A. Bandura, Social Learning Theory, 1977.

S. Bayoudh, L. Miclet, and A. Delhay, Learning by analogy: A classification rule for binary and nominal data, Proc. Inter. Joint Conf. on Artificial Intelligence IJCAI07, pp.678-683, 2007.

M. Bounhas, H. Prade, and G. Richard, Analogical Classification: Handling Numerical Data, 2014.
DOI : 10.1007/978-3-319-11508-5_6

W. W. Cheng and E. Hüllermeier, Combining instance-based learning and logistic regression for multilabel classification, Machine Learning, vol.40, issue.7, pp.211-225, 2009.
DOI : 10.1007/s10994-009-5127-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Correa, H. Prade, and G. Richard, When intelligence is just a matter of copying, Proc. 20th Eur. Conf. on Artificial Intelligence, pp.276-281, 2012.

M. Hesse, V ??? On Defining Analogy, Proceedings of the Aristotelian Society, pp.79-100, 1959.
DOI : 10.1093/aristotelian/60.1.79

K. J. Holyoak and P. Thagard, Mental Leaps: Analogy in Creative Thought, 1995.

J. Jarmulak, S. Craw, and R. Rowe, Using case-base data to learn adaptation knowledge for design, Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp.1011-1016, 2001.

S. E. Kuehne, D. Gentner, and K. D. Forbus, Modeling infant learning via symbolic structural alignment, Proc. 22nd Annual Meeting of the Cognitive Science Society, pp.286-291, 2000.

J. F. Lavallée and P. Langlais, Moranapho: un système multilingue d'analyse morphologique basé sur l'analogie formelle', TAL, pp.17-44, 2011.

Y. Lepage, Analogy and Formal Languages, Electronic Notes in Theoretical Computer Science, vol.53, 2001.
DOI : 10.1016/S1571-0661(05)82582-4

URL : http://doi.org/10.1016/s1571-0661(05)82582-4

D. Mcsherry, Case-based reasoning techniques for estimation', in IEE Colloquium on Case-Based Reasoning, pp.1-6, 1993.

J. Mertz and P. M. Murphy, Uci repository of machine learning databases', Available at, 2000.

L. Miclet, S. Bayoudh, and A. Delhay, Analogical dissimilarity: definition , algorithms and two experiments in machine learning, pp.793-824, 2008.

L. Miclet and H. Prade, Handling Analogical Proportions in Classical Logic and Fuzzy Logics Settings, Proc. 10th Eur. Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC- SQARU'09), pp.638-650, 2009.
DOI : 10.1007/BFb0017032

URL : https://opus.lib.uts.edu.au/bitstream/10453/32858/1/2013007841OK.pdf

R. M. Moraes, L. S. Machado, H. Prade, and G. Richard, Classification Based on Homogeneous Logical Proportions, Proc. of AI-2013, The Thirty-third SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp.53-60, 2013.
DOI : 10.1007/978-3-319-02621-3_4

H. Prade and G. Richard, Reasoning with logical proportions, Proc. 12th Int. Conf. on Principles of Knowledge Representation and Reasoning, pp.545-555, 2010.

H. Prade, G. Richard, G. Brewka, T. Eiter, and S. A. Mcilraith, Homogeneous logical proportions: Their uniqueness and their role in similarity-based prediction, Proc. 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR'12), pp.402-412, 2012.

H. Prade and G. Richard, From analogical proportion to logical proportions' , Logica Universalis, pp.441-505, 2013.

G. Prade and . Richard, Computational Approaches to Analogical Reasoning: Current Trends, Studies in Computational Intelligence, vol.548, 2014.
DOI : 10.1007/978-3-642-54516-0

H. Prade, G. Richard, and B. Yao, Enforcing regularity by means of analogy-related proportions-a new approach to classification, International Journal of Computer Information Systems and Industrial Management Applications, vol.4, pp.648-658, 2012.

E. Raufaste, Les Mécanismes Cognitifs du Diagnostic Médical : Optimisation et Expertise, 2001.

N. Stroppa and F. Yvon, Duquatrì eme de proportion comme principe inductif : une proposition et son applicationàapplication`applicationà l'apprentissage de la morphologie' , Traitement Automatique des Langues, pp.1-27, 2006.