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We present a numerical method named Mixed High Order (MHO) to obtain high order of convergence for electrostatic problems
solved on general polyhedral meshes. The method, based on high-order local reconstructions of differential operators from face and
cell degrees of freedom, exhibits a moderate computational cost thanks to hybridization and static condensation that eliminate cell
unknowns. After surveying the method, we first assess its effectiveness for three-dimensional problems by comparing for the first
time its performances with classical conforming finite elements. Moreover, we emphasize the algebraic equivalence of MHO in the
lowest-order with the analog formulation obtained with the Discrete Geometric Approach or the Finite Integration Technique.

Index Terms—Poisson problem, electrostatics, high order, polyhedral meshes

I. INTRODUCTION

IN the past few years, the interest in discretization meth-
ods for diffusive problems on general polyhedral meshes

has considerably grown, see for example [1] and references
therein. Polyhedral mesh generators are currently being devel-
oped and once they are going to be available, they will provide
more flexibility in element shapes. This flexibility, in turn,
should yield to easier techniques for adaptive mesh refinement,
derefinement and non-overlapping domain decomposition with
non-matching grids. In particular, the non-conforming-like
refinement—as the subgridding proposed in [2]—and the
adaptive coarsening strategy [3] are particularly appealing.

We consider the problem of seeking the electric displace-
ment vector field d : Ω Ñ R3 and the scalar potential field
v : Ω Ñ R in a polyhedral domain Ω Ă R3 such that

ε´1d`∇v “ 0 in Ω, (1a)
∇¨d “ ρs in Ω, (1b)
v “ 0 on BΩ, (1c)

where ρs is the volumetric source charge density and ε is the
electric permittivity. We assume that ε is constant on each
element T of a polyhedral mesh Th of the domain Ω, and we
denote its value εT .

This paper presents the Mixed High-Order (MHO) method
of [4], which is able to obtain high order convergence in the
solution of (1) on arbitrary polyhedral meshes. This paper aims
at assessing the performance on three dimensional problems
by comparing with classical conforming finite elements in
terms of accuracy vs. computational time. The paper also
emphasizes the analogies, in the lowest order case corre-
sponding to the polynomial degree k “ 0, with the Discrete
Geometric Approach (DGA) [2]. In particular, this novel
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method is algebraically equivalent (up to the choice of a
scalar parameter in the stabilisation term) to the mixed-hybrid
geometric formulation described in [5]. The MHO method
bears also some similarities with the Discontinuous Galerkin
(DG) [6], but it presents a higher convergence rate for a given
polynomial degree. Contrary to DG, the degrees of freedom
are attached to both the faces and the elements of the mesh.
Moreover, cell-based unknowns may be easily eliminated by
element-wise static condensation.

The paper is organized as follows. In Section II we survey
the MHO method and show how to reinterpret the DGA as
the MHO method in the lowest-order. Section III presents the
comparison of results provided by the MHO with respect to the
finite elements on a test case with analytical solution. Finally,
in Section IV, some conclusions are drawn.

II. THE MIXED HIGH-ORDER METHOD

The starting point of the MHO method is the classical weak
formulation of problem (1): Find pd, vq P D ˆ V such that,
for all pτ, uq P D ˆ V ,

ż

Ω

ε´1d ¨ τ ´

ż

Ω

vp∇¨τq “ 0, (2a)
ż

Ω

p∇¨dqu “
ż

Ω

ρsu, (2b)

where D denotes the space of square-integrable vector-valued
functions whose divergence is also square integrable, while V
contains square-integrable scalar-valued functions. The main
idea is to define some degrees of freedom (DOFs) in each el-
ement to be able to locally reconstruct the divergence operator
and the displacement d. These reconstructions are used in (2)
to write discrete counterparts of each term of (2).

