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Abstract

Hurst exponents depict the long memory of a time series. For human-dependent phe-
nomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by
multifractional Brownian motions, which are consistent with time-varying Hurst exponents.
We improve the existing literature on estimating time-dependent Hurst exponents by propos-
ing a smooth estimate obtained by variational calculus. This method is very general and not
restricted to the sole Hurst framework. It is globally more accurate and easier than other
existing non-parametric estimation techniques. Besides, in the field of Hurst exponents, it
makes it possible to make forecasts based on the estimated multifractional Brownian motion.
The application to high-frequency foreign exchange markets (GBP, CHF, SEK, USD, CAD,
AUD, JPY, CNY and SGD, all against EUR) shows significantly good forecasts. When the
Hurst exponent is higher than 0.5, what depicts a long-memory feature, the accuracy is higher.

Keywords – multifractional Brownian motion, Hurst exponent, Euler-Lagrange equation, non-
parametric smoothing, foreign exchange forecast

1 Introduction

Many empirical works demonstrate that Gaussian processes do not fit well the log-price evolution
of various financial assets [33, 35]. Among all the ways explored to get past the standard Brownian
motion, the fractional Brownian motion (fBm) is quite popular. A fBm is characterized by a
parameter H ∈ (0, 1), the Hurst exponent, whose value indicates different properties of the process:

. if H = 1/2, the fBm is identical to a standard Brownian motion,

. if H > 1/2, the increments are persistent,

. if H < 1/2, the increments are anti-persistent.

∗Natixis Asset Management-LabEx ReFi, 21 quai d’Austerlitz, 75013 Paris, France. This work was achieved
through the Laboratory of Excellence on Financial Regulation (Labex ReFi) supported by PRES heSam under the
reference ANR10LABX0095. It benefited from a French government support managed by the National Research
Agency (ANR) within the project Investissements d’Avenir Paris Nouveaux Mondes (investments for the future
Paris New Worlds) under the reference ANR11IDEX000602.
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As a consequence, if we estimate a Hurst exponent H 6= 1/2, then the evolution of the log-prices
is in part predictable and arbitrages may occur [36, 22]. This is in contradiction with most of
the financial literature, based on the efficient-market hypothesis, which precludes any arbitrage.
However, introducing uncertainty in the Hurst exponent enables a higher consistency with the no-
arbitrage theory. The Hurst exponent should therefore be time-dependent. The resulting process
is then called a multifractional Brownian motion (mBm). The accurate estimation of the time-
dependent Hurst exponent is challenging. Indeed, the most widespread estimation methods, based
on a rolling window, have some limits. In particular, one often circumvents the high variance
of estimators by expanding the size of the window or by smoothing the erratic estimates with a
moving average as a post-processing. Both approaches are philosophically similar since they assign
a higher weight to distant times. Whatever the approach, it introduces inaccuracy. For example,
if the true time-dependent Hurst exponent reaches a maximum in time t, the important weight
assigned to times far from t leads to an underestimate of H(t). The purpose of this paper consists in
presenting a proper way of smoothing a series of estimates so as to gain in accuracy, in comparison
to a simple moving average, when estimating time-dependent Hurst exponents.

The smoothing method we propose can be applied to any raw series of a time-dependent statistic.
It is based on variational calculus. More precisely, we obtain a non-parametric smooth estimate
which minimizes the quadratic difference with the raw estimate as well as it minimizes the quadratic
variations of the new estimate. This penalized estimation method is simple to implement with few
methodological choices and leads to satisfactory results and properties. In particular, a simulation
study shows a higher accuracy than the simple moving average with exponential weights, in the
framework of mBm’s.

The method we propose is close to some existing smoothing methods. In fact, the formulation
of the problem as a trade-off between a fidelity term and a smoothness penalty is very common.
For example, in the actuarial literature, it is used to smooth raw mortality data [24, 44]. This is
known as the Whittaker-Henderson problem and was introduced to go beyond the limitations of
the moving average near the boundaries of the sample. The actuarial solution provided to this
problem is however quite different since it is based on numerical schemes with finite differences.
The numerical resolution can therefore be iterative or based on a matrix inversion. Whatever the
technique chosen, it is very different from our Euler-Lagrange framework and the resolution we
propose, which seems computationally faster. However, our paper is not the first to handle this kind
of penalized estimation method with the help of the Euler-Lagrange equation. Indeed, in the image
processing literature, such a method is used to smooth images disrupted by some measurement
noise [12, 43, 48]. But, in these papers, the quite more general framework imposes an iterative
resolution. By contrast, we derive an explicit solution of a second-order ordinary differential
equation, reducing the high-dimension problem to a standard linear problem of dimension two,
which can be solved by a closed formula. It seems therefore that our variational smoothing method
is new, in particular when applied to financial econometrics.

We also applied this technique to make predictions on foreign exchange rates. In the literature,
the Hurst exponent is often only invoked as an indicator of long-memory. If authors find a long-
memory feature, revealed by Hurst exponents higher than 0.5, they make some predictions with
a model which does not specifically relate to the theory behind the Hurst exponent [36, 46]. On
the contrary, the forecasts we make are directly derived from the mBm, in which the time-varying
Hurst exponent plays a prominent role. By doing so, we obtain significantly good forecasts for all
the nine exchange rates we give in example. The accuracy of the forecasts also increases when the
Hurst exponent is higher than 0.5.

The rest of the paper is structured as follows. We first present the state of the art concerning
Hurst exponents (section 2). We particularly focus on the possible ways to estimate them. Then,
we present the post-processing smoothing step of the raw estimate (section 3): we confront the
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variational smoothing to other standard smoothing techniques, such as the moving average or
wavelet-based methods. Then, we give two examples in which we estimate time-varying Hurst
exponents on simulated mBm’s (section 4). This allows us comparing empirically the moving
average and the variational smoothing. Finally, we present a forecasting procedure which we apply
to the FX market (section 5).

2 Hurst exponents: state of the art

In this section, we recall some well-known facts about the fBm, the mBm and the identification of
the Hurst exponent.

2.1 From the fractional to the multifractional Brownian motion

The fBm was introduced by Mandelbrot and van Ness [34], following works initiated by Kol-
mogorov [30]. A fBm BH , of Hurst exponent H and volatility scale parameter σ2, is defined as the
only centred Gaussian process with zero at the origin and with the following covariance function,
for s, t ≥ 0:

E{BH(t)BH(s)} =
σ2

2
(|t|2H + |s|2H − |t− s|2H).

