364 

new flow measurement drawn in the flow series is added to the set of already selected flows, 365 

mimicking what happens in operational conditions (i.e. a sample of k+1 measurements 366 

includes the sample of k measurements already made). Hence it is considered that the flow 367 

information is consistently increasing when N increases. The random selection was made 368 

once per catchment. Since the number of catchments is large, this does not prevent obtaining 369 

robust results.  370 

More advanced sampling strategies could be adopted to improve modeling efficiency [Viviroli 371 

and Seibert, 2015], but this was not within the scope of this article. 372 

3.4 Evaluation criteria 373 

The evaluation of the method was based on model performance obtained in validation mode 374 

as measured by the Nash and Sutcliffe [1970] criterion (NS). NS varies within the interval ]-∞, 375 

1]. The lack of a lower bound for this criterion is a problem when working on a large set of 376 

catchments in ungaged conditions, because the criterion may take highly negative values in 377 

some catchments where the model fails. This prevents making meaningful averages of 378 
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efficiency criteria over the catchment set. To circumvent this pitfall, we used the C criterion 379 

proposed by Mathevet et al. [2006] and given by: 380 

NS
NSC
−

=
2

 Eq. (3) 

This transformation is bounded in the interval ]−1, 1], which allows making meaningful 381 

performance averages over the test set. Note that this criterion keeps the same baseline as the 382 

Nash-Sutcliffe criterion (C = 0 when NS = 0), has the same optimum (1 means perfect 383 

simulation for both criteria), but yields lower positive values compared to the NS criterion 384 

(e.g. C = 0.67 when NS = 0.80).  385 

The efficiency of the parameter estimation method will be assessed by mean C values 386 

obtained by the hydrological model over all validation tests (here 1218, i.e. twice the number 387 

of catchments). C was calculated on root square transformed flows (CRQ), like the objective 388 

function, but also on flows (CQ) and logarithm-transformed flows (CLQ), to put more weight 389 

on high and low flows than CRQ, respectively [see e.g. Pushpalatha et al., 2012]. 390 

3.5 Reference methods 391 

The model performance obtained by applying the proposed method was compared with the 392 

model performance obtained: 393 

1. in fully ungaged conditions: we applied the approach of spatial proximity with the 394 

output averaging the pooling option [Oudin et al., 2008];  395 

2. in fully gaged conditions: we applied the optimization algorithm mentioned above 396 

using all the data available in the calibration period. 397 

Other benchmarks could be considered in model evaluation [see e.g. Seibert, 1999], but since 398 

the intention here was not to compare various parameter estimation methods, we kept only 399 

these two “extreme” benchmarks. 400 
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4 Results 401 

In this section, we present the results of the proposed approach for almost ungaged 402 

catchments. We discuss the sensitivity of the method to the value of the weighting factor of 403 

the regional information (α) and to the number (M) of parameter sets in the pool applied to 404 

the ungaged catchment. The two hydrological models were applied with an increasing number 405 

of flow measurements (N). After determining the optimum values, we evaluate the 406 

performance of the proposed approach, which we compare with the reference methods. 407 

4.1 Results of reference methods 408 

For the two models (GR4J and TOPM) and three evaluation criteria (CLQ, CRQ and CQ), 409 

Figure 4 shows the performance distributions obtained on the catchment set in calibration and 410 

validation using the full flow data (fully gaged conditions) and when applying the 411 

neighborhood approach (fully ungaged conditions) for an increasing number of donor 412 

catchments. The best results in ungaged conditions are obtained with a small pool of 413 

parameter sets: seven parameter sets for GR4J and nine parameter sets for TOPM. This 414 

difference between the two models is consistent with the results found by Oudin et al. [2008] 415 

on a similar data set. The smoothing effect of the output averaging option probably explains 416 

why no significant improvement is found with more donors on average. 417 

The efficiencies obtained by the two models are close in ungaged conditions. GR4J is slightly 418 

better than TOPM in fully gaged conditions. Note that in gaged mode, the models are quite 419 

efficient on average on the 609 catchments, since they reach C efficiencies of around 0.60–420 

0.65 (equivalent to 0.75–0.79 in terms of the NS criterion). As expected, the efficiency 421 

obtained in fully gaged conditions is far better than that obtained in fully ungaged conditions. 422 

This sets the range of improvements that can be obtained using flow information.  423 
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 424 

Figure 4. Distribution of model efficiency in calibration and validation in gaged conditions (red and blue 425 
boxplots, respectively) and in validation in ungaged conditions with the number of donor catchments (boxplots 426 
show the 0.1, 0.25, 0.50, 0.75 and 0.9 percentiles; the mean value is indicated on top of the frame and by the 427 
cross). 428 

