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A NOTE ON THE AUTOMORPHISM GROUP OF A

COMPACT COMPLEX MANIFOLD

LAURENT MEERSSEMAN

Abstract. In this note, we give explicit examples of compact complex
3-folds which admit automorphisms that are isotopic to the identity
through C∞-diffeomorphisms but not through biholomorphisms. These
automorphisms play an important role in the construction of the Te-
ichmüller stack of higher dimensional manifolds.

1. Introduction.

Let X be a compact complex manifold andM the underlying oriented C∞

manifold. The automorphism group Aut(X) of X is a complex Lie group
whose Lie algebra is the Lie algebra of holomorphic vector fields [1]. We
denote by Aut0(X) the connected component of the identity. Its elements
are thus automorphisms f such that there exists a C∞-isotopy

(1.1) t ∈ [0, 1] 7−→ ft ∈ Aut(X) with f0 = Id and f1 = f.

Note that Aut(X) has at most a countable number of connected components
so the quotient Aut(X)/Aut0(X) is discrete.

Let Diff(M) be the Fréchet Lie group of C∞-diffeomorphisms of M .
It is tangent at the identity to the Lie algebra of C∞ vector fields. Let
Diff0(M) be the connected component of the identity. Its elements are C∞-
diffeomorphisms f such that there exists a C∞-isotopy

(1.2) t ∈ [0, 1] 7−→ ft ∈ Diff(M) with f0 = Id and f1 = f.

Note that the discrete group Diff(M)/Diff0(M) is the well known mapping
class group. Define now

(1.3) Aut1(X) := Aut(X) ∩Diff0(M).

There are obvious inclusions of groups

(1.4) Aut0(X) ⊆ Aut1(X) ⊆ Aut(X)

In many examples, the first two groups are the same but differ from the
third one (think of a complex torus). The purpose of this note is to describe
an explicit family1 of compact 3-folds Xa,b such that

(1.5) Aut0(Xa,b) ( Aut1(Xa,b) = Aut(Xa,b)

and

(1.6) Aut1(Xa,b)/Aut
0(Xa,b) = Za
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Hence Aut1(Xa,b) has a connected components, and this number can be
chosen arbitrarily large.

Our main motivation, which is detailed in Section 2, comes from under-
standing the Teichmüller stack of M , that is the quotient stack of the set of
complex operators on M modulo the action of Diff0(M).

The construction of the manifolds as well as the computation of their
automorphism groups are elementary. As often when looking at explicit
examples, the crux of the matter was to find the idea that makes everything
work. We asked several specialists but they did not know any such example.
We tried several classical examples but it always failed. Finally, we came
accross the good family when looking for deformations of Hopf surfaces over
the projective line P1 in connection with a different problem. The manifolds
Xa,b are such deformations with the following additional property. All the
fibers are biholomorphic except for those that lie above 0 and above an a-
th root of unity. Every automorphism must preserve these special fibers
so must project onto P1 as a rotation of angle 2πk/a for some k. This
explains the a connected components of the automorphism group. Finally,
diffeomorphically there is no special fiber since Xa,b is just a bundle. It is
then not difficult to check that all rotations are allowed for diffeomorphisms
so every automorphism is in Diff0(M).

2. Motivations

Thanks to Newlander-Nirenberg Theorem [9], a structure of a complex
manifold X on M is equivalent to an integrable complex operator J on M ,
that is a C∞ bundle operator J on the tangent bundle TM such that

(2.1) J2 = −Id and [T 0,1, T 0,1] ⊂ T 0,1

where T 0,1 is the subbundle of the complexified tangent bundle TM ⊗ C

formed by the eigenvectors of J with eigenvalue −i.
It is easy to check that the complex manifolds XJ := (M,J) and XJ ′ are

biholomorphic if and only if there exists a diffeomorphism f of M whose
differential df commutes with J and J ′. This defines an action of Diff(M).

The Teichmüller space T (M) of M is then defined as the quotient of the
space I(M) of integrable complex operators on M (inducing the orientation
of M) by Diff0(M).

As such, this is a topological space whose quotient by the mapping class
group is the moduli space of complex structures onM . IfM is a surface, then
this is the classical Teichmüller space and a complex manifold in a natural
way. In higher dimensions, this is usually not even locally an analytic space,
cf. [8, Examples 11.3, 11.6].