Increments of BH of duration τ are thus stationary: they follow a centred Gaussian distribution of
variance σ2|τ |2H . If H = 1/2, it corresponds to the standard Brownian motion, whose increments
have a variance σ2|τ |. It is worth noting that increments are positively correlated if H > 1/2 and
negatively correlated if H < 1/2, while they are independent for H = 1/2. Indeed:

Correl(BH(n+ 1)−BH(n), BH(1)−BH(0))
= [(n+ 1)2H − 2n2H + (n− 1)2H ]/2

= H(2H−1)
n2(1−H) + o

n→∞

(
1

n2(1−H)

)
.

Moreover,

N∑
n=1

Correl(BH(n+ 1)−BH(n), BH(1)−BH(0))
N→+∞∼ −1

2
+HN2H−1,

which diverges toward infinity when N → +∞, if and only if H > 1/2. This depicts the long-
memory feature of the fBm with H > 1/2. Alternatively, the fBm can be seen as a fractional
primitive function of a standard Brownian motion, if H > 1/2, or as a fractional derivative function
of a standard Brownian motion, if H < 1/2.

The mBm is a generalization of the fBm to time-dependent Hurst exponents [39, 42]. In this model,
the evolution of the Hurst exponent is smooth. In particular it is Hölderian of order 0 < η ≤ 1 [13].
However, some more general functions were introduced for H, for example with singularities, like
the generalized multifractional Brownian motion [3], or even as a stochastic process [4]. In the
present paper, we only focus on the smooth representation of the Hurst exponent function. For a
mBm X, the covariance function becomes, for s, t ∈ [0, 1] [13]:

E{X(t)X(s)} =
σ2

2
g(H(t), H(s))(|t|H(t)+H(s) + |s|H(t)+H(s) − |t− s|H(t)+H(s)),

where {
g(H(t), H(s)) = K(H(t) +H(s))−1

√
K(2H(t))K(2H(s))

K(α) = Γ(1 + α) sin(απ/2)/π.
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For s and t such that H(t) = H(s), we have g(H(t), H(s)) = 1 and the covariance is equal to the
one of a fBm.

The dependence of the increments makes the computation of a fBm or a mBm not as straightfor-
ward as the standard Brownian motion. For the mBm, two representations are commonly used [13].
The first one is based on weighted sums of the increments of a standard Brownian motion W [39]:

X(t) =
σ
√
πK(2H(t))

Γ
(
H(t) + 1

2

) {∫ 0

−∞

[
(t− s)H(t)−1/2 − (−s)H(t)−1/2

]
dW (s) +

∫ t

0

(t− s)H(t)−1/2dW (s)

}
,

(1)
whereas the second one follows a spectral approach [6]:

X(t) =
σ
√
K(2H(t))

2

∫
R

exp(itλ)− 1

|λ|H(t)+1/2
dW (λ).

2.2 Estimating Hurst exponents

In the existing literature, the estimation of a local Hurst exponent for a mBm mainly relies on a
sliding-window technique. The size of the window varies across the articles: for example, 25 days
for daily financial data [10] or roughly 200 points for simulated data [13]. In each window, a static
Hurst exponent is estimated. The choice of the estimator of a static Hurst exponent on an interval
is thus crucial.

Several methods have been tested to estimate the Hurst exponent of a fBm, that is to say a
global Hurst exponent. Among them are the rescaled range (R/S) analysis [27] and the detrended
fluctuation analysis (DFA) [40]. They both consist in the regression of the amplitude of the
fluctuations of the signal on given statistics computed on separate subsamples. While these methods
are quite popular, they have some drawbacks in our perspective. They indeed need a big amount
of data and no asymptotic theory is derived, so that one should use a bootstrap in order to
obtain confidence intervals for the estimates [25, 45]. These methods thus seem more suitable for
estimating global Hurst exponent than as a basis for computing local Hurst exponents.

Alternatively to the R/S analysis and to the DFA, one may use some estimators that are not based
on a regression on subsamples. This group of estimators stems from the absolute moments of a
Gaussian random variable [9, 10]. We assume we have N observations of a mBm X in the time
interval [0, 1]. The observations are equally spaced in time, with a spacing equal to 1/N . We
compute the following statistic in a window of size εN ≤ N , for any given k ∈ N [9]:

Mk(t) =
1

εN

εN−1∑
i=0

|X(t− i/N)−X(t− (i+ 1)/N)|k. (2)

Mk(t) is an estimate of E(|X(t)−X(t− 1/N)|k), which value is:

E(|X(t)−X(t− 1/N)|k) =
2k/2Γ(k+1

2 )

Γ( 1
2 )

σkN−kH(t). (3)

It thus leads to the following estimate of H(t):

Ȟ(t) = −
log(
√
πMk(t)/[2k/2Γ(k+1

2 )σk])

k log(N)
,
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which converges towards H(t) at the rate O((
√
εN log(N))−1), when N goes to infinity.1 Before

being generalised to higher moments, it was first used for k = 1 [39]:

Ȟ(t) = −
log
(√

π
2
M1(t)
σ

)
log(N)

.

Besides, the above moment-based estimator is for a given scale parameter, σ. However, in realistic
applications, σ is unknown. To get rid of this parameter in the estimate of H, we can confront
estimators at different resolutions. Let us focus on the most widespread choice, k = 2 [8, 28, 29].
We compute the average quadratic variation M2(t) as in equation (2) as well as the same kind of
statistic M ′2(t) based on observations in the same window but with halved resolution:2

M ′2(t) =
2

εN

εN/2−1∑
i=0

|X(t− 2i/N)−X(t− 2(i+ 1)/N)|2.

M2(t) andM ′2(t) are respectively equivalent to 2σ2N−2H(t)Γ( 3
2 )/Γ( 1

2 ) and 2σ2(N/2)−2H(t)Γ( 3
2 )/Γ( 1

2 ),

when N goes to infinity. Therefore, the ratio M ′2(t)/M2(t) converges towards 22H(t), so that we
obtain a new estimate of H which does not depend on the unknown scale parameter σ:

Ĥ(t) =
1

2
log2

(
M ′2(t)

M2(t)

)
. (4)

Ĥ(t) converges almost surely toward H(t) [42, 6].

Some refinements inspired by these moment-based estimators are possible:

. The estimate Ĥ(t) is based on the comparison of statistics computed at two different resolu-
tions. Other resolutions could also be taken into account and the formula based on the ratio
of statistics could then be replaced by half the slope of the linear regression of the logarithm
of each statistic over the logarithm of the resolution [13]. However, such an approach would
need a big amount of data so as to build significant statistics at lower resolutions.