Let a polynomial degree k P N be fixed, and consider
a mesh element T P Th. The local space of DOFs for the
displacement is defined as the following polynomials

Dk
T :“ pεT∇PkpT qq ˆ PkpFT q,

see Fig. 1, where PkpFT q is the space of polynomials of degree
k over the boundary of T that are possibly discontinuous at the
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Fig. 1: Local degrees of freedom in Dk
T for k P t0, 1, 2u.

edges shared by the faces of T . Element-based and face-based
DOFs represent, respectively, polynomial moments of d inside
T and polynomial moments of the outward normal component
of d on F . We remark that element-based DOFs are present
only for k ě 1. For the collection the total DOFs in Dk

T , we
use the underlined notation τT “ pτT , τBT q, where τT contains
the vector-valued element-based DOFs, while τBT contains the
scalar-valued face-based DOFs (which can be interpreted as
the polynomial moments of the outward normal component of
the displacement).

We define the discrete divergence operator Dk
T : Dk

T Ñ

PkpT q such that, for all τT P D
k
T and all q P PkpT q,

ż

T

pDk
T τT qq “ ´

ż

T

τT ¨∇q `

ż

BT

τBT q. (3)

Equation (3) resembles an integration by parts formula where
the role of the displacement inside T and on its boundary BT
is played by τT and τBT , respectively.

By similar principles, the displacement reconstruction oper-
ator Rk

T : Dk
T Ñ εT∇Pk`1pT q is such that, for all τT P D

k
T

and all w P Pk`1pT q,
ż

T

Rk
T τT ¨∇w “ ´

ż

T

pDk
T τT qw `

ż

BT

τBTw.

Notice that, for all τT , Rk
T τT is a polynomial one degree

higher than the element-based DOFs τT .
For all T P Th, the local contribution

ş

T
ε´1 d ¨ τ to the

first term in (2a) is approximated by the bilinear form mT on
Dk

T ˆD
k
T such that

mT pdT , τT q :“

ż

T

ε´1
T Rk

T dT ¨Rk
T τT ` sΣ,T pdT , τT q,

with stabilization bilinear form given by

sΣ,T pdT , τT q

:“

ż

BT

γBT pRk
T dT ¨nBT ´ dBT qpRk

T τT ¨nBT ´ τBT q, (4)

where nBT is the vector field representing the face normals
on BT pointing out of T and

γBT :“ hT pεTnBT ¨nBT q
´1 (5)

with hT diameter of T . This stabilization is mandatory for
the bilinear form mT to be positive-definite (SPD). The idea
behind (4) is to penalize in a least-square sense the differ-
ence between two quantities that both represent the normal
component of the displacement on BT .

We next introduce the global space qD
k

h of fully discontin-
uous DOFs for the displacement as well as its subspace Dk

h

with continuous face-based DOFs:

qD
k

h :“
ą

TPTh

Dk
T ,

Dk
h :“

!

τh P
qD

k

h | @F P FT1 X FT2 , τBT1 |F ` τBT2 |F “ 0
)

.

In practice, this is easily achieved in the usual assembling
process by considering the same DOFs for the face shared by
two elements.

The approximation of the scalar potential v is sought in

V k
h :“ PkpThq.

The MHO method reads: Find pdh, vhq P D
k
h ˆ V

k
h such that

for all pτh, uhq P D
k
h ˆ V

k
h it holds

mhpdh, τhq ´

ż

Ω

pDk
hτhqvh “ 0, (6a)

ż

Ω

pDk
hdhquh “

ż

Ω

ρsuh, (6b)

where mh is obtained by the usual element-by-element as-
sembly and Dk

h is set equal to Dk
T applied to the restriction of

τh inside each element T P Th. Convergence as hk`1 for the
displacement and as hk`2 for the potential is proved in [4].

A. Hybridization to obtain a SPD system matrix

In the numerical results section we use a reformulation
of (6) to obtain a SPD sparse system matrix (on the contrary,
(6) is a saddle point problem). At the continuous level, the
idea is to eliminate the displacement d in (1) and consider the
following classical primal formulation where the potential v
is the only unknown: Find v P U such that, for all u P U ,

apv, uq :“

ż

Ω

ε∇v ¨∇u “

ż

Ω

ρsu, (7)

where U contains square-integrable, finite energy functions
which comply with the boundary condition (1c).