Kodaira-Spencer and Kuranishi classical deformation theory (see [5] for
a good introduction) provides each compact complex manifold X with an
analytic space, its Kuranishi space, which encodes all the small deformations
of its complex structure. This is not however a local moduli space, but must
be thought of as the best approximation in the analytic category of a local
moduli space. In particular, the same complex structure may be encoded in
an infinite number of points.
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In other words, there is a surjective map from the Kuranishi space KJ

of XJ onto a neighborhood of J in T (M) but which is in general far from
being bijective (cf. [2] and [3] where several results where equality holds are
discussed). Especially, Aut0(XJ) acts

2 onKJ identifying equivalent complex
structures [7], [8, §2.3]. The point here is that the dimension of Aut0(XJ)
is only an upper semi-continuous function of J so may jump. When this
occurs, the previous action is non-trivial and the Teichmüller space is not a
local analytic space around J .

We are not finished yet. The quotient of KJ by Aut0(XJ ) is still not a pri-
ori a neighborhood of J in T (M). The natural projection map may still have
non-trivial discrete fibers. This phenomenon is thoroughly studied in [8]. It
is shown that the action of Diff0(M) onto I(M) is a foliation transversely
modelled onto the stack [KJ/Aut

0(XJ )] and that a holonomy groupoid can
be defined for such an object. The holonomy morphisms describe exactly
the non-trivial fibers (see in particular Remarks 10.4 and 10.8). Hence,
holonomy measures the gap between the stacks T (M) (locally at J) and
[KJ/Aut

0(XJ )]. In many cases however, there is no holonomy. This leads
to the following problem

Holonomy Problem. Give examples of Teichmüller spaces with non-

trivial holonomy.

This is the main motivation of this paper. Note that the isotropy group
of a point J in I(M) is exactly Aut1(XJ ) and not Aut0(XJ). So letting
(M,J) encoding one of the manifolds Xa,b, our result says that this isotropy
group is not connected. As a consequence, the Teichmüller space of M has
non-trivial finite holonomy at J .

3. The manifolds Xa,b.

Let a and b be two nonnegative integers. Let λ be a non-zero complex
number of modulus strictly less than one. For further use, we define the
following two surfaces. Let X0 be the Hopf surface defined as C2 \ {(0, 0)}
divided by the group generated by the contraction (z, w) 7→ (λz, λw). Let
X1 be the Hopf surface defined as C2\{(0, 0)} divided by the group generated
by the contraction (z, w) 7→ (λz + w, λw). These two Hopf surfaces are not
biholomorphic, cf. [5].

We consider the vector bundle O(b)⊕O(a) → P1. Throughout the article,
we make use of the charts

(3.1) (t, z0, w0) ∈ C3 and (s, z1, w1) ∈ C3

subject to the relations

(3.2) st = 1, z1 = sbz0, w1 = saw0.

Let c > 0 and let σ be a non-zero holomorphic section of O(c). In accordance
with (3.1) and (3.2), we represent it in local charts by two holomorphic maps
σ0 and σ1 satisfying σ1(s) = scσ0(t). Let W be O(b)⊕O(a) minus the zero
section.

2This is not exactly an action, cf. [8, §2.3] for details.
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Lemma 3.1. Assume that b− a− c ≥ 0. Then, the holomorphic maps

(3.3) (t, z0, w0) 7→ g0(t, z0, w0) = (t, λz0 + σ0(t)w0, λw0)

and

(3.4) (s, z1, w1) 7→ g1(s, z1, w1) = (s, λz1 + sb−a−cσ1(s)w1, λw1)

defines a biholomorphism g of W .

Proof. Just compute in the other chart

g1(s, z1, w1) =(s, λz1 + sb−a−cσ1(s)w1, λw1)

=(1/t, sb(λz0 + σ0(t)w0), s
a(λw0))

so g0 and g1 glue in accordance with (3.2). �

Consider now the group G = 〈g〉. It acts freely and properly on W and
fixes each fiber of W → P1. The quotient space W/G is thus a complex
manifold. More precisely

Proposition 3.2. The manifold W/G is a deformation of Hopf surfaces

over P1. Moreover the fiber over t ∈ P1 is biholomorphic to X0 if t is a zero

of σ, otherwise it is biholomorphic to X1.

In particular, W/G is compact.

Proof. We already observed that the bundle map W → P1 descends as a
holomorphic map π : W/G → P1. It is obviously a proper holomorphic
submersion, hence it defines W/G as a deformation of complex manifolds
parametrized by the projective line. The fiber over t is C2 \ {(0, 0)} divided
by the contracting map (z, w) 7→ (λz + σ(t)w, λw). If t is a zero of σ, then
this is exactly the Hopf surface X0. Otherwise, it is biholomorphic to X1,
see [5]. �

Definition 3.3. Assume that c = 2a and that b ≥ 3a. We denote by Xa,b

the manifold W/G corresponding to the choice

(3.5) σ0(t) = ta
a−1
∏

k=0

(t− exp(2iπk/a)).

for t ∈ C.