. Similarly to Mk(t), we can compute a statistic on filtered observations. More precisely, this
statistic would be defined as an average of the quantities |V at,i(X)|k, for 0 ≤ i ≤ εN − 1,

in which a ∈ Rd is the filter and V at,i(X) =
∑d
j=1 ajX(t− (i+ j − 1)/N). In particular,

the filter applied in the case of Mk(t) is a = (1,−1). Other filters may be used [13]. For
example, the filter a = (1,−2, 1) defines the general quadratic variation [28, 6, 13], for which
the variations |X(t − i/N) −X(t − (i + 1)/N)| are replaced by the second-order variations
|X(t − i/N) − 2X(t − (i + 1)/N) + X(t − (i + 2)/N)|. But the filter may also be more
sophisticated. For example the filtered series could be its wavelet coefficient for a given
wavelet function.

Beside the previously mentioned methods for estimating global Hurst exponents, other ways are
possible, such as the convex combination of sample quantiles [14] or the increment ratio statistic [5,
7]. However, for simplicity, we will focus on one estimator, which is simple and widespread: the
estimator based on quadratic variations at two scales, Ĥ(t).

1 The window should be defined so that its length is asymptotically zero and the number of points it contains is
asymptotically infinite: εN → 0 and NεN →∞.

2 For convenience, we impose εN to be even.
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3 Smooth estimation procedure

The estimation techniques of the time-varying Hurst exponents, exposed in the previous section,
often lead to erratic estimates. To overcome this, one may increase the size of the window of the
estimator. This idea has some drawbacks, since it mitigates the local particularity with distant
observations. Surprisingly, we did not find many papers in which the erratic feature of the estimates
of the Hurst exponent is diminished by a smoothing. In some papers, when estimating the Hurst
exponents in a window, a bigger weight is given to the closer past [37], exactly as when computing
an exponentially-weighted volatility. This technique makes it possible to increase the size of the
windows and thus to smooth the time-varying estimate of the Hurst exponent, while not giving
too much weight to distant observations. In other papers, the raw time series of Hurst exponents
built on a small window is smoothed in a second step. Indeed, the erratic feature of the series
of estimated Hurst exponents is bypassed when analysing the results with the help of parametric
techniques, such as linear regressions [1], or with non-parametric techniques, such as a moving
average [23].

The mBm assumes a smooth evolution of the Hurst exponent. For this reason as well as for the
ease of predictions, it thus seems important to smooth the series of raw and erratic estimated
Hurst exponents. However, we prefer this smoothing not to be limited to an averaging but rather
to respect local particularities as much as possible. For example, given a raw but already smooth
series of Hurst exponents, presenting an extremum, a moving average will attenuate the extremum.
We prefer a method that would leave the extremum almost unaltered while smoothing some erratic
features. We thus propose a technique based on variational calculus, in which we intend to minimize
the distance to the raw estimate as well as the cumulated quadratic variations of the smoothed
estimate.

What we propose is thus a two-step procedure. First we estimate the Hurst exponent time series.
It is a raw estimate which consists in a noisy version of the true unknown Hurst exponent time
series. Then, we smooth this series of estimates and we thus obtain a new series of estimates. In
this paper, we focus on the smoothing procedure, so that the raw Hurst exponent time series can
be obtained by different ways. For the smoothing procedure, we propose a new method based on
variational calculus and we discuss its strengths and weaknesses thereafter by comparing it with
more traditional approaches.

3.1 Variational smoothing

We observe a stochastic process (Xt) in the time interval [0, 1]. We are interested in an unknown
time-varying parameter3 of this process, H : [0, 1] → R. In a first step, we compute an estimate
Ĥ of the unknown function H. In this general outlook of the variational estimation procedure,
the choice of the estimator is not overriding. We indeed focus on the smoothing layer, which
constitutes the second step of the procedure. Ĥ can be considered as a noisy version of H. It can
be very erratic, so that we would like to diminish these strong variations across time. In the second
step, we compute a new estimate H of H. We aim at choosing H close to Ĥ, so that we minimize
the quadratic distance between H and Ĥ. Moreover, we add a penalty term to this minimization
problem so as to obtain a higher smoothness than for the first estimate Ĥ. We thus intend to
choose a function H which minimizes an integral:

H = argmin
h∈C2([0,1],R)

∫ 1

0

[
(h(t)− Ĥ(t))2 + λh′(t)2

]
dt, (5)

3 In this paper, we focus on the Hurst exponent, but our two-step estimation and smoothing method can be
generalized to any other smooth time-varying parameter.
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where h′ is the derivative of a function h and λ ≥ 0 is a parameter quantifying the desired
smoothness. If λ = 0, then H is simply equal to Ĥ and no smoothing occurs. When increasing λ
toward infinity, H should tend toward a constant function equal to the average of Ĥ. The useful
values of λ are in between. It must be adjusted carefully to balance accuracy and smoothness.

The problem stated in equation (5) can be solved in a non-parametric way thanks to the variational
theory. Indeed, we present in the following theorem a formula for H, in which only two unknown
constants appear.

Theorem 1. Let Ĥ : [0, 1] → R be two times differentiable and λ > 0. Then, a solution H :
[0, 1]→ R of equation (5) is necessarily of the form:

H : t 7→ et/
√
λ

(
A− 1

2
√
λ

∫ t

0

e−s/
√
λĤ(s)ds

)
+ e−t/

√
λ

(
B +

1

2
√
λ

∫ t

0

es/
√
λĤ(s)ds

)
,

where A,B ∈ R.

The proof of this theorem as well as of the following ones are reported in the appendix.

We notice the apparent contradiction between the statement that Ĥ may be very erratic and the
assumption in Theorem 1 that it is also two times differentiable. In fact, we intend to use such a
theorem in a very practical world, in which we observe the continuous process at discrete times.
By a simple polynomial interpolation, every function observed in discrete time can be interpolated
by an infinitely differentiable function, even if the discrete observations seem very erratic.

The smoothing of Ĥ thus works according to the following simple algorithm.

1. First, compute ΦĤ, where Φ is the operator such that, for h ∈ C2([0, 1],R) and t ∈ [0, 1]:

Φh(t) = −e
t/
√
λ

2
√
λ

∫ t

0

e−s/
√
λh(s)ds+

e−t/
√
λ

2
√
λ

∫ t

0

es/
√
λh(s)ds. (6)

2. Then, project the residual in the functional space generated by t 7→ et/
√
λ and t 7→ e−t/

√
λ.

The constants A and B in Theorem 1 can be obtained numerically, given λ. We can also use
the particular structure of the explanatory variables to reduce the algorithmic complexity
and get a closed-form solution. We present this method in Theorem 2.