At the discrete level, the local elimination of the displace-
ment is performed by enforcing the continuity of interface
DOFs in Dk

h by Lagrange multipliers (which can be interpreted
as in [5] as traces of the potential) and inverting inside each
element T P Th the local constitutive laws expressed by (6a);
cf. [7] for the details.

Let us introduce the following space of hybrid DOFs:

V k
h :“ V k

h ˆ PkpFhq.

For a generic element of V k
h we use the underlined notation

vh “ pvh, pvF qFPFh
q. The discrete counterpart of v regarded

as an element of U is sought in the following subspace V k
h,0

of V k
h incorporating the homogeneous Dirichlet condition on

BΩ:
V k

h,0 :“
!

vh P V
k
h | vF “ 0 @F P BΩ

)

.

Let us again concentrate on one element T P Th. We denote
by V k

T the restriction of V k
h to T and, for all vT P V k

T ,
we let vBT be the broken polynomial function on BT such
that vBT |F “ vF for all F P FT , so that vT “ pvT , vBT q,
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Fig. 2: Local degrees of freedom in V k
T for k P t0, 1, 2u.

Degrees of freedom represented by red dots can be eliminated
locally by the static condensation procedure described in [7].

see Fig. 2. From the potential DOFs in V k
T , we can define

a reconstruction of displacement DOFs in Dk
T through the

potential-to-displacement mapping operator ςkT : V k
T Ñ Dk

T

such that, for all vT P V
k
T and all τT P D

k
T ,

mT pς
k
T vT , τT q “ ´

ż

T

vT pDk
T τT q `

ż

BT

vBT τBT .

A high-order reconstruction of the potential can then be
defined through the operator Pk`1

T : V k
T Ñ Pk`1pT q such

that, for all vT P V
k
T ,

´εT∇Pk`1
T vT “ Rk

T pς
k
T vT q,

ż

T

pPk`1
T vT ´ vT q “ 0.

For a given vT P V
k
T , Pk`1

T vT is a polynomial one degree
higher than the element based DOFs vT . Pk`1

T vT can be
computed directly from the hybrid DOFs in vT solving the
following problem: For all w P Pk`1pT q,

ż

T

εT∇Pk`1
T vT ¨∇w

“

ż

T

εT∇vT ¨∇w `

ż

BT

pvBT ´ vT qεT∇w¨nBT .

Consider the following approximation of (7): Find
pdh, vhq P

qD
k

h ˆ V
k
h,0 such that, for all T P Th,

dT “ ´ς
k
T vT , (8a)

and, for all uh P V
k
h,0,

ahpvh, uhq :“
ÿ

TPTh

aT pvT , uT q “

ż

Ω

ρsuh, (8b)

where the local bilinear form aT on V k
T ˆ V

k
T is

aT pvT , uT q :“

ż

Ω

εT∇Pk`1
T vT ¨∇Pk`1

T uT

` sΣ,T pς
k
T vT , ς

k
TuT q.

It can be proved that dh P D
k
h and, with vh P V k

h the broken
polynomial function obtained from element-based DOFs in vh,
pdh, vhq P D

k
h ˆ V

k
h solves (6).

B. Link with DGA or FIT

The DGA of [2] is equivalent to the MHO formulation (6)
in the lowest-order case (i.e. k “ 0). For the equivalence to
work, we have first to assume that, for every mesh element
T P Th, there exists a point xT (i.e. the dual node ñ) with
respect to which T is star-shaped.

The only difference between the two approaches is in the
stabilization parameter γBT which, in the case of DGA, is such
that for all F P FT (compare with (5))

γdga
BT |F “ p3 distpxT , F qq

´1ε´1
T pxF ´ xT q¨pxF ´ xT q,

where xF denotes the barycenter of F .

