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We �rst prove lo
al-in-time well-posedness for the Muskat problem, modeling �uid �ow in

a two-dimensional inhomogeneous porous media. The permeability of the porous medium

is des
ribed by a step fun
tion, with a jump dis
ontinuity a
ross the �xed-in-time 
urve

(x1,−1+ f(x1)), while the interfa
e separating the �uid from the va
uum region is given by

the time-dependent 
urve (x1, h(x1, t)). Our estimates are based on a new methodology that

relies upon a 
areful study of the PDE system, 
oupling Dar
y's law and in
ompressibility of

the �uid, rather than the analysis of the singular integral 
ontour equation for the interfa
e

fun
tion h. We are able to develop an existen
e theory for any initial interfa
e given by

h0 ∈ H2
and any permeability 
urve-of-dis
ontinuity that is given by f ∈ H2.5

. In parti
ular,

our method allows for both 
urves to have (pointwise) unbounded 
urvature. In the 
ase

that the permeability dis
ontinuity is the set f = 0, we prove global existen
e and de
ay

to equilibrium for small initial data. This de
ay is obtained using a new energy-energy

dissipation inequality that 
ouples tangential derivatives of the velo
ity in the bulk of the

�uid with the 
urvature of the interfa
e. To the best of our knowledge, this is the �rst global

existen
e result for the Muskat problem with dis
ontinuous permeability.
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1 Introdu
tion

1.1 The Muskat problem

The Muskat problem, introdu
ed in [38℄, models the dynami
s of an evolving material inter-

fa
e separating two �uids �owing through a porous medium, i.e. a medium 
onsisting of a

solid matrix with �uid-�lled pores. Porous media �ow is modelled by Dar
y's law

µ

β
u = −∇p− (0, gρ)T , (1.1)

where µ is the vis
osity of the �uid, ρ denotes the density, u is the in
ompressible �uid

velo
ity, and p is the pressure fun
tion; additionally, β > 0 denotes the permeability of the

solid matrix, and g is the a

eleration due to gravity, whi
h we shall hen
eforth set to 1.
Dar
y's law (1.1) is an empiri
al relation between momentum and for
e (see, for example,

[3, 39℄), and repla
es 
onservation of momentum, whi
h is used to model the evolution of

invis
id �uid �ows.

The purpose of this paper is to study the evolution of an interfa
e moving through porous

media with a dis
ontinuous permeability. As the permeability takes two di�erent values, this


ase is known in the literature as the inhomogeneous Muskat problem. Spe
i�
ally, we are

interested in the well-posedness and de
ay to equilibrium for the inhomogeneous Muskat

problem.

Γ
bot

Ω−
β−

Ω+(t)β+ µ−, ρ−

Vacuum
Γ

perm

Γ(t)

β+ 

Figure 1: The solid 
urve (blue) is the interfa
e Γ(t) and the dashed 
urve (red) denotes the interfa
e

Γperm, a
ross whi
h the permeability is dis
ontinuous.

We let S
1
denote the 
ir
le, so that fun
tions h : S1 → R are identi�ed with [−π, π]-

periodi
 fun
tions on R. As shown in Figure 1, we 
onsider a porous medium o

upying an

open time-dependent subset Ω(t) ⊂ S
1 × R su
h that

Ω(t) = Ω+(t) ∪ Ω− ∪ Γperm ,
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where

Ω+(t) = {(x1, x2) ∈ S
1 × R, −1 + f(x1) < x2 < h(x1, t)} , (1.2a)

Ω− = {(x1, x2) ∈ S
1 × R, −2 < x2 < −1 + f(x1)} , (1.2b)

Γperm = {(x1,−1 + f(x1)), x1 ∈ S
1} , (1.2
)

and where the fun
tions f and h satisfy

min
x1∈S1

f(x1) > −1 and h(x1, 0) > −1 + f(x1). (1.3)

The �xed-in-time permeability interfa
e Γperm denotes the 
urve, a
ross whi
h the perme-

ability fun
tion β(x) is dis
ontinuous; spe
i�
ally, the permeability fun
tion β(x) is de�ned
as

β(x) =

{
β+ in Ω+(t)
β− in Ω− ,

for given 
onstants β± > 0. The domain for this problem is also an unknown; thus, we must

tra
k the evolution of the time-dependent interfa
e or free-boundary Γ(t), whi
h is de�ned

as the set

Γ(t) = {(x1, h(x1, t)), x1 ∈ S
1} .

For simpli
ity, we shall set the �uid density ρ and vis
osity µ to 1. As the �uid is

in
ompressible, it follows that

[[u · nperm]] = 0 on Γperm × [0, T ] .