Theorem 2. Let Ĥ : [0, 1]→ R be two times differentiable and λ > 0. Then, the unique solution

H : [0, 1]→ R of equation (5) such that
∫ 1

0
(H(t)− Ĥ(t))2dt is minimal is:

H : t 7→ ΦĤ(t) +Aet/
√
λ +Be−t/

√
λ,

where Φ is the operator introduced in equation (6) and:

G(t) = Ĥ(t)− ΦĤ(t)

C =
√

2√
λ(e2/

√
λ−1)

D = C(e−2/
√
λ − C4)−1/2

A = C2(1 + C2D2)
∫ 1

0
G(s)es/

√
λds− C2D2

∫ 1

0
G(s)e−s/

√
λds

B = −C2D2
∫ 1

0
G(s)es/

√
λds+D2

∫ 1

0
G(s)e−s/

√
λds.

Theorem 2 provides a closed-form expression for the variational smooth estimator. However, in a
practical perspective, for very low values of λ,4 we recommend to optimize A and B numerically

4 In the simulations and examples provided in this paper, we observe this behaviour for λ < 0.02.
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instead of using the formulas provided in Theorem 2. Indeed, when λ is close to zero, the values
of the exponentials in the expression of H diverge toward infinity, so that the computation of all
the parameters as stated in Theorem 2 is inaccurate, because of the discrete approximations of the
integrals. In such a case, the values obtained for A and B in Theorem 2 can be used to initiate the
optimization procedure. Alternatively, in a discrete framework, we can use standard results about
linear regression, as stated in Theorem 3.

Theorem 3. Let Ĥ(t1), ..., Ĥ(tn) be n statistics associated to times t1 = 0 < t2 < ... < tn = 1,
with n > 1. Then, the unique function H : {t0, ..., tn} → R such that

∑n
i=1 (H(ti)− Ĥ(ti))

2dt is
minimal and of the form

H : t 7→ ΦdĤ(t) +Aet/
√
λ +Be−t/

√
λ,

where Φd is the discretized version5 of the operator introduced in equation (6) and λ > 0, is
characterized by:

(
A
B

)
=

1(∑n
i=1 e

2ti/
√
λ
)(∑n

i=1 e
−2ti/

√
λ
)
− n2

( (∑n
i=1 e

−2ti/
√
λ
)(∑n

i=1 e
ti/
√
λ[1 − Φd]Ĥ(ti)

)
− n

(∑n
i=1 e

−ti/
√
λ[1 − Φd]Ĥ(ti)

)
(∑n

i=1 e
2ti/
√
λ
)(∑n

i=1 e
−ti/

√
λ[1 − Φd]Ĥ(ti)

)
− n

(∑n
i=1 e

ti/
√
λ[1 − Φd]Ĥ(ti)

)
)
.

In Theorem 4, we show to which extent the variational smoothing method is accurate in the
continuous setting. In particular, if we directly apply the smoothing procedure to the smooth
function H to be estimated, we should obtain something close to H, especially when λ is close to
zero. In this asymptotic case, Theorem 4 allows us understanding the link between λ and the error
made when smoothing with our variational method.

Theorem 4. Let Φ be the operator introduced in equation (6) and H an analytic function [0, 1]→
R. Then, for λ→ 0, there exists ξ ∈ [0, 1] such that:

min
(A,B)∈R2

∫ 1

0

(
ΦH(t) +Aet/

√
λ +Be−t/

√
λ −H(t)

)2

dt ≤ 4λ2H ′′(ξ)2 + o(λ2).

In particular, if H is an affine function, the variational smoothing reproduces it without any error.6

It is not the case for some other techniques such as the moving average. By the way, we present in
a more empirical way the differences between the variational smoothing and the moving average
in section 4.

3.2 Comparison with other smoothing methods

Beside the method we introduced above, several smoothing techniques exist. They are the core of
non-parametric regressions [26]. Among them, we can cite averaging techniques and decompositions
in orthogonal series, such as Fourier and wavelet series.

5 For i ≤ n, we can define it as:

ΦdĤ(ti) = −
eti/
√
λ

2
√
λ

i∑
j=0

e−tj/
√
λĤ(tj)Vj +

e−ti/
√
λ

2
√
λ

i∑
j=0

etj/
√
λĤ(tj)Vj ,

where Vj is the Voronoi cell size of tj in the grid {t0, ..., tn}, as presented in [20]. In this simple case, tj =
(tj+1 − tj−1)/2. Theorem 3 can be applied for equispaced grids but also for random observation times. If t0, ..., tn
are independent and identically distributed, we can quantify the inaccuracy of the discretized version of Φ as the
maximum spacing, whose probability distribution can be approximated [19].

6 This statement is a direct consequence of the proof of Theorem 4, which is reported in the appendix. Indeed, if

H is an affine function such that H(t) = a0 +a1t, then ΦH(t) = H(t)−Aet/
√
λ−Be−t/

√
λ, with A = (a0 +a1

√
λ)/2

and B = (a0 − a1
√
λ)/2.
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The moving average is a rule of thumb insofar as it is not based on the minimization of a quadratic
error. In addition, in a predictive perspective, it can introduce some significant lag since the last
estimate is smoothed with more ancient observations. Therefore, we do not expect the highest
accuracy for this technique. It is however easy to compute and depends on the only choice of an
exponential weighting parameter.

The decomposition of a signal (a series of observations or statistics) in a series of orthogonal
functions makes it then possible to smooth the signal. This can be achieved either by truncating
the orthogonal series or by modifying those coefficients which are supposed to be largely disrupted
by some noise. Wavelets series are often preferred to Fourier series since they describe more
precisely local peculiarities. They have been widely used in image processing [32], but also for
dynamical systems [17, 21], for estimating mBm’s [8] or in finance [18, 41]. The use of this
technique may seem painstaking since many technical choices must be made, which could generate
as many outputs: mother wavelet, resolution level, denoising threshold, thresholding technique,
etc. The computational cost is also high due to nested integrals. Moreover, wavelets cannot be
used directly to make predictions. Border effects indeed have to be managed in a proper way [47].
For all these reasons, wavelet techniques can be considered as accurate but complicated.

In comparison, the variational smoothing appears to be both accurate and easy to use. It is based
on the choice of only one parameter. We also highlight that the wavelet technique uses a projection
of the signal into a functional space which is generated by numerous wavelet functions. On the
contrary, the variational smoothing, as in Theorem 2, implies the projection in a space generated
by only two functions. How is it possible to reduce as such the complexity of the decomposition
of the signal? In fact, in the variational smoothing technique, the family of generating functions
is adaptive. Contrary to the wavelet framework, we do not impose ex ante the family but we
define a family of functions which depend on the signal. The easy use of the variational smoothing
technique is also due to the very simple mathematical objects involved: sums and exponential
functions.