III. NUMERICAL RESULTS

The implementation of the proposed method is based on
the primal form (8). The size of the linear system to solve
is further reduced by locally eliminating element-based DOFs
by static condensation (represented in red in Figure 2), see [7]
for details. Therefore, accounting for the strong enforcement
of Dirichlet boundary conditions, a matrix of size NdofˆNdof

is obtained, where Ndof “ cardpF i
hq ˆ

`

k`2
k

˘

and cardpF i
hq

is the number of faces in the interior of Th.
The performance of the method is assessed on a problem

for which an analytical solution is available. That is, we
consider an electrostatic problem in the unit cube Ω “ p0, 1q3

subject to homogeneous Dirichlet boundary conditions. The
charge density ρs is selected so that the exact solution is
v “ sinpπ xq sinpπ yq sinpπ zq. We evaluate the performances
of MHO for polynomial orders 0 ď k ď 4 by solving the
problem on five isotropic tetrahedral meshes obtained as the
refinement of the coarsest one. All the sparse linear systems
are solved with the algebraic multigrid solver AGMG [8]
by stopping the iterations once the relative residual reaches
1¨10´9. The computations are performed on a laptop equipped
with an Intel Core i7-3720QM processor clocked at 2.60GHz
and 16Gb of RAM.

We consider, as a first error measure, the error in the energy
norm defined as een :“ }ε1{2∇hpv ´ Pk`1

h vhq}, where v
denotes the exact solution and Pk`1

h is equal to Pk`1
T applied

to the restriction of vh for all T P Th. We also monitor the ap-
proximation of the electrostatic energy E :“ 1

2 apv, vq´
ş

Ω
ρsv

defined as Eh :“ 1
2 ahpvh, vhq ´

ş

Ω
ρsvh. Since most global

quantities of interest, such as the capacitance, may be obtained
from energy, this second error measure is very important in
electromagnetic applications.

We remark that we also include the computational time
defined as the total wall time needed for the simulation
(i.e. not just CPU time), including the pre-processing (mesh
generation and creation of mesh incidences), the assembly of
the sparse matrix, the solution of the linear system, and the
post-processing (electrostatic energy, energy error and, above
all, data storage for visualization).

Figures 3 and 4 show the convergence in energy norm een

with respect to the mesh density h and the number of degrees
of freedom Ndof , respectively. As expected, he asymptotic
convergence of een with respect h coincides with the one
predicted by the theory. Figure 5 show the convergence of
the difference between the total electrostatic energy E and
the estimated one Eh with respect to the computational time
required. From this figure we can conclude that the method is
convenient even if one is willing to invest in the solution only
a few seconds. We should also mention that the advantage is
even bigger in practice given that with high order one uses
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Fig. 3: een vs. h.

less elements and thus saves a lot of time also by reducing
the meshing time (which is not included in this analysis).

For the benchmark we used tetrahedral meshes: on one hand
to be able to compare with the classical finite element method
and, on the other hand, because many efficient, automatic and
open source mesh generators for such elements exist and they
are well-integrated in the computer-assisted modeling chain.
Moreover, the convergence slopes are correctly retrieved only
if the set of meshes are produced by recursively subdividing
the coarsest one. Now this is quite difficult to perform with
general polyhedral meshes because the appropriate tools are
currently being developed.

To validate the method also with general polyhedral ele-
ments, we start from an initial mesh composed of tetrahedral
elements which is fine enough to capture the geometric
features of the domain (for example, curved boundaries)
and the scales of the exact solution. Then, we perform the
computations on a polyhedral mesh obtained by agglomerating
elements of the background tetrahedral mesh. Doing so we
obtain for example the mesh with 470 polyhedra represented
in Fig. 6. The correct solution obtained with MHO and k “ 1
is represented in Fig. 6. A similar technique has been used in
the adaptive coarsening strategy [3], which is a new procedure
that is able to drastically reduce the number of degrees of
freedom with respect to the ones resulting from the tetrahedral
background mesh without the need to regenerate a new mesh.
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