For the rest of the paper, we assume that a is strictly greater than 3.
Observe that the condition b ≥ 3a is nothing but b− a− c ≥ 0.

4. Computation of the automorphism groups.

We are in position to state and prove our main result.

Theorem 4.1. The manifold Xa,b satisfies

(4.1) Aut0(Xa,b) ≃

{(

α P
0 α

)

| α ∈ C∗, P ∈ Cb−a[X]

}

/G

and

(4.2)

Aut(Xa,b) =Aut1(Xa,b)

≃Ga ×

{(

α P
0 α

)

| α ∈ C∗, P ∈ Cb−a[X]

}

/G
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where Ga is the group of a-th roots of unity, Cb−a[X] is the space of complex

polynomials with degree at most b−a and where the product in (4.2) is given
by

(4.3)

(

r,

(

α P
0 α

))

·

(

r′,

(

β Q
0 β

))

=

(

rr′,

(

αβ αQ ◦ r + βP ◦ r
0 αβ

))

We note the immediate corollary

Corollary 4.2. The group Aut1(Xa,b) has a > 3 connected components and

the quotient Aut1(Xa,b)/Aut
0(Xa,b) is isomorphic to the cyclic group Za.

Theorem 4.1 will be proved through a succession of Lemmas.

Lemma 4.3. Let f be an automorphism of Xa,b. Then it respects π and

descends as an automorphism h of P1.

Proof. Choose a fiber of Xa,b → P1 isomorphic to X1. Restrict f to it
and compose with the projection onto the projective line. This gives a
holomorphic map from X1 to P1, hence a meromorphic function on X1. But
the algebraic dimension of X1 is zero, see [4], so this map is constant. In
other words, f sends the π-fibers isomorphic to X1 onto the π-fibers. By
density of these fibers, f sends every π-fiber onto a π-fiber so descends as
an automorphism h of P1. �

Lemma 4.4. The automorphism h is a power of the rotation at 0 of angle

2π/a.

Proof. Note that f must send a π-fiber biholomorphic to X0 onto a π-fiber
biholomorphic to X0. Now the set of such fibers is the set of a-th roots of
unity plus zero by Proposition 3.2 and (3.5). It follows from Lemma 4.3
that the automorphism h is an automorphism of the projective line which
preserves this set. Since a > 3, it must preserve at least three different points
of the unit circle, hence must preserve the unit circle. But this implies that
zero is fixed. Schwarz Lemma shows now that it is a power of the rotation3

at 0 of angle 2π/a. �

Lift f as an automorphism F of the universal covering W of Xa,b. We
denote by (F0, F1) its expression in the charts (3.1).

Lemma 4.5. In the charts (3.1), the lifting F has the following form

(4.4) F0(t, z0, w0) = (rkt, αz0 + τ0(t)w0, αw0)

and

(4.5) F1(s, z1, w1) = (r−ks, r−kb(αz1 + τ1(s)w1), αw1)

where r = exp(2iπ/a), k is an integer, α a complex number and τ = (τ0, τ1)
is a section of O(b− a).

Proof. The first coordinate in (4.4) comes from Lemma 4.4. For the two
other coordinates, recall from [10] that the automorphism group of X0 is
GL2(C) (modulo quotient by the group generated by the contraction) and

3As pointed out to us by F. Bosio, this is no more true for a = 3. Letting j =
exp(2iπ/3), the map z 7→ −(z − j)/(2jz + j2) preserves the set but is not a rotation.
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that of X1 is the group of upper triangular matrices with both entries on the
diagonal equal (modulo quotient by the group generated by the contraction).

Hence the general form of F0 is

(4.6) F0(t, z0, w0) = (rkt, α0(t)z0 + τ0(t)w0, α0(t)w0)

for α0 and τ two holomorphic functions. But in the other chart, using the
same more general form of (4.5), we must have

F1(s, z1, w1) =(r−ks, r−kb(α1(s)z1 + τ1(s)w1), α1(s)w1)

=(1/(rkt), (r−ks)b(z0α1(1/t) + τ1(1/t)s
a−bw0), s

aα1(1/t)w0)

which extends at s = 0 and glues with (4.6) if and only if α = (α0, α1) is a
constant and τ = (τ0, τ1) is a section of O(b− a).