We discuss empirically the accuracy of the variational smoothing in the next section as well as in
section 5, dedicated to forecasting.

4 A simulation study

In this section, we compare the accuracy of the weighted moving average and of the variational
smoothing for a large range of parameters. We exclude the wavelets from this analysis since they do
not imply the choice of a sole parameter, contrary to both the moving average and the variational
smoothing. The accuracy is determined by three metrics:

. The mean integrated squared error (MISE) depicts the average accuracy of the method:

R0 =
1

N

N∑
i=1

[
H
(
i

N

)
−H

(
i

N

)]2

,

for N observations in [0, 1], H being the smooth estimate of H.

. The average bias in t = 1, that is on the right of the sample:

R1 = H (1)−H (1) .

It depicts the ability of the technique not to create artificial gaps at the border of the sample.
This is an important feature in the predictive framework we develop further in this paper.
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. The average quadratic slope, which determines to which extent the erratic estimate has been
smoothed:

R2 =
1

N − 1

N∑
i=2

[
H
(
i
N

)
−H

(
i−1
N

)
1/N

]2

.

We now introduce the simulation examples. They consist in two samples. We first simulate a mBm
on the time interval [0, 1] with an affine Hurst exponent, ranging from 0.1 to 0.9. The time interval
is discretized in 200 points. The raw estimate of the Hurst exponent for each of these 200 dates is
computed on a window of 25 observations. We then obtain the smoothed Hurst exponents by two
methods: a variational smoothing of parameter 0.02 and an exponentially weighted moving average
of parameter 0.04. Both parameters have been chosen so as to produce an overall good accuracy for
each method. We thus obtain the estimates represented in Figure 1. We also represent the three
metrics R0, R1 and R2 for 100 simulated trajectories in Figure 2 in a more general framework,
that is for different choices of parameter for both techniques.

Figure 1: Theoretical affine Hurst exponent (thick line), raw esti-
mate based on a simulated mBm (thin line), its variational smoothing
(black dotted line) and its moving average (grey dotted line).

The second example follows the same method. The only difference in the input is the theoretical
Hurst exponent, which is an exponential function in [0, 1] ranging from 0.2 to 0.8:

t 7→ 0.2 + 0.6
exp(t2)− 1

exp(1)− 1
.

As for the affine Hurst exponent, we represent the estimates for one simulated trajectory (Figure 3)
and the average accuracy metrics for 100 trajectories for various choices of parameter for both
methods (Figure 4).

10



Figure 2: R0 vs R2 and R1 vs R2 for the affine Hurst exponent. The
black line is for the variational smoothing, for a parameter between
0.02 (corresponding to the highest quadratic slope) and 280 (corre-
sponding to the lowest quadratic slope). The grey dotted line is for
the moving average, for a parameter between 0.01 (corresponding
to the lowest quadratic slope) and 0.05 (corresponding to the high-
est quadratic slope). The average quadratic slope of the theoretical
Hurst exponent is 0.64.
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Figure 3: Theoretical exponential Hurst exponent (thick line), raw es-
timate based on a simulated mBm (thin line), its variational smooth-
ing (black dotted line) and its moving average (grey dotted line).

In the two trajectories in Figures 1 and 3, we observe that the variational technique smooths more
accurately the local raw Hurst exponents. For instance, in Figure 1, the moving average is biased by
the increasing Hurst exponents, so that the raw curve of Hurst exponents is overestimated for the
extremum at low t, whereas high Hurst exponents for the extremum at high t are underestimated.
It is due to the fact that the moving average mitigates the local raw estimates with neighbours,
which are higher in the first case and lower in the second case. Thus, despite the quite adequate
averaging of the raw estimate by the moving average in the middle of the sample, border effects
are significant. We also observe this phenomenon in Figure 3 for high t, but not that much for
low t. It is not fortuitous: the slow variation of the exponential Hurst function for low t limits the
distortion.

The superior accuracy of the variational smoothing over the moving average can also be noted while
comparing average errors. In Figures 2 and 4, the choice of the parameter for each method makes it
possible to tune monotonically the average smoothness R2 of the estimate: the higher (respectively
lower) the parameter, the smoother the variational (resp. moving-average) estimate. In general,
in the affine and exponential examples, for a given value of R2, the variational smoothing makes
it possible to reach a lower MISE (R0) and a bias in t = 1 (R1) much closer to zero than does the
moving average. The difference of the lowest MISE reached by each method is also significant and
it is always in favour of the variational smoothing: 0.013 versus 0.016 in the affine case and 0.017
versus 0.019 in the exponential. By the way, in both cases, if we want to minimize the bias in
t = 1, we are inclined to give up a low average MISE for the moving average, whereas an acceptable
balance between R0 and R1 seems more achievable for the variational smoothing.

One could ask why the average bias is almost always negative in the examples provided in Figures 2
and 4. This underestimate of H(1), whatever the parameter, is inherent in the growing feature
of the theoretical Hurst exponent in the examples. For the parameters illustrated in both figures,

12



Figure 4: R0 vs R2 and R1 vs R2 for the exponential Hurst expo-
nent. The black line is for the variational smoothing, for a parameter
between 0.02 (corresponding to the highest quadratic slope) and 280
(corresponding to the lowest quadratic slope). The grey dotted line is
for the moving average, for a parameter between 0.01 (corresponding
to the lowest quadratic slope) and 0.05 (corresponding to the high-
est quadratic slope). The average quadratic slope of the theoretical
Hurst exponent is 0.61.
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the bias is anyway always closer to zero for the variational smoothing and even reaches zero and
positive values for some parameters in the affine case. However, when increasing the parameter
of the moving average, the bias monotonically reduces and it asymptotically reaches zero. By the
way, it also reaches a very high MISE, since it asymptotically converges toward the raw series.

If we focus on the accuracy of the variational smoothing, the shape of the curves in Figures 2 and 4
shows a striking critical point. In fact, this point corresponds to a smoothing parameter which
leads to an affine approximation of the raw series. For lower parameters and thus for a higher R2,
the approximation is closer to the raw series. Higher parameters and thus lower R2 correspond to
a more degenerate situation in which increasing the smoothness of the estimate go farther than
a simple affine approximation. The slope of the estimate indeed slowly decreases up to reach a
constant approximation of the raw estimate.

5 Forecasting prices of financial assets using Hurst expo-
nents

We now use our variational smoothing method for estimating the Hurst exponents of a mBm in
a predictive perspective. We first present the forecasting procedure and then an application to
financial asset prices and more precisely to foreign exchange rates.

