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On the generation of colored non-Gaussian time
sequences

Jacques Lavergnat

Juillet 2016

Résumé
Une revue des principales méthodes de génération d’une série tem-
porelle stationnaire, colorée non-Gaussienne, avec leurs limitations,
est présentée. Quelques compléments sont apportés selon le pro-
blème à résoudre.

Abstract

In this text we examine several means for generating non-
Gaussian stationary time series with prescribed autocovariance.
For each of them we focus on their limitations and propose some
new arrangements which depend upon the involved problem.

1 Introduction

Generating pseudo-random numbers which have both a pres-
cribed marginal distribution and a non Dirac autocovariance be-
comes a need which appears as a milestone in the application of
Monte Carlo methods of simulation. Indeed, many stationary time
series observed in various contexts (engineering, economics, earth-
sciences. . .) are clearly non-Gaussian and exhibit internal correla-
tion. This correlation may have short range or long range extent.
The main part of this work deals with the first, but some topics
will be given on the last one.
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1. Introduction

1.1 Preliminaries : what is to be solved ?

The title of this paper, which is closed to the point of view of
an observer, deserves explanations for clarifying the aim of this
work.
Some classical definitions and results have to be recalled in order
to well state our approach.
A real random sequence Xn, n = −∞, . . .∞ is said strictly statio-
nary if the distribution of the sequence Xk, Xk+1, . . . Xk+m does
not depend upon k ∈ Z whatever m ∈ Z+. The stationarity im-
plies the invariance with respect of time translation, or in other
words the independance upon the time origin, a situation which is
mostly encountered in practical situations.
A sequence which has finite second-moments is said a second-order
sequence. In this case, if the mean m = E(Xk) is independant
upon k and the covariance matrix is such than ∀i, j Cov(Xj, Xi) =
Σj,i = Σ0,|j−i|, the sequence is said second-order stationary or sta-
tionary in wide sense according to the scientific community.
A sequence is Gaussian if all of its finite-dimensional marginal dis-
tribution are Gaussian. A Gaussian sequence is stationary if and
only if it is second-order stationary, then the sequence is comple-
tely characterized by m and Σj,i.
When the sequence is not Gaussian, it is thus clear that even if
it is identically distributed, the knowledge of Σj,i is insufficient to
completely characterize the sequence. Therefore there exist many
time series, with different finite-dimensional marginal distributions
but the first-order, which exhibit the same Σj,i. The most evident
consequence is (c.f. infra) that they look at different.

Three points may be drawn from these considerations
i) Additional constraints are necessary in order to build an al-

gorithm and according to the choice of them the result is
various [1, 2, 3].

ii) It must be well understood that the fact to succeed in ge-
nerating a sequence which has both a prescribed marginal
distribution and covariance does not grant the quality of
the simulation of a practical situation. It is not the aim of
this paper to go further in this direction, each practical case
being different. A check of suitability has to be made before
using any algorithm. Theses tests are not the main purpose
of this paper. However, for example, a test of linearity of the
process [4] may be very useful to confirm the so-called linear
method (cf infra).

iii) Nevertheless, the most numerous algorithms are suitable, the
most we will have the chance to get a « good » time series,
that is to say, which are close to the phenomena we would
simulate.
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1.2. General considerations on the various methods

To be complete, underline that the properties of non-negativity
and symmetry are necessary and sufficient for a matrix being an
autocovariance one[4].
In real situation, one only gets a few of realizations of the defined
sequence that prevents estimating its autocovariance. The assump-
tion of second-order ergodicity allows to avoid this drawback and
one uses the mean times autocorrelation in place of autocovariance
with the probabilistic equivalence

lim
n→∞

n∑
−n

1

2n
E(XnXn+k) = Σ0,|k| +m2 almost surely

The relevance of this hypothesis is not the matter of this work.

This paper deals with different algorithms convenient for our
goal. The presentation is a little bit didactic, even if our purpose is
not to achieve a pure mathematical derivation, but only to empha-
size some milestones in the various mechanisms we can imagine. In
some sens, its are variations on a same subject. Many ideas were
already pointed out, their authors are cited in the right place. One
can find at the end of the reference book [5] general considerations
related to the matter.

1.2 General considerations on the various methods

In the Gaussian case, the problem was deeply investigated for a
long time. Almost all of the methods use the fact that the Gaussian
character of a sequence is maintained throughout linear system
and that moreover, a Gaussian sequence obeys a linear recurrence
finite or infinite.
By the way, filtering a Gaussian white noise (a Gaussian sequence
iid 1) is the basis of most of the technics.
Before entering in details, let us remind that filtering a discrete
process relies upon output y and input x, by a convolution :

y = x ? h (1)

and that consequently :

Ryy = Rxx ? Rhh (2)

where the R.. are respectively the autocorrelation of the output,
the input, and the impulse response. The simple law (2) suggests
the three first tracks for solving our problem.

i) If x is a white noise, then the output has the color of the
filter. It just remains to find the right pdf 2 for x, which

1. iid : independant and identically distributed
2. pdf :probability density function
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1. Introduction

leads to the wanted pdf of y. This is the essence of the linear
method. For a Gaussian noise, as previously mentioned, only
the color of the filter has to be determined.

ii) In a dual way, assuming that the input signal has the wanted
color, we can therefore filter by a white random signal. Now,
we have to choose a good pdf for h in order to get the wanted
pdf for the output. The difficulty is the same as previously.
As moreover the algorithms for random filtering are much
more complex, this method is not attractive and therefore
will not analyzed more further.