With the domains de�ned, the Muskat problem 
onsists of the following system of 
ou-

pled equations:

u±

β±
+∇p± = −e2, in Ω±(t)× [0, T ] , (1.4a)

∇ · u± = 0, in Ω±(t)× [0, T ] , (1.4b)

[[p]] = 0 on Γperm × [0, T ], (1.4
)

[[∇p · nperm]] = −
[[ 1
β

]]
u+ · nperm on Γperm × [0, T ], (1.4d)

p+ = 0 on Γ(t)× [0, T ], (1.4e)

V(Γ(t)) = u+ · n on Γ(t)× [0, T ] , (1.4f)

u− · e2 = 0 on Γbot × [0, T ], (1.4g)

where V(Γ(t)) denotes the normal 
omponent of the velo
ity of the time-dependent free-

boundary Γ(t), n is the (upward) unit normal to Γ(t), nperm is the (upward-pointing) unit

normal to Γperm, and [[f ]] = f+ − f− denotes the jump of a dis
ontinuous fun
tion f a
ross

Γperm.
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1.2 A brief history of the analysis of the Muskat problem

Dar
y's law (1.1) is a standard model for �ow in aquifers, oil wells, or geothermal reservoirs,

and it is therefore of pra
ti
al importan
e in geos
ien
e (see, for example, [9, 28℄ and the

referen
es therein). Furthermore, the Muskat problem is equivalent to the Hele-Shaw 
ell

problem with gravity (see [36℄) for �ow between two thinly-spa
ed parallel plates.

There has a been a great deal of mathemati
al analysis of both the Muskat problem and

the Hele-Shaw 
ell, and we shall only review a small fra
tion of the results that are, in some

sense, most 
losely related to our result.

For the Muskat problem with a 
ontinuous permeability fun
tion, existen
e of solutions

in the Sobolev spa
e H3
has been established by Córdoba & Gan
edo [18, 19℄, Córdoba,

Córdoba & Gan
edo in [17℄, and Córdoba, Granero-Belin
hón & Orive [22℄, using the singular

integral 
ontour equation for the height fun
tion h. Cheng, Granero-Belin
hón & Shkoller

[12℄ introdu
ed the dire
t PDE approa
h (modi�ed for use, herein), and established an

H2
existen
e theory (see also Cheng, Coutand & Shkoller [11℄ for a similar approa
h to

the horizontal Hele-Shaw 
ell problem). This was followed by an H2
existen
e theory by

Constantin, Gan
edo, Shvydkoy & Vi
ol [16℄ using the singular integral approa
h; they also

obtained a �nite-slope global existen
e result. Very re
ently, lo
al existen
e in Hs
, s > 3/2

has been obtained by Matio
 [37℄. In the presen
e of surfa
e tension, lo
al existen
e in H6

was also obtained by Ambrose [1, 2℄.

In the 
ase of a dis
ontinuous permeability fun
tion (with a jump a
ross the �at 
urve

(x1,−1)), the lo
al-in-time existen
e of solutions has been proved by Berselli, Córdoba &

Granero-Belin
hón [4℄. In the 
ase of two �uids with di�erent vis
osities and densities and

permeability fun
tion with a jump given by an arbitrary smooth 
urve (f1(α), f2(α)) the

lo
al-in-time existen
e of solutions has been established by Pernás-Castaño [40℄ .

For the 
ase of a 
ontinuous permeability, there are a variety of results showing global

existen
e of strong solutions under 
ertain 
onditions on the initial data. In parti
ular,

Cheng, Granero-Belin
hón & Shkoller [12℄ proved global existen
e under restri
tions on the

size of ‖h0‖H2 , while Córdoba, Constantin, Gan
edo & Strain [15℄ and Córdoba, Constantin,

Gan
edo, Strain & Rodríguez-Piazza [14℄ proved global existen
e under restri
tions on the

size of ‖ĥ′0‖L1 , where ĥ denotes the Fourier transform. The global existen
e of weak solution

has been proved by Córdoba, Constantin, Gan
edo & Strain [15℄ and Granero-Belin
hón [35℄

for initial data satisfying restri
tions on ‖h0‖Ẇ 1,∞ and ‖h0‖W 1,∞ , respe
tively. Note that

the 
ondition on ‖h0‖L∞
in [35℄ is a 
onsequen
e of having a bounded porous media.

Finite time singularities of turning type are known to o

ur. A turning wave is a solution

whi
h starts as a graph, but then turns-over and loses the graph property. The existen
e of

su
h waves in the Rayleigh-Taylor stable regime has been established by Castro, Córdoba,

Fe�erman, Gan
edo & López-Fernández [8℄, Córdoba, Granero-Belin
hón & Orive-Illera [22℄,

Berselli, Córdoba & Granero-Belin
hón [4℄ and Gómez-Serrano & Granero-Belin
hón [34℄.

Finally, some deeper insight on the turning behaviour has been obtained by Córdoba,

Gómez-Serrano & Zlato�s [20, 21℄, where, in parti
ular, they proved that 
ertain solutions to

the two-phase Muskat problem start as a graph, then turn-over and lose the graph property

and hen
e violate the Rayleigh-Taylor 
ondition but then stabilize and return to being a

graph. Furthermore Castro, Córdoba, Fe�erman & Gan
edo [6℄ also proved that there exist

4



R. Granero-Belin
hón and S. Shkoller Inhomogeneous Muskat problem

interfa
es su
h that, after turning, the interfa
e is no longer analyti
 and, in fa
t,

lim sup
t→T

‖z(t)‖C4 = ∞,

for a �nite time T > 0.
Gan
edo & Strain [33℄ have shown that the �nite-time splash