5.1 Forecasting procedure

Based on equation (1), which defines the mBm, we introduce a forecasting procedure. Let X be
the log-price of a financial asset. We make the assumption that it is driven by a mBm. We will
use the dependence feature of the log-returns to make some predictions. More precisely, from the
time series X, we first estimate raw Hurst exponents, whose calculation, for each time t, takes into
account a given number of preceding observations of X. We thus have a series Ĥ, defined for the
equispaced times 0, δ, ..., Tδ. We choose τ < T , which defines the length of a sample on which we
smooth Ĥ. For t ∈ {0, ..., T − τ}, we make successive out-of-sample predictions for X((t + τ)δ),
based on the sole knowledge of (X(sδ))s≤t+τ−1. It is done as in the following algorithm, in which
a one-step prediction is made in t+ τ − 1 for the time t+ τ , with a given t:

1. Compute the smooth version (H(sδ))t≤s≤t+τ−1 of the raw estimate (Ĥ(sδ))t≤s≤t+τ−1 of the
Hurst exponents, as exposed in section 3.1.

2. Forecast the Hurst exponent at time (t + τ)δ. The forecasted value, H((t + τ)δ), can be
obtained by a C2-continuation of (H(sδ))t≤s≤t+τ−1:

H((t+ τ)δ) =
5

2
H((t+ τ − 1)δ)− 2H((t+ τ − 2)δ) +

1

2
H((t+ τ − 3)δ).

3. Estimate the scale parameter σ using the definition of the total variation of a mBm, stemming
from equation (3) with k = 1. The estimate is noted σ̂ and uses the estimate of the Hurst
exponents in the time interval [tδ, (t+ τ − 1)δ]:

σ̂ = τ−1

√
π

2

t+τ−1∑
s=t

|X(sδ)−X((s− 1)δ)|
δH(sδ)

.
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4. Estimate the underlying standard Brownian motion W as exposed in the definition of the
mBm in equation (1). This estimate, Ŵ , uses σ̂ and the estimate of the Hurst exponents in
the time interval [tδ, (t+ τ − 1)δ]. As at the origin t of the time interval the mBm should be
0, we translate X by X(tδ). We thus compute it iteratively for s = t to s = t+ τ − 1:

Ŵ (sδ) = Ŵ ((s−1)δ)+(X(sδ)−X(tδ))Π(sδ)−1s>t
s−1∑
u=t

[Ŵ (uδ)− Ŵ ((u− 1)δ)](s− u+ 1)H(sδ)−1/2,

where 1s>t is the indicator function, whose value is 1 if s > t and 0 else, and:

Π(sδ) =
Γ(H(sδ) + 1

2 )

σ̂δH(sδ)−1/2
√

Γ(2H(sδ) + 1) sin(πH(sδ))
.

Since only the increments of W are of interest in our method, we choose Ŵ ((t− 1)δ) = 0.

5. Compute the forecasted log-return7 r((t+ τ)δ):

r((t+τ)δ) =

t+τ−1∑
s=t

[
Ŵ (sδ)− Ŵ ((s− 1)δ)

] [ (t+ τ − s+ 1)H((t+τ)δ)−1/2

Π((t+ τ)δ)
− (t+ τ − s)H((t+τ−1)δ)−1/2

Π((t+ τ − 1)δ)

]
.

This value is the expected log-return in t + τ , given the estimates of all the useful terms
indexed by times s < t+ τ , as well as the forecast H((t+ τ)δ). It is equivalent to replacing
Ŵ ((t+ τ)δ) by its expectation at time (t+ τ − 1)δ, that is to say Ŵ ((t+ τ − 1)δ).

All the estimates H, σ̂ and Ŵ are specific to the time interval used for the forecast in t + τ .
Therefore, it must be estimated again for the next forecast in t+ τ + 1 and so on until reaching T .
We could thus have indexed these estimates to stress the fact that they are specific to the sample
[t, t+ τ − 1] and to avoid any ambiguity. However, we have decided not to overload the equations.

To be consistent with the framework of the previous sections, in which mBm’s were observed in
the time interval [0, 1], we choose δ = (τ − 1)−1.

5.2 Results

We apply the forecasting procedure we have set out on nine foreign-exchange rates versus Euro: the
British pound (GBP), the Swiss franc (CHF), the Swedish krona (SEK), the United States dollar
(USD), the Canadian dollar (CAD), the Australian dollar (AUD), the Japanese yen (JPY), the
Chinese yuan (CNY) and the Singapore dollar (SGD). We focus on a high-frequency framework,
in which prices are observed every 15 minutes.

This paper is not the first to deal with the analysis of Hurst exponents of foreign exchange rates.
But existing papers on the subject focus on the estimate of a piecewise fBm for different market
phases without smoothing [2, 31], on describing the long-memory feature of FX time series [15, 46],
on estimating a mBm with random Hurst exponents [11] or on the multifractal spectrum [16, 38].
To our knowledge, our paper is the first to deal with predictions for FX markets deduced from the
estimation of a mBm. In the litterature, mBm have been estimated on other types of financial
time series, mainly on equity indexes [8, 10]. The value of Hurst exponents has also already been
confronted to the performance of a simple strategy [36]: this strategy has not been based on
forecasting Hurst exponents but it has revealed gains which increase with the value of the Hurst
exponent. It is consistent with the findings we develop in this section.

7 Forecasting the log-price follows the same method.
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We now detail the data we use for this example. We observe each of the 9 foreign-exchange rates
between the 7th March 2016 and the 7th September 2016 every 15 minutes of open market. The
exchange rate considered is the average between the highest and the lowest rate in the 15-minute
time interval. This makes roughly 12,930 observations for each exchange rate, with the notable
exception of the CNY/EUR pair, for which we only have 7,422 observations. Then, for each series,
we compute a raw estimate of the Hurst exponent using 25-observation windows. The estimate
follows equation (4) and is only based on preceding observations so as not to introduce unfairness
in the forecasting procedure. We then smooth this raw series of Hurst exponents on a sample of
50 consecutive raw estimates, which represent 12.5 hours. Variations of the Hurst exponent can
be significant in such a small interval as one can see, for example, in Figure 5. This remark is a
strong justification for the analysis of financial time series as mBm’s rather than the more popular
piecewise fBm’s. With the help of the prediction method presented in section 5.1, we make a
forecast for the exchange rate 15 minutes after the end of the smoothing sample. We repeat this
procedure until the end of the sample, using overlapping windows of 50 raw estimates.

Figure 5: Raw Hurst exponent estimate (solid line) and smoothed
estimate (dotted line) for the SEK/EUR the 21st March 2016 between
9:00 and 21:15.