iii) Any transform g(x) of a time series changes both the auto-
correlation and the statistic. First one determines g(x) for
getting the desired output pdf from a Gaussian one. By a ba-
ckward computation, one can deduce the autocorrelation of
this Gaussian process which gives, throughout the transform
g(x), the wanted Ryy. We are thus brung back to a classical
problem. We refer this method as the non-linear one. The
pioneer works are those of [6, 7].

iv) When two variables are said to be correlated in common
sense, this means that their values are « close »together. In
other words, the correlation is concerned more by the relative
order than by the absolute values. This observation leads to
the method which consists in transfering the order of a time
series having the good color on to a well distributed one. We
refer this method as « decalcomania ». This idea was first
explored by [8] and later by [9].

v) A complete heuristic approach belonging to stochastic-swap
methods has been proposed by [10], is very efficient and ro-
bust.

After presenting these methods we study additionnal tools allo-
wing some combining of autocorrelation functions. Using these
tools, one can decompose an autocorrelation function in simpler
functions for which the previous methods are easier to implement.

1.3 The red thread

In order to compare the different methods an example will be
used throughout this work, it acts as a « red thread ». Originating
in the study of rain properties [11], it deals with the successive
diameters of rain drops falling on a small defined area.
Figure 1 shows the observed (near Paris) histogram of the diame-
ters which can be considered as issue from a shifted gamma law,
the probability density of which being

p(x) =
b−a

Γ(a)
(x− S)a−1 exp(−x− S

b
) (3)

with a = 0.69; b = 0.41;S = 0.2 for x in mm
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Figure 2 shows the autocorrelation which is quite a weighted sum
of pulse and triangle. In order to achieve our goal we use the technic
of combination already mentioned. Therefore we firstly deal with
a triangular shape for the autocorrelation.

Figure 1 – Histogram of raindrop size observed near Pa-
ris(France) in 1993

2 The non-linear method

2.1 Principles

Let us take X a sequence of iid random variables, the pdf of
which being f1(x). Let g(x) be a regular transformation (g′(x) 6=
0). The new sequence Y = g(X) has the following pdf :

p(y) =
f1(x)

g′(x)
(4)

The inversion of (4) is easy to obtained, analytically or numeri-
cally.
The autocorrelation of Y reads :

Ryy(k) = E[y(i)y(i+ k)]

=

∫∫
g(x(i))g(x(i+ k))f2[x(i), x(i+ k))]dx(i)dx(i+ k) (5)
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2. The non-linear method

Figure 2 – Example of autocorrelation of the same sequence as
figure 1

In (5), f2 is the second order probability density function. If f2 de-
pends only upon f1 and the autocovariance Rxx of X, therefore (5)
can be inverted and once upon a time g has been determined, one
gets Rxx(k) function of Ryy which is the wanted color.
In some way, we have transpose our problem to an other probabi-
lity distribution modifying accordingly, the color of the sequence.
It is therefore advantageous to choose a distribution for which the
problem is solvable. Gaussian distribution is clearly a must. Fi-
gure 3 sketches the method which is achieved when g and h are
known.

Figure 3 – Sketch of the non-linear method
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2.2. Determination of g(x)

2.2 Determination of g(x)

Without any restriction, one can choose :

f1(x) =
1√
2π

e−x
2/2

f2(x
′, x”, k) =

1

2π
√

1− ρ2xx(k)
exp [−x

′2 − 2ρxx(k)x′x” + x”2

2(1− ρ2xx(k))
]

(6)

where ρ..(k) = R..(k)/σ2 denotes the normalized autocorrelation
function. If F is the cumulative distribution function of the wanted
time sequence, inversion of (4) gives

g(x) = F−1(
1 + erf(x/

√
2)

2
) (7)

The autocorrelation Rxx is now obtained through inversion of

Ryy(k) =

∫∫
g(x′)g(x”)

2π
√

1− ρ2xx(k)
exp [−x

′2 − 2ρxx(k)x′x” + x”2

2(1− ρ2xx(k))
]dx′dx”

(8)
One checks that −1 ≤ ρxx ≤ 1 ⇒ m2

1 ≤ Ryy ≤ m2, as expected,
wheremn is the ne order moment of Y . In some cases, the inversion
of (8) can be performed analytically. For example, if Y has to be
uniformly distributed over (0, 1) one computes [7] :

ρxx(k) = 2 sin
πρyy(k)

6
(9)

In most of the cases, as for our red thread, the inversion must be
numerically executed.

2.3 Determination of h

The main drawback of the method is that it fails in some cases
when Rxx(k) is not well behaved. Indeed, Rxx(k) has to be definite
non-negative [4] and this property is not guaranteed.
A simple counter-example is developed in Appendice A.