It remains to check whether these automorphisms really descend as au-
tomorphisms of Xa,b, i.e. whether they commute with the contraction g of
Lemma 3.1. We compute

g0 ◦ F0(t, z0, w0) = (rkt, λαz0 + λτ0(t)w0 + ασ0(r
kt)w0, λαw0)

= F0 ◦ g0(t, z0, w0)

since σ is Ga-invariant, cf. (3.5). A similar computation holds in the
(s, z1, w1)-coordinates, so finally all these automorphisms descend. �

Lemma 4.6. An automorphism of Xa,b is in the connected component of

the identity if and only if it descends as the identity of P1.

Proof. If an automorphism f of Xa,b is in the connected component of the
identity, then by Lemma 4.4 its projection h is isotopic to the identity
through rotations of angle 2iπk/a. This is only possible if h is the identity.
Conversely, if h is the identity, it is easy to see that in Lemma 4.5 we can
move α to 1 and τ to the zero section and obtain a path of automorphisms
from f to the identity. �

Lemma 4.7. Every automorphism of Xa,b is isotopic to the identity through

C∞-diffeomorphisms.

Proof. Let Ba,b be the bundle over P1 with fiber X0 obtained by taking the
quotient of W by the group generated by the λ-homothety in the fibers.
Observe that Xa,b can be deformed to Ba,b putting a parameter ǫ ∈ C and
considering the family

(4.7) W × C/〈g̃〉 −→ C

where the action is given by (we just write it down in the first chart):

(4.8) (t, z0, w0, ǫ) 7→ g̃0(t, z0, w0, ǫ) = (t, λz0 + ǫσ0(t)w0, λw0, ǫ)

Hence Xa,b is C∞-diffeomorphic to Ba,b. More precisely, let X ǫ
a,b be the

fiber of the family (4.7) over ǫ. Then X 0
a,b = Ba,b, and X 1

a,b = Xa,b and
by Ehresmann’s Lemma there is an isotopy of C∞-diffeomorphisms φǫ from
X ǫ
a,b onto X 1

a,b with φ1 equal to the identity.
Let f be an automorphism of Xa,b. It is easy to check, using Lemma 4.5,

that f is still an automorphism of Ba,b and of all the X ǫ
a,b. We are saying

that the map

(4.9) F (t, z0, w0, ǫ) = (Fǫ(t, z0, w0), ǫ) = (f(t, z0, w0), ǫ)
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is an automorphism of the whole family which induces f on each fiber.
The isotopy φǫ ◦ Fǫ ◦ (φǫ)

−1 joins the automorphism f = F1 of Xa,b and
φ0 ◦ F0 ◦ (φ0)

−1 through C∞-diffeomorphisms.
But now, at ǫ = 0, since Ba,b is a holomorphic bundle, we may take any

rotation at 0 as map h and thus construct a path of automorphisms gt of
Ba,b between F0 and the identity. Combining the isotopy φ0 ◦ gt ◦ (φ0)

−1

with the previous one, we obtain that the automorphism f of Xa,b is isotopic
to the identity through C∞-diffeomorphisms. �

The proofs of Theorem 4.1 and Corollary 4.2 follow easily from the pre-
vious lemmas.

5. Final Comments.

The construction behaves well with respect to pull-backs of the base man-
ifold P1. In particular, if g is a ramified covering from P1 to P1, the pull-back
manifold Y = g∗Xa,b will have a more complicated finite group Γ as quotient

Aut1(Y)/Aut0(Y). In this way, we may construct examples with Γ being
any cyclic or dihedral group, or with Γ being the tetrahedral, octahedral or
icosahedral group.4

There are several open questions left on this topic. First the manifolds Xa,b

are not even Kähler and it would be interesting to have a similar example
with projective manifolds. Also, it would be interesting to have examples
with Aut0(X) reduced to zero, but Aut1(X) not, especially examples of
surfaces of general type, cf. [2], [3] and the subsequent literature. Finally, the
most exciting would be to find an example with Aut1(X)/Aut0(X) infinite
since it would give a Teichmüller space with infinite holonomy at some point.
As pointed out to us by S. Cantat, this cannot happen for Kähler manifolds,
since the kernel of the action of Aut(X) on the cohomology contains Aut0(X)
as a subgroup of finite index [6]. But in the non-Kähler world everything is
possible.

For all these additional questions (except perhaps for the first one), it
seems that a really different type of examples is needed.
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