To assess whether the forecasting procedure is efficient or not, we calculate a hit ratio: we count
the proportion of times that the forecasted exchange rate evolution has the same sign than the real
one. We exclude the few observations for which the real return is equal to 0. We report the results
in Table 1. Be observe a hit ratio above 50% for all the currencies. We compare it with the hit
ratio obtained if we replace the smoothed estimate by the raw series in the forecasting procedure.
The hit ratio for the raw series is always smaller and is sometimes lower than 50%.

However, on could argue that the forecasting procedure using the smoothed estimate of the Hurst
exponent only reaches 52.7%, which is not far from 50%. We have three answers to this remark.
The first one focus on the significance of the hit ratio. As mentioned in the presentation of the
data, we work on huge samples, so that the hit ratios obtained for the forecasting procedure are
very significantly better than the 50% of a simple coin toss. We legitimate this assertion with a
two-tailed binomial test, whose null assumption is a hit ratio of 50%. The results are also reported
in Table 1. The only exchange rate whose p-value is greater than 1% is the CNY/EUR for the
variational smoothing,8 whereas the procedure based on the raw Hurst exponent never obtain
p-values lower than 1%.

8 For the CNY/EUR exchange rate, only 7,422 observations are provided in the time interval.
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Raw Hurst exponents Variational smoothing

GBP/EUR 50.5% (2.5× 10−1) 52.4% (5.8× 10−8)

CHF/EUR 50.5% (2.7× 10−1) 51.6% (3.2× 10−4)

SEK/EUR 51.1% (1.6× 10−2) 52.7% (2.6× 10−9)

USD/EUR 50.0% (1.0) 52.5% (3.5× 10−8)

CAD/EUR 50.7% (1.4× 10−1) 52.0% (5.4× 10−6)

AUD/EUR 50.5% (3.1× 10−1) 52.4% (1.4× 10−7)

JPY/EUR 50.7% (1.2× 10−1) 52.2% (6.5× 10−7)

CNY/EUR 49.7% (5.9× 10−1) 51.1% (7.3× 10−2)

SGD/EUR 51.0% (2.6× 10−2) 51.3% (2.9× 10−3)

Table 1: Overall proportion of good forecasts. In parenthesis, the
p-value of the test of equality with Bernoulli variables of parameter
50%.

The second explanation for the limited performance of the forecasting procedure is linked to the
fact that some predictions are more reliable than others. We represent in Figure 6 the hit ratio
conditionally to the local smooth Hurst exponent. For Hurst exponents higher than 0.5, the hit ratio
is high, always larger than 50%, whatever the currency. It goes up to 56%. On the contrary, the hit
ratio is varying a lot for Hurst exponents lower than 0.5 and we cannot assert with confidence that
forecasts are good or are wrong. This point is interesting for practitioners: if one estimates a Hurst
exponent greater than 0.5, one can make some prediction. Otherwise, a low Hurst exponent would
lead to unreliable forecasts. This finding is consistent with the results reported in the literature [36].
Since Hurst exponents greater than 0.5 correspond to a long-memory feature, contrary to lower
Hurst exponents, the better performance of the forecasting procedure in that case is quite intuitive
and we have here an empirical evidence of this idea. Nevertheless, we observe for half the exchange
rates that the hit ratio slightly decreases for very high Hurst exponents (approximatively between
0.9 and 1). We can provide an explanation for this phenomenon. Such very high Hurst exponents
indeed correspond to a very long memory of the process, so that any reliable forecast must be
based on many observations in the past. We suppose that the windows used in the forecasting
procedure are then too narrow to provide reliable predictions.

The way the last increment (Ŵ ((t+ τ)δ)− Ŵ ((t+ τ − 1)δ)) of the standard Brownian motion is
treated is the third and last source of inaccuracy in the forecasting procedure. Indeed, we decided
to replace this increment by its expected value, which is zero. However, this increment is a random
variable which can be either positive or negative. Therefore, assuming a perfect estimation of the
dynamic, this last increment is uncertain and its realized value could lead the realized return away
from our forecast.

6 Conclusion

We have presented a method to smooth a raw estimate of any time-dependent variable. This
method offers an improvement to existing techniques. The moving average is indeed not as accurate
on borders and the wavelet-based techniques are more intricate due to an important dependence
on parameter choices. On the contrary, the variational smoothing is very easy to implement and
one only has to choose a penalizing parameter. The application to estimating time-varying Hurst
exponents and making some predictions on the FX market is quite promising, in particular for
Hurst exponents higher than 0.5. For this purpose, we have proposed a forecasting method which
is based on the estimated dynamics of a mBm. Further works would consist in applying the
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Figure 6: Frequency (smoothed with a Gaussian kernel) with which
the model correctly forecasts the sign of the return, as a function
of the local Hurst exponent. Top: GBP/EUR (black), CHF/EUR
(dark grey), SEK/EUR (light grey). Middle: USD/EUR (black),
CAD/EUR (dark grey), AUD/EUR (light grey). Bottom: JPY/EUR
(black), CNY/EUR (dark grey), SGD/EUR (light grey).

18



variational smoothing technique to other statistics than the Hurst exponents, or to use it on time
series analysis to have a more accurate description of mBm’s and long-memory features.

A Proof of Theorem 1

Proof. The equation (5) can be written:

H = argmin
h∈C2([0,1],R)

∫ 1

0

L (t, h(t), h′(t)) dt,

where
L (t, h(t), h′(t)) =

[
(h(t)− Ĥ(t))2 + λh′(t)2

]
. (7)

Since Ĥ is assumed to be two times differentiable, then L is also two times differentiable, as well
as the unknown function h, by assumption. We can therefore apply the Euler-Lagrange equation,
which states that the function H which minimizes the equation (5) is such that:

∂

∂h
L (t,H(t),H′(t)) =

d

dt

∂

∂h′
L (t,H(t),H′(t)) . (8)

Using together equations (7) and (8), we get, for λ > 0:

H′′(t)− H(t)

λ
= −Ĥ(t)

λ
. (9)

It is easy to solve the linear differential equation (9). It can be done for example by variation
of parameters. The functions v1 : t 7→ exp(t/

√
λ) and v2 : t 7→ exp(−t/

√
λ) are two indepen-

dent solutions of the homogeneous equation corresponding to equation (9). Their Wronskian,
W (v1, v2) = v1v

′
2 − v′1v2, is simply a constant function equal to −2/

√
λ. Therefore, any solution

to the non-homogeneous equation (9) can be written:

H(t) = v1(t)

(
A−

∫ t

0

v2(s)

W (v1, v2)(s)
×

(
−Ĥ(s)

λ

)
ds

)
+v2(t)

(
B +

∫ t

0

v1(s)

W (v1, v2)(s)
×

(
−Ĥ(s)

λ

)
ds

)
,

with A,B ∈ R. This last equation directly leads to Theorem 1.