It is very difficult to find the conditions prevailing this phe-
nomenon. In fact, we have observed its removal when Ryy(k) is
sufficiently concave.
Fortunately in a lot of questions, the accuracy of the correlation is
not mandatory. In such a case, one can take this opportunity for
escaping the difficulty by modifying slightly Ryy(k).
When the objectiveRxx(k) is well behaved, it remains to determine
the impulse response h of the filter. At this point, it is worthwhile
to recall that classical methods such AR, MA or ARMA do not
operates in all cases. As previously, a trade off may be to loose
accuracy in order to get tractability. Nevertheless, the most ap-
propriate technics seems to be MA because AR leads often to an
unstable filter and ARMA requires AR as a first step.
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2. The non-linear method

2.4 Example

MA technics consists in finding the zeros of the following po-
lynomial Φ(z) in order to get a factorized form :

Φ(z) = zN [Rxx(N)zN+. . . Rxx(0) · · ·+Rxx(N)z−N ] = B(z)B(z−1)

The zeros inside the unit circle generates B(z) and the zeros out-
side B(z− 1). When zeros are on the unit circle, the factorization
is impossible with real values. This constraint is different from the
non-negativity one.
In our red thread example, the correlation may extend to 1000
lags. The polynomial Φ(z) is thus of order 2000 and they are nu-
merical difficulties in finding its zeros. To remove this trouble, we
have restrict this polynomial at a less degree (e.g. 20). Once the
corresponding Br(z) is known, it is expanded by interpolation over
the desired maximum lag (here 1000). Let b(i), i = 1, . . . N , be the
coefficients of B(z). The normal time sequence with normalized
autocovariance Rxx(k) is obtained by

Rxx(k) =
N∑
i=0

b(i)ν(k − i)

where ν is a white normal noise. As a first step, what is intended
is to simulate a pure triangular correlation (without the impulse
at the origin). As already quoted, the shifted gamma law (3) does
not lead to a well-behaved Rxx. Therefore, a new form has been
chosen, which is close to a triangle but suitable for the method :

Ryy(k) =
1− 0.001|k|
1 + |k|/750

Figure 4 shows the results of the simulation over 500 000 points.
They are very good except the fact we had slightly modify the
autocorrelation according to the formula above.

Figure 4 – Example of the non-linear method
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3 The linear method

3.1 Principles

In essence, the linear method filters a white time sequence, the
first order statistical distribution of which is matched with the
desired distribution of the output. For the same reasons quoted
above, the filtering resorts to MA technics. Thus the output reads :

y(k) =
N∑
i=0

b(i)x(k − i) (10)

The coefficients b(i) are computed as mentioned in the previous
section and with the same limitations. X is an iid. sequence whose
probability density function has to be specified. From (10) it fol-
lows that the pdf of Y is a multiple convolution :

g(y) =
N∏
i=0

?
[ 1

b(i)
f(

y

b(i)
)
]

(11)

For solving (11), we use the generating functions of the first and
second order 3. From (11), we deduce (with self-explained nota-
tions) :

ĝ(u) =
N∏
i=0

f̂(ub(i)) (12)

g̃(u) =
N∑
i=0

f̃(ub(i)) (13)

When (12) or (13) are inverted, the problem is solved. Moreover,
even if one does not know invert generating functions their know-
ledge is sometimes sufficient for drawing [12].

3.2 Example : the red thread

In this case, the correlation being triangular the N coefficients
b(i) are equal. We can specify b(i) = 1/

√
N . As g(y) is infinitely

divisible, ∀n ∈ Z+, ĝ(u)1/n exists and is a generating function.
Therefore, the solution of (12) is simply f̂(u) = ĝ(u

√
N)1/N which

corresponds to the pdf

f(x) =
1

Γ(a/N)(b
√
N)a/N)

(x− S/
√
N)

a
N
−1 exp(−x− S/N

b
√
N

) (14)

Figure 5 shows the results of the simulation accordingly to this
method. Very efficient for the autocorrelation, this method is poo-
rer than the non linear one as pdf is concerned. It is noticeable

3. We use the definitions f̂(u) = E[eux] and f̃(u) = log[f̂(u)]
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3. The linear method

Figure 5 – Example of the linear method

and must be underlined that the time series look very different in
both method, linear and non-linear.
Figure 6 gives an extract of the simulated sequence obtained in the
two methods. This difference is clearly a confirmation of the dis-
cussion of the introduction. One does not would be satisfied with
getting only the good distribution and correlation. It is mandatory
to check more (e.g. third moment) depending upon the simulation
uses.

Figure 6 – Extract of simulated sequence for both methods

3.3 Further considerations

Our example is so particular than one can wonder if it is the
only one for which the linear method is completely achievable !
The conjunction of a particular shape of autocorrelation and a in-
finitely divisible distribution is however not unique. The following
deals with two approaches allowing to extend the application’s
field of the linear method.
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3.3. Further considerations

3.3.1 The Mellin transform approach

We will restrict ourself to the distributions defined on <+.
Indeed, the Mellin transform of a real function h(t) reads :

H(s) =

∫ ∞
0

h(t)ts−1dt for α < Real(s) < β

The inverse transform is

∀α < c < β h(t) =
1

2iπ

∫ c+i∞

c−i∞
H(s)t−sds

Apart of the linearity, the Mellin transform has the useful pro-
perty :

∀a > 0⇒ h(at)
TM−−→ a−sH(s) (15)

If we consider a pdf f(x) defined over <+, its generating function
f̂(u) = E[eux] is real. Its second order generating function is thus
real and non positive. Therefore one gets from (13) :

g̃(u) =
N∑
i=0

f̃(ub(i))
TM−−→ G(s) = F (s)

N∑
i=0

b(i)−s (16)

Formally, the solution of (19) reads

F (s) =
G(s)∑N
i=0 b(i)

−s
(17)

In order to achieve the resolution, it just remains to take the in-
verse Mellin transform of (17), that is often not very easy.
It is worthwhile to recognize

∑N
i=0 b(i)

−s as a Dirichlet series, some
of them are summable in a closed expression. In some cases the
inversion of (17) may thus be achieved easier.
For instance, when b(i) = b = cte, (17) becomes F (s) = G(s)/Nb−s,
thus f̃(u) = g̃(u/b)/N and f̂(u) = ĝ(u/b)1/N . We recover the pre-
vious solution for an infinitely divisible distribution.
Therefore, one can build family of autocorrelation functions for
which the linear method is available. Among them, one can cite
an important class.