4.2 Sensitivity to the number M of neighbors in almost ungaged conditions 429 

We evaluated the sensitivity of the proposed approach to the number M of parameter sets 430 

selected in the pool applied to the ungaged catchment. To simplify the presentation, we fixed 431 

the weight of regional information, α, at 0.5 (the results are very similar for other α values). 432 

We tested the two models using an increasing number of donors (M = 1, 2, …, 9, 10, 15) and 433 

an increasing number of flow measurements (N = 1, 2, …, 6, 7, 10, 20, 50).  434 
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 435 

Figure 5. Mean model efficiency (CLQ, CRQ and CQ) in validation over the catchments with the number M of 436 
donor sets in almost ungaged conditions for the GR4J and TOPM models. Each line represents the application of 437 
the method with a given number of flow measurements N (from 1 to 50). Regional and local parameters are 438 
equally weighted (α = 0.5 in Eq. 1). 439 

Figure 5 presents the mean model efficiency (CQ, CLQ and CRQ) over the catchments with the 440 

number M of donor sets in almost ungaged conditions for the GR4J and TOPM models for an 441 

increasing number of flow measurements used for parameter estimation. It shows that as soon 442 

as a few donor sets are used, the results stabilize and are no longer sensitive to M. The same 443 

Author-produced version of the article published in Water Resources Research (2016), vol. 52, n° 6 p. 4765-4784 
The original publication is available at http://onlinelibrary.wiley.com/doi/10.1002/2015WR018549/epdf ©.    



behavior is observed for any number N of point flow measurements, the model or the 444 

criterion. For a given model, the optimum number of donors does not seem to depend much 445 

on N. Therefore we chose to set the number of donor sets to the same value identified in 446 

ungaged conditions, i.e. M = 7 for GR4J and M = 9 for TOPM. These settings were used in 447 

subsequent tests. 448 

4.3 Sensitivity to the weighting factor α 449 

We evaluated the sensitivity of the proposed approach to the value of weighting factor, α, 450 

which sets the weight of the regional information. We can expect that the larger the number of 451 

point flow measurements, the lower the value of α, given that the flow measurements will 452 

yield more information. We tested values of α from 0 (no use of regional information) to 1 453 

(no use of local information) (see Eq. 1). α was varied between 0 and 1 by steps of 0.1 and 454 

each value of α was tested using different numbers of flow measurements (from 1 to 50, as in 455 

the previous section).  456 

Figure 6 presents the mean model efficiency (CQ, CLQ and CRQ) over the catchments with the 457 

weighting factor α for an increasing number of flow measurements (from 1 to 50). When α 458 

equals 1 (i.e. using only regional information), the results are the same as those found 459 

previously for the strictly ungaged catchments. When α equals 0 (i.e. only considering local 460 

flow information), model efficiency progressively increases when N increases. The 461 

performance exceeds the performance obtained in ungaged conditions as soon as a few 462 

(actually five at most) flow measurements are available for GR4J and TOPM.  463 

Author-produced version of the article published in Water Resources Research (2016), vol. 52, n° 6 p. 4765-4784 
The original publication is available at http://onlinelibrary.wiley.com/doi/10.1002/2015WR018549/epdf ©.    



 464 

Figure 6. Mean model efficiency (CLQ, CRQ and CQ) in validation over the catchments with the weighting factor 465 
α of the regional information (α=0: no regional information; α=1: only regional information) in almost ungaged 466 
conditions for the GR4J and TOPM models. Each line represents the application of the method with a given 467 
number of flow measurements N (from 1 to 50). The number M of donor catchments is set to seven and nine for 468 
GR4J and TOPM, respectively. 469 

Figure 6 also shows that an optimum value of α can be identified in the efficiency curves 470 

drawn for each value of N. This value is very close to 1 when a single flow measurement is 471 

available, which means that it is better to mostly trust regional information in these 472 

conditions. However, it does not strictly equal 1: this indicates that some information may be 473 
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gained even from a single flow measurement. Note that for all values of N, the increase in 474 

model performance when α departs from 1 is very rapid. This means that flow measurements 475 

yield very different and complementary information compared to solely regional information 476 

(i.e. that the rankings are quite different). This can be linked to the finding of Vrugt et al. 477 

[2002] and Seibert and Beven [2009], who found that even a few flow measurements already 478 

contain valuable information. 479 

When N increases, the optimum α value progressively decreases. This can be expected, since 480 

the regional information becomes less and less relevant in comparison to the local (flow) 481 

measurements. For each value of N, we identified this optimum value (based on the mean 482 

results over the catchment set) and plotted it against N (see Figure 7). The patterns are quite 483 

similar for both models, with slight differences, which may come from the fact that the 484 

neighborhood approach does not give equally valuable information in each case. The 485 

differences between criteria are greater than between models, but consistent between the two 486 

models. When N increases, the weight of regional information drops faster for CLQ than CQ 487 