B Proof of Theorem 2

Proof. Any solution of equation (5) is provided by Theorem 1:

H : t 7→ ΦĤ(t) +Aet/
√
λ +Be−t/

√
λ,

where the parameters A and B can be adjusted to fit the solution with the initial condition. In our
case, the condition to fit with is the minimal quadratic distance between H and Ĥ. In other words,
parameters A and B are given by the orthogonal projection of G = Ĥ−ΦĤ in the two-dimensional
functional space Π, with a L2([0, 1]) norm, generated by:{

v1 : t 7→ et/
√
λ

v2 : t 7→ e−t/
√
λ.
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Therefore,
PΠ(G) = Av1 +Bv2. (10)

From (v1, v2), we create an orthonormal set of vectors (w1, w2), generating the same space than
(v1, v2), thanks to the Gram-Schmidt method. We thus set, for 〈., .〉 and ‖.‖ the scalar product
and the norm in L2([0, 1]):

w1(t) = v1(t)/‖v1‖ = Cv1(t),

where C =
√

2√
λ(e2/

√
λ−1)

, and

w2(t) = v2(t)−〈v2,w1〉w1(t)
‖v2−〈v2,w1〉w1‖

= v2(t)−C2v1(t)√
‖v2‖2+C4‖v1‖2−2C2〈v2,v1〉

= v2(t)−C2v1(t)√
e−2/

√
λC−2+C4C−2−2C2

= Cv2(t)−C3v1(t)√
e−2/

√
λ−C4

= Dv2(t)− C2Dv1(t),

where D = C(e−2/
√
λ−C4)−1/2. We then project G in the space Π generated by the pair (w1, w2).

We write the projection PΠ(G) = c1w1 + c2w2. By definition of the projection, c1 and c2 are given
by:

c1 = 〈G, w1〉 = C〈G, v1〉

and
c2 = 〈G, w2〉 = D〈G, v2〉 − C2D〈G, v1〉.

Thanks to equation (10), we get

Av1 +Bv2 = c1w1 + c2w2 = (Cc1 − C2Dc2)v1 +Dc2v2.

Since v1 and v2 are independent, we obtain the following system:{
A = Cc1 − C2Dc2
B = Dc2,

which directly leads to the solution given in Theorem 2

C Proof of Theorem 3

In the following proof, the notation M ′ is the transpose of a matrix M . The framework is here
linear algebra, so that no confusion should arise with the similar notation f ′ used in other parts
of the paper for the derivative of a function f .

Proof. The problem stated in Theorem 3 is an ordinary least-square problem of the form Y =
Xa+ u, with Y = ([1− Φd]Ĥ(t1), ..., [1− Φd]Ĥ(tn))′, a = (A,B)′, u a residual and

X =

 et1/
√
λ e−t1/

√
λ

...
...

etn/
√
λ e−tn/

√
λ

 ,
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whose solution is provided by the estimate â = (X ′X)−1X ′Y . In particular,

X ′X =

( ∑n
i=1 e

2ti/
√
λ n

n
∑n
i=1 e

−2ti/
√
λ

)
,

det(X ′X) =

(
n∑
i=1

e2ti/
√
λ

)(
n∑
i=1

e−2ti/
√
λ

)
− n2 6= 0,

for any finite λ and n > 1, and

(X ′X)−1X ′Y =
1

det(X ′X)

( ∑n
i=1 e

−2ti/
√
λ −n

−n
∑n
i=1 e

2ti/
√
λ

)( ∑n
i=1 e

ti/
√
λ[1− Φd]Ĥ(ti)∑n

i=1 e
−ti/

√
λ[1− Φd]Ĥ(ti)

)
,

which leads to the solution given in Theorem 3 after some standard matrix calculus.

D Proof of Theorem 4

Proof. Let f : t ∈ [0, 1] 7→ tp, where p ∈ N. If p = 0, then Φf(t) = 1 − (et/
√
λ + e−t/

√
λ)/2 for all

t ∈ [0, 1]. We now assume that p ≥ 1. Then, thanks to p successive integrations by parts, we get:
∫ t

0
e−s/

√
λspds = −λ(p+1)/2p!

(
e−t/

√
λ − 1

)
+
∑p
k=1

(
−λk/2 p!

(p−k+1)! t
p+1−k

)
e−t/

√
λ∫ t

0
es/
√
λspds = (−1)pλ(p+1)/2p!

(
et/
√
λ − 1

)
+
∑p
k=1

(
(−1)k+1λk/2 p!

(p−k+1)! t
p+1−k

)
et/
√
λ,

so that:

Φf(t) =

 −
λp/2

2 p!
(
et/
√
λ + e−t/

√
λ
)

+ λp/2p! +
∑ p

2−1

k=0 λ
k p!

(p−2k)! t
p−2k if p is even

−λ
p/2

2 p!
(
et/
√
λ − e−t/

√
λ
)

+
∑ p−1

2

k=0 λ
k p!

(p−2k)! t
p−2k if p is odd.

We now use the assumption of H being an analytic function. Then, H can be written as a
convergent power series: H(t) =

∑+∞
p=0 apt

p. Therefore:

ΦH(t) = a0

[
1− (et/

√
λ + e−t/

√
λ)/2

]
+
∑∞
p=1 ap

∑b p−1
2 c

k=0 λk p!
(p−2k)! t

p−2k

−
∑+∞
p=1 ap

λp/2

2 p!
(
et/
√
λ + (−1)pe−t/

√
λ
)

+
∑∞
p=1 a2pλ

p(2p)!.

If we choose A =
∑+∞
p=0 apλ

p/2p!/2 and B =
∑+∞
p=0 (−1)papλ

p/2p!/2, we get:

ΦH(t) +Aet/
√
λ +Be−t/

√
λ = H(t) +

+∞∑
k=1

λk
(
H(2k)(t) +H(2k)(0)

)
,

where H(n) is the n-th derivative of H. For λ→ 0, we get:

ΦH(t) +Aet/
√
λ +Be−t/

√
λ −H(t) = λ

(
H(2)(t) +H(2)(0)

)
+ o(λ).

The arbitrary choice we made for A and B may not be optimal in the sense of a minimization of∫ 1

0
(ΦH(t) +Aet/

√
λ +Be−t/

√
λ −H(t))2dt. This remark leads to the inequality stated in Theo-

rem 4.
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