Autocorrelation of exponential type
With b(i) = αi, 0 < α < 1 and N =∞, one gets successively 4

Ryy(k) = αk and
∞∑
i=0

b(i)−s =
1

1− α−s

from which one has

F (s) = (1− α−s)G(s)⇒ f̃(u) = g̃(u)− g̃(αu)⇒ f̂(u) =
ĝ(u)

ĝ(αu)

4. Notice that this filtering is equivalent to the ARMA recurrence−αy(n)+
y(n− 1) = x(n− 1)
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3. The linear method

Specifying the pdf of Y as an exponential one as g(y) = λe−λy and
ĝ(u) = λ

λ−u . Therefore it comes

f̂(u) =
λ− αu
λ− u

⇒ f(x) = (1− α)λe−λx + αδ(x)

3.3.2 The cumulant approach

When the inversion of (17) is not possible, one can use an
another method for simulation purposes.
The cumulants of a distribution having a second order moment
generating function g̃(u) are given by the derivations

κj =
dj g̃

duj

∣∣∣∣
u=0

(18)

Therefore (13) leads to the relationship

κk =

[ ∞∑
j=0

bkj

]
χk (19)

where κk and χk are respectively the cumulant of order k of the
distributions g and f .
The moment problem [13] deals with the existence and unicity of
a distribution having a given sequence of moments (or cumulants).
It is beyond the scope of this paper to give an extensive discussion
about the existence of a distribution having a sequence of cumu-
lants given by (19).
It has been established some conditions for the existence but there
exists some examples for which the unicity is not fulfilled. Howe-
ver, in view of simulation, the unicity is not mandatory due to the
fact that the target is not the distribution f but the distribution
g.
Nevertheless caution is required and each case must be carefully
controlled.
Since the cumulants are known, one is able to generate a lot of dis-
tribution functions either using the Edgeworth expansion [14, 15]
or orthogonal development [12].
Appendice D gives some details about this technic and a corres-
ponding algorithm. Nevertheless, as explain in the appendice there
is no certainty about the convergence of the used expansion.

A counter-example
The sequence b(i) = (i+ 1)−m, i = 0, . . .∞, where m is a positive
real, generates a family of normalized autocovariance functions
which read after straightforward calculations :

Ryy(k) =
∞∑
i=1

[i(i+ k)]−m

ζ(2m)
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where ζ is the Riemann zeta function.
As
∑∞

i=0 b(i)
k =

∑∞
j=1 j

−mk = ζ(mk), (19) is easily reducible to :

χk =
κk

ζ(mk)

For instance, it is worthwhile to note that, for 0.5 < m < 1, this
family of autocorrelation functions includes long range of correla-
tion (

∑
k Ryy(k) = ∞), but this method fails trivially when the

target distribution has not a null mean. Indeed,
∑∞

j=1 j
−m diverges

when m < 1 and thus (19) implies κ1 = χ1 = 0.

4 Probability mixing and the decalcomania
method

4.1 Preliminaries

Let us take two sequences and perform a probability mixing
of them. If the first order statistical properties are identical for
the two sequences one keeps it after mixing. However it is not the
case for the autocorrelation. We take advantage of this behavior
for solving our problem.
For fixing the ideas let us take A and B two stationary sequences
independent and identically distributed with normalized autocor-
relations α(k) and β(k). Let U be a new time sequence of zeros
and ones, following an « head and tail » law of parameter p with
normalized autocorrelation C(k). Let us define the time sequence
Z by the relationship :

Z(n) = U(n)A(n) + (1− U(n))B(n) (20)

The normalized autocorrelation of Z reads with q = 1− p :

ρZ(k) = q2α(k) + p2β(k) + pqC(k)[α(k) + β(k)] (21)

From (21), it appears that the autocorrelation includes now a Di-
rac at the origin. That means the probability mixing whiten the
sequences by increasing the disorder. At first glance probability
mixing is thus not a good tool for building a colored noise. Howe-
ver, generalization of this mixing open new possibilities of trans-
formation of the autocorrelation without changing the first order
statistic.
Let us take n times sequences identically distributed and mutually
independent. Aggregate them with the vectorial symbol X.
Let A be a sequence of random vectors of dimension n whose only
one coordinate is equal to 1, the others being 0. The following
sequence is created :

Z(k) = X ·A =
n∑
i=1

xi(k)ai(k) (22)

13



4. Probability mixing and the decalcomania method

There is a direct equivalence between the multi-dimensionnal se-
quence A and a sequence U , the domain of definition of which
being the rationnals from 1/n to 1 by step of 1/n. Using the dif-
ferent normalization relationships and introducing the normalized
autocorrelation of U , Ruu(m), straightforward calculations (Ap-
pendice B) gives

Rzz(m) = [
n− 1

n
Ruu(m) +

1

n
]Rxx(m) (23)

If ∀k Rxx(k) = 1, that means the sequence X are constant, then
in the limit n→ , one gets :

Rzz(m) = Ruu(m) (24)

By construction the series Z has the same distribution than X.
But, here, (24) carries out the transfer of the color from U to Z.
This result gives mathematical foundations to the ideas introduced
by [8].