(with intermediate results for CRQ): approximately ten measurements are necessary to get α 488 

close to 0 for CLQ, while at least 30 values are necessary for CQ. This may indicate that 489 

regional information is worse and/or that fewer flow measurements are necessary when 490 

focusing on low-flow conditions.  491 
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 492 

Figure 7. Optimum values of the weighting factor α of the regional information in almost ungaged conditions for 493 
the GR4J and TOPM models for increasing numbers of flow measurements (from 1 to 50). The number N of 494 
donor catchments is set to seven and nine for GR4J and TOPM, respectively. The solid line corresponds to the 495 
curve defined in Eq. (4). α values were discretely tested with a 0.1 step. 496 

It therefore seems that the optimal settings of the proposed approach in terms of the relative 497 

importance of the regional information may partly depend on the model and, to a greater 498 

extent, on the modeling objectives. However, given that the shapes of the relationship 499 

between α and N are similar, a general formulation to determine the value of α for a given 500 

number N of flow measurements available is proposed: 501 
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−=

b

a
Nexpα  Eq. (4) 

where a and b are two coefficients to be determined for the model and objectives selected. 502 

The values of a and b and the corresponding curves are shown in Figure 7. Additional tests 503 

(not detailed here) show that b is the less sensitive parameter of the two and the results 504 

indicate that fixing it does not yield significant loss in modeling efficiency. In the subsequent 505 

tests, we used the value b=1.4, which was found to provide the best results. 506 

4.4 Performance of the proposed approach 507 

Figure 8 shows the changes in the mean efficiency of the GR4J and TOPM models obtained 508 

by applying the proposed approach for almost ungaged conditions to our data set, using 509 

between 1 and 50 point measurements. It exploits both local flow measurements and regional 510 

information, using the number M of neighbors determined previously and the optimum values 511 

of α calculated by Eq. 4. It is compared with the two reference methods (the neighborhood for 512 

the fully ungaged case and the optimization algorithm for the fully gaged case). 513 

On average, the proposed approach efficiently uses the information provided by regional 514 

information and local flow measurements, since it proves more efficient than the reference 515 

method (i.e. the fully ungaged case) for all the efficiency criteria (CQ, CLQ and CRQ). 516 

These results show that the method proposed here can effectively exploit the two sources of 517 

information. It is particularly valuable when only a few flow measurements are available. 518 

Some improvement in model performance can be obtained in comparison with the sole use of 519 

regional information when only one or two flow measurements are available. In most cases 520 

(models and criteria), ten measurements (or a few more in the case of CQ) can reduce the 521 

performance gap between the gaged and ungaged situations by more than 50%. 522 
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 523 

Figure 8. Efficiency of the proposed approach in validation for almost ungaged catchments compared to the 524 
ungaged and gaged conditions for the GR4J and TOPM models for an increasing number of flow measurements 525 
(from 1 to 50). The number N of donor catchments is set to seven and nine for GR4J and TOPM, respectively. 526 

For the CLQ criterion, the proposed approach provides more efficient results than the fully 527 

gaged case for both models when N exceeds 10–20. This may appear surprising, but can 528 

partly be explained by the fact that the evaluation criterion is different from the calibration 529 

objective function (CRQ). Here, the fully gaged value is not the optimal validation value for 530 
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this criterion. More surprisingly, a similar behavior can be observed for the TOPM model and 531 

the CRQ evaluation criterion. These results may be explained by the use of multiple sets of 532 

parameters (a pool of M=9 for TOPM) to simulate flows on almost ungaged catchments. 533 

Figure 9 shows the efficiency of TOPM when applying the method for M=9 and M=1 (i.e. 534 

using a single donor). Clearly, the multi-parameter approach outperforms the single-parameter 535 

approach for TOPM, which remains below the fully gaged case. Note also that the results 536 

shown here were obtained in validation mode, and the multi-parameter approach may be more 537 

robust than the single-parameter approach. This behavior is observed to a larger extent for 538 

TOPM than for GR4J, which may come from its higher number of parameters and 539 

consequently lower robustness due to possible equifinality [as discussed by Perrin et al., 540 

2008].  541 

 542 

Figure 9. Efficiency of the proposed approach for the TOPM model and for the CRQ evaluation criterion in 543 
validation, for increasing numbers of flow measurements (from 1 to 50) and two donor catchment values (M) 544 
(squares for nine donors and dots for one donor). 545 
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4.5 Impact on parameter estimates 546 

We showed that progressively adding local information to existing regional information 547 

yields better model performance in validation. This means that estimated parameters are more 548 

transferable in time. Hence one could expect that they are closer to values estimated using full 549 

flow information, which should be more representative of the catchment behavior over the 550 

long term. Therefore, the proposed approach should help obtain more general parameters. 551 

This was investigated by analyzing the parameter variability when the number of point flow 552 

measurements increases. Because parameters can vary over a wide range, parameter values 553 

were normalized in each case by the long-term optimum parameter set, i.e. the parameter set 554 

obtained by calibration on the full data period. The distribution of these normalized 555 

parameters on the sample of 609 catchments is shown in Figure 10 for N between 1 and 50. 556 

To simplify the analysis, only the parameter set ranked first in our approach was considered 557 

here (trends are similar when using the pool of parameter sets). For sake of brevity, we only 558 

show the results for the GR4J model. Although the trend is smooth, one can see that the 559 

variability decreases (the inter-quantile ranges decrease) for most parameters when N 560 

increases. This means that on average, the parameter values tend to come closer to the long-561 

term optimum value. No real trend is observed for the X4 parameter (time base of the unit 562 

hydrograph), but this parameter shows the least variability, i.e. it is probably better 563 

determined by regionalization than the others. Note that median values of each boxplot are 564 

very close to 1, indicating that the procedure does not tend to introduce any significant bias in 565 

the estimated parameter values on average. 566 
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 567 

Figure 10. Distribution of normalized best parameters for the GR4J model over the catchment set with the 568 
increase of flow measurements (the meaning of parameters is given in Table 2). Boxplots show the 0.1, 0.25, 569 
0.50, 0.75 and 0.9 percentiles. 570 

5 Conclusion and perspectives 571 

In this article, a combined approach was devised to simultaneously exploit regional 572 

information and local measurements. The proposed approach weights the two sources of 573 

information depending on the availability of point flow measurements. It provides simulations 574 

intermediate between fully ungaged and fully gaged situations. In this sense, the method 575 

intends to make the connection between these two cases. This approach opens ways to make 576 

model parameter estimation more reliable in all the catchments where only a few flow 577 

measurements are available. As more flow measurements become available, the model 578 

becomes more robust, i.e. it obtains better results in validation. The parameters also tend to 579 

progressively converge to the long-term values estimated in fully gaged conditions. Hence the 580 
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procedure progressively adapts the values of parameters as new flow information is added, in 581 

some type of "learning process" [Buytaert and Beven, 2009].  582 

Starting from a prior (the regional estimate) and progressively narrowing the parameter values 583 

by adding new information may be seen as a typical Bayesian process [Thiemann et al., 584 

2001]. The advantage of the proposed approach is that it remains very simple without making 585 

statistical assumptions, but it would be interesting to compare it with formal Bayesian 586 

approaches in future work. 587 

The method was tested using one specific regionalization approach, two rainfall-runoff 588 

models and three evaluation criteria targeting various flow types (high or low). Interestingly, 589 

the method’s settings were shown to depend more on the modeling objective than on the 590 

model used. However, the method is general and flexible enough to be efficiently applied to 591 

other models and objectives and a simple way was proposed to weight the regional and local 592 

information. The approach was tested on a large data set of 609 catchments and compared to 593 

two simple benchmarks, which gives confidence on its generality, overall efficiency 594 

[Andréassian et al., 2007] and applicability at the regional level [Drogue and Plasse, 2014]. 595 

One major conclusion is that acquiring flow information by point measurements and 596 

efficiently combining it with prior regional information can be very effective in improving 597 

parameter estimation, as already suggested by other authors [Seibert and Beven, 2009]. 598 

Studies comparing various parameter estimation strategies (and possibly involving other types 599 

of observations than flow) would be very useful to conduct in the context of almost ungaged 600 

catchments. 601 

One limit of these tests is that flows were sequentially drawn at random in the existing series, 602 

irrespective of the flow magnitude, dynamics (rising limb or recession) or season. These 603 

various conditions are known to provide different informative content for the estimation of 604 
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model parameters [Wagener et al., 2003]. Several authors attempted to define strategies for 605 

acquiring point flow data in a modeling perspective [see e.g. Clausen, 1995; Juston et al., 606 

2009; Konz and Seibert, 2010; Singh and Bardossy, 2012; Viviroli and Seibert, 2015]. This 607 

could also be investigated in the context of the approach proposed here. Ultimately, this could 608 

guide practicing hydrologists and operational gauging staff in defining gauging priorities and 609 

making decisions in real time. 610 

Last, we mentioned in the introduction the PUB decade, which gave way to the Panta Rhei 611 

decade on “Change in hydrology and society” [Montanari et al., 2013]. It is likely that the 612 

notion of an almost ungaged catchment could be revisited and extended in this context. 613 

Typically a sudden change on a catchment will strongly impact its behavior and make it 614 

suddenly ungaged in the sense that no or not enough data are available to properly model it. 615 

Hence the interactions between transposition in time and space could be further investigated 616 

in this context. 617 
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