4.2 Implementation

Outline of the method, which is well named decalcomania,
consists in random drawing a sequence of uniform variable U over
(0, 1) with prescribed color, then taking F−1(u) where F is the
wanted distribution function.
Evidently, the construction of U requires another method. The
non linear one is particularly attractive taking into account the
simplicity of the function 2 sin[πRzz/6] - see (9) -.
Unfortunately we are not guaranteed that this function has the
well autocorrelation behavior as noted above in section 2.
Nevertheless, whatever our tests are, the results are particularly

Figure 7 – Examples of decalcomania method

good, as figure 7 attests. Moreover it is suitable to emphasize the
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simplicity of this method when it works.
Besides, it appears that this technic may be useful when simulating
long range memory processes (see below).

5 The swap method

This method is a purely heuristic one. It is often use when the
sequence is not too long [10]. Since, generally, one intends to simu-
late a real situation the idea is to start with a sequence identically
distributed which follows the prescribed probability distribution.
One postulates that, by rearranging the sequence (among the N !
possibilities if N is the length of the sequence) one can find a per-
mutation, the autocorrelation of which is close to the desired one.
The question which arises immediately deals with the duration of
such a process, because a « bruteforce » is in N ! and there is no
way a priori to find a short path.
Oneway to proceed is to use the following algorithm which starts
from the iid sequence X0 of length N . Let us di the distance bet-
ween the autocorrelation RXi

and the desired autocorrelation R ;
we will come back on the choice of this distance. ε is the upper
distance we would reach.

Xi

Swap two values xi, xj.
The couple (i, j) is uniformly distributed over (0, N)× (0, N).
This transformation gives a new sequence Xi+1.
If di+1 ≥ di return to the beginning.
If di+1 < di substitute Xi+1 for Xi and start again but di+1 < ε
where one stops.
In order to decrease the computing time, it is advised to compute

Figure 8 – Autocorrelation obtained after 107 iterations for the
red thread

not di+1 but di+1−di. Details are given in Appendice C. The choice
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6. Splitting of autocorrelation

of the distance depends upon what one thinks important in the
realization of the autocorrelation.
In the work presented below the distance has been chosen as√∑

m(RXi
(m)−R(m))2/N .

The figure 8 shows, for our red thread, the result obtained after
107 iterations which last 318 sec whereas one got better approxi-
mations with the previous methods (linear and non-linear) in a
few seconds with the same computer (see above).
The figure 9 shows how the the computing time is in a power de-
pendence upon the accuracy.
Despite the lack of a thorough theoretical explanation, it is pretty
sure that the length of the simulated sequence is very penalizing.
In our red thread, this length is of 500 000 and the swap of only
two elements modifies slightly the autocorrelation.

Figure 9 – Computing time versus accuracy of the swap method

An improvement of this algorithm may be found in generalizing
the method by performing a random permutation over a random
sampling of S points. One can use the « Latin Hypercube Sam-
pling » for the choice of these points.

Nevertheless, when one deals with moderate length, the me-
thod is very efficient. The following example where the length is
10000 gives a good result (accuracy ≈ 5.10−2) in 2 sec. The fi-
gure 10 shows the simulated autocorrelation.

6 Splitting of autocorrelation

In our full red thread the autocorrelation is compound and
may be split in to more simple functions. It is quite general and

16



Figure 10 – Simulation of the autocorrelation of a sequence of
10000 points following a shifted gamma distribution. Swap me-
thod.

consequently useful to examine how one is able to combine auto-
correlations. It is not a new method in itself but an easier way to
solve practical problems.
Let us take X1 and X2 two independent time sequences with va-
riances and normalized autocorrelations, σ1, σ2 and RX1X1 , RX2X2

respectively. Making the linear combination Y = X1 + X2 we ob-
tain a new time sequence. Its normalized autocorrelation is easily
computed as :

RY Y =
σ2
1RX1X1 + σ2

2RX2X2

σ2
1 + σ2

2

(25)

By this process, it is thus possible to combine autocorrelation so
long as their concavity are up.
The generating function of Y is

ĝ(u) = ĝ1(u)ĝ2(u) (26)

If the target Y has an infinitely divisible pdf, equation (26) would
be simply used.

Application

In our red thread

ĝ(u) = euS(1 + bu)−a

which is easily decomposable into two functions of the same type.
Elementary calculation shows that one of the possible choices is :

(1 + bu)−ap

euS(1 + bu)−a(1−p)

}
⇒ RY Y = pRX1X1 + (1− p)RX2X2 (27)

Figures 11 show the results of simulation using this technics for
getting an autocorrelation made of two triangles.
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7. Self-similar and long range correlation processes

Figure 11 – Simulation of the autocorrelation formed by two
triangles. The simulation is obtained by the non linear method

7 Self-similar and long range correlation
processes

7.1 Background

Processes exhibiting long range correlation (the absolute value
of its autocorrelation is not summable) and/or self-similar beha-
vior seem play an more and more important role in many technical
and scientific area [16, 17, 18]. It is thus worthwhile to investigate
if our approach could be useful in their domain.
Let us take a strictly self-similar continuous process of Hurst pa-
rameter H > 0 (e.g [19]). By definition, its marginal distribution
obeys at

Yt
d
= tHY1 for t > 0 (28)

where d
= means equality in the sense of probability distributions.

Among them, processes with stationary increments are of particu-
lar interest because they are good candidate for representing a lot
of practical situations. In such cases, one can write

E[(Yt − Ys)2]

{
= E[(Yt−s − Y0)2]
= E[Y 2

t + Y 2
s − 2YtYs]

(29)

If one notes m = E[Y1 − Y0] and σ2 = E[(Y1 − Y0 −m)2], formu-
las (29) allows to get

Cov(Yt, Ys) = E[YtYs]−E[Yt]E[Ys] =
σ2

2
[t2H−(t−s)2H+s2H ] (30)

Then, a straightforward computation stands that the autocorre-
lation of the sequence of the increments Xi = Yi − Yi−1 is given
by

RXX(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ] (31)

The asymptotic behavior of RXX is

RXX(k) ≈k→∞ H(2H − 1)k2H−2 (32)
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7.2. Simulation

When 1
2
< H < 1, RXX(k) is slowly decreasing with k, and we can

talk about a long range memory (
∑

k RXX(k) =∞) This slowness
is the more large since H is close to 1.
Clearly, the discussion of the introduction still stands and the pre-
vious results do not mean that the simulation of a self-similar
process with stationary increments is equivalent to the simulation
of a sequence having prescribed distribution and correlation.
Particularly, one has to take caution because the marginal distri-
bution of Y1 must have some peculiar properties : absence of atoms,
support connected. . . [20]. An important class [21] is constituted
by the strictly stable process of index α 5, and its Hurst parame-
ter H = α−1. However, as for other types of process, it may be
suitable to perform a simulation although not exactly self-similar
is nevertheless « close »to the experimental data.

7.2 Simulation

7.2.1 Generalities

Unfortunately, even if the filter leading to the Riemann fa-
mily (cf. page 12) holds an autocorrelation presenting a great si-
milarity (see appendice E) with (31), this way is a dead end as
quoted above in the same page (non-convergence of the expansion
of the distribution function).
When considering that many algorithms have been proposed for
simulating self-similar Gaussian noise, the idea is therefore to use
the non-linear method (section 2) for transforming in a self-similar
uniform process and then to apply the decalcomania method (sec-
tion 4).
This approach is very attractive because formula (9) shows that
ρyy(k) ≈ πρxx(k)/3 when ρxx(k) is close to 0, if ρyy is like (31). It
is therefore natural to search if ρxx is close to a similar function
but with a different parameter H.
Figure 12 exhibits, first the autocorrelation after non linear trans-
formation g(x) when the initial one is of type (31) with parameter
H = 0.8, second the autocorrelation of type (31) with parameter
H = 0.805. The difference between both curves measured as the
maximum of their absolute difference up to a lag of 2 106 is only
6.4 10−3. This result remains true for other values of H.
Consequently, the proposed method is composed of three steps.

1. Determine the value of H ′ corresponding to H
2. Draw a self-similar Gaussian process of Hurst parameter H ′

3. Transform the values of the sequence in order that both of
corresponding distribution functions - Gaussian and objec-
tive - are equal.

5. A process the marginal distribution Y1 of which is stable is said to
be stable with the same index. Stable distributions are subset of infinitely
divisible ones.
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7. Self-similar and long range correlation processes

Figure 12 – Curve 1 : 2 sin(πρ/6) with ρ given by (31) where
H = 0.8 Curve 2 : ρ given by (31) where H = 0.805

7.2.2 Example

One takes as an artificial example the challenge to build a long
memory process the marginal distribution of which being an ex-
ponential one with parameter 1.
As the « persistence »becomes very important whenH is close to 1,
a very long sequence is mandatory in order to perform a meaning-
ful statistical work. This requirement leads to some computational
difficulties. Therefore we have chosen the value H = 0.8 which can
be easily managed with a sequence of 217 length.
The three steps of the technic are

1. As previously determined H ′ = 0.805

2. The drawing of a standard fractional Gaussian noise uses the
method of circulant embedding matrix [22]

3. The transformation of the normal values of the sequence into
an exponential ones via the cumulative distribution function.

Figure 13 shows the results of a simulation following the quoted
process. The extract of the sequence is just aimed for illustration.
One sees clearly that the initial requirements are fullfiled : the
marginal distribution and the autocorrelation are those which has
been searched. The method is thus satisfactory.
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7.2. Simulation

Figure 13 – The three parts are respectively an extract of the
simulated sequence, the marginal density distribution compared
with the target one and the autocorrelation of the sequence toge-
ther with the desired one. The last figure is just a zoom near the
origin.
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8. Conclusion

8 Conclusion

Clearly this paper deals with the possibility of simulate expe-
rimental processes and not modeling them. Not any of the four
methods which have been studied is suitable in any situation. The
table 1 sums up the main possibilities inherent to each of them.
Nevertheless, each method has its own limitations described in
the corresponding section. For instance, the decalcomania technic
assumes a simulated uniform distribution : it can be only approxi-
mated in the case of long memory. Decalcomania method is thus
also heuristic sometimes. . .and the table 1 just proposes coarse
features.

Non-linear Linear Decalcomania Swap
Exact

√ √ √

Heuristic
√

Short sequence
√ √ √ √

Long sequence
√ √

Short memory
√ √ √ √

Long memory
√

Table 1 – Behavior of the methods along different point of view

The red marks emphasize the most efficient way to proceed. It
has to be recall (1.1) that, in any case, marginal distribution and
autocorrelation are insufficient to characterize a random process.
Therefore even if these both requirements are fullfiled it must be
care that the resulting sequence look like the experimental one.
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Appendices

Appendice A: Counter-example for the non-linear method

Restrict ourselves to an autocorrelation function R, the z trans-
form of which being

Φ(z) = R(2)z2 +R(1)z +R(0) +R(1)z−1 +R(2)z−2

R, real, is non-negative if and only if

∀ui, uj ∈ <
∑
i,j

uiujR(|j − i|) ≥ 0

This condition is equivalent, in the present case, to∣∣∣∣∣∣
R(0) R(1) R(2)
R(1) R(0) R(1)
R(2) R(1) R(0)

∣∣∣∣∣∣ ≥ 0

which reads

[R(0)−R(2)][R(0)(R(0) +R(2))− 2R(1)2] ≥ 0

With R(0) = 1 ≥ R(2) the condition becomes simply

1 +R(2)− 2R(1)2 ≥ 0 (33)

Therefore, using formula (9), one gets Ryy satisfies the condi-

Ryy(0) = 1 Rxx(0) = 1
Ryy(1) = 0.781 Rxx(1) = 0.82
Ryy(2) = 0.247 Rxx(2) = 0.3
Ryy(k > 2) = 0 Rxx(k > 2) = 0

Table 2 – Example of relation between Rxx and Ryy

tion (33) and therefore is definite non-negative, while 1+Rxx(2)−
2R2

xx(1) = −0.045 < 0, that implies Rxx is not an autocorrelation
function. Consequently the non-linear method does not work in
this example.

Appendice B: Autocorrelation of mixing sequences

Taking the notations of section 4, we have due to the indepen-
dance of different sequences

E(Z) =E(X) · E(A) = m
n∑
i=1

pi = m (34)

E(Z2) =E(X ·Xt)E(A ·At) (35)
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where m = E(Xi), ∀i and pi = Prob[ai = 1].
By construction, the matrix A · At is the identity matrix and
therefore E(Z2) = E(X2

i )
∑n

i=1 pi = E(X2
i ) whatever i.

Similarly

E[Z(k)Z(k +m)] = E[X(k) ·Xt(k +m)]E[A(k) ·At(k +m)]

The matrix A(k) ·At(k + m) has only one element different of 0
and equal to 1. Its probability will be noted

πmij (k) = Prob[ai(k) = 1 and aj(k +m) = 1] (36)

According to our hypothesis, this probability does not depend
upon k and we have

n∑
i=1

πmij = pj

n∑
j=1

πmij = pi

n∑
i,j=1

πmij = 1 (37)

As

i 6= j ⇒ E(XiXj) = m2

i = j ⇒ E(Xi(k)Xi(k +m)) = Corr(Xi) +m2

it results

E[Z(k)Z(k +m)] =
n∑

i,j=1

πmijm
2 +

n∑
i=1

πmii Corr(X)(m) (38)

Therefore the autocorrelation of Z reads

Rzz =
n∑
i=1

πmiiRxx (39)

Assuming that U(k) is an exchangeable sequence, it comes

pi = 1/n πmii = α(m) πmi 6=j = β(m)

with the normalization
∑

i,j π
m
ij = nα + n(n− 1)β = 1

Then, one computes

E(U) =
n+ 1

2n
Var(U) =

n2 − 1

12n2

Var(U)Ruu = E(U(k)U(k +m))− E(U)2

As

E(U(k)U(k +m)) = α
n∑
i=1

1

i2
+ 2

1− nα
n(n− 1)

n∑
i>j

1

ij

one deduces
α =

n− 1

n2
Ruu +

1

n2
(40)

Therefore (39) reads

Rzz = [
n− 1

n
Ruu +

1

n
]Rxx (41)
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Appendice C: Computation of the autocorrelation in the
swap method

The autocorrelation of a sequence Xi, i = 1, . . . n is given for a
second order stationary sequence by

RXX(k) = E[(Xi − E(X))(Xi+k − E(X))]/Var(X) (42)

Its estimation for a finite sequence of N length is

d(k) =

∑N−k+1
j=1 (Xj −m)(Xj+k −m)∑N

j=1(Xj −m)2/(N − 1)
with m =

∑N
j=1Xj

N
(43)

If we swap Xl and Xs the new estimation of autocorrelation reads
now

d(k) d(k)− (Xl −Xs)(Xk+l −Xk+s)∑N
j=1(Xj −m)2/(N − 1)

(44)

Formula (44) is valid under the condition

(l + k) and (s+ k) < N (45)

In the most common situations, the autocorrelation is specified
over a range M � N . It is thus convenient to discard the swaps
which do not satisfy this condition over the range M .

Appendice D: Generation of positive random variables
given their cumulants

We do not present here the method based upon Edgeworth ex-
pansion due to its more involved implementation.
Following [12], one assumes that the distribution has a continuous
density f(x) defined over (α, β), α, β ∈ (−∞,∞) with finite mo-
ments at all orders.
Over this interval, one presumes to develop f(x) on a complete
closed orthogonal base of polynomials, Pi(x), i = 0, . . . ,∞ with
weight function w(x) such that

∀ n, x
∣∣∣∣f(x)−

n∑
i=0

aiw(x)Pi(x)

∣∣∣∣ ≤ Rn(x) (46)

ai are the coefficients of the expansion and limn→∞Rn(x) = 0
almost everywhere.
Due to the classical identity :∫ β

α

w(x)Pn(x)Pm(x)dx = δmn

The coefficients ai read

ai =

∫ β

α

f(x)Pi(x)dx (47)
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This expansion of f(x) is an asymptotic one when it converges
because the coefficients are independent of the truncation order.
From (47) it appears that ai depends upon the first i moments of
f(x), hence the first i cumulants.
Let us take µk the moment of order k of the distribution f . Mo-
ments µn and cumulants κn are related to the moment generating
functions as

f̂(u) =
∞∑
k=0

µk
uk

k!
= exp[f̃(u)] = exp[

∞∑
k=1

κk
uk

k!
]

The moments et cumulants are thus linked by the Bell polyno-
mials [23].

µn = Bn(κ1, . . . , κn) (48)

Bn(x1, . . . , xn) =
∑

k1+···+kn=k≤n

1k1+···+nkn=n

n!xk11 . . . xknn
k1! . . . kn!(1!)k1 . . . (n!)kn

(49)

A direct computation is very involved. It is thus more convenient
to use the recurrence 6

Bn(x1, . . . , xn) =
n−1∑
k=0

(
n− 1

k

)
Bk(x1, . . . , xk)xn−k with B0 = 1

(50)
After computing the value of the coefficients ai, we have to

check the convergence of the expansion
∑n

i=0 ai which implies the
one of

∑n
i=0 aiw(x)Pi(x). At this stage it is noticeable that some

computation difficulties arise for large i. In fact we are generally
obliged to stop the expansion at a moderate order over which the
numerical errors induce too important errors.
If it is true, we construct a dominating function g(x) of f(x)
along the circumstances. Then we apply the following acceptance-
rejection algorithm

repeat
generate X with density proportional to g
generate a uniform [0, 1] random variate U
set T ← Ug(X), n← 0, S ← 0

repeat S ← S + anw(X)Pn(X), n← n+ 1
until |S − T | > Rn−1(X)

until T < S
return X

First example : (α, β) = (0,∞)
One can chose the Laguerre polynomials associated with the weight

6. When considering in Bn the monomial including at least one xj , the
remaining is based only on x1 to xn−j . There are

(
n−1
j

)
ways to chose such

a disposition among n factors. Therefore one gets easily the recurrence Bn =∑n
j=0

(
n−1
j

)
Bn−jxj which is the same as noted in the main corpus
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function e−x

Ln(x) =
ex

n!

dn

dxn
[e−xxn] =

n∑
k=0

(−1)k
(

n

n− k

)
xk

k!

which obey to the recurrence relation

nLn(x) = (2n− 1− x)Ln−1(x)− (n− 1)Ln−2(x) n ≥ 2

with L0 = 1 and L1 = 1− x.

Let us write ck = µk/k!, simple calculation from (50) leads to

ck =
k−1∑
j=0

cjκk−j
k(k − 1− j))!

(51)

and now from (47), ai reads

ai =
i∑

k=0

(−1)k
(

i

i− k

)
ck (52)

Second example : (α, β) = (−1, 1)
Many bases of polynomials are convenient. The most simple are the
Legendre polynomials associated with the weight function w(x) =
1.

Pi(x) =2−i
[i/2]∑
k=0

(−1)k
(2i− 2k)!

k!(i− k)!(i− 2k)!
xi−2k

=2−i
[i/2]∑
k=0

(−1)k
(
i

k

)(
2i− 2k

i

)
xi−2k

where [x] is the integer part of x.
These polynomials follow the recurrence

(i+ 1)Pi+1(x) = (2i+ 1)xPn(x)− iPn−1(x)

and the orthogonality relation∫ 1

−1
Pi(x)Pjdx =

2δji
2i+ 1

Therehore, ai reads now

ai = 2−(i+1)(2i+ 1)

[i/2]∑
k=0

(−1)k
(2i− 2k)!

k!(i− k)!
ci−2k (53)

where ck has the same meaning than in (51).
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Appendice E: Estimation of expression (32)

One starts from the identity

∞∑
i=1

[i(i+ x]−m +
∞∑
i=1

(−1)i[i(i+ x)]−m︸ ︷︷ ︸
A

= 2
∞∑
i=1

[2i(2i+ x)]−m

= 21−2m
∞∑
i=1

[i(i+ x/2)]−m (54)

The term A is an alternating series, thus simple to compute with
a given accuracy : the value of the last retained term is less than
the desired accuracy. Therefore, from x, every

∑∞
i=1[i(i+ 2nx)]−m

can be computed by iteration and thus, it just remains to evaluate
the value for x < 1.
In this case, the classical expansion of (1 + x/i)−m leads to

∞∑
i=1

[i(i+ x]−m =
∞∑
r=0

(
−m
r

)
xrζ(2m+ r) (55)

where the binomial coefficient is(
−m
r

)
= (−1)r

Γ(r +m)

r!Γ(m)

The expansion (55) is also an alternating series, and it is thus easy
to control the accuracy of an extracted limited series.

Figure 14 – Comparaison between autocorrelations of self-similar
and Riemann family

Figure 14 shows that for moderate lags (<1000) the Riemann
family presents autocorrelations close to the self-similar ones. In
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this example the value of the Hurst parameter has been evaluated
for minimizing the distance between the two autocorrelations. The
chosen distance is the maximum of absolute difference between the
two functions up to a lag of 1000.
The gotten distance is 0.036 which is a small value. Moreover,
making the same work on ≈ 4 106 lags, it is noticeable that the
Hurst parameter and the distance are nearly identical as those
obtained for 1000 lags. In fact H is 0.954 in place of 0.953 and the
distance increases up to 0.0367. Figure 15 shows the two functions.

Figure 15 – Comparison between autocorrelations of self-similar
and Riemann family upon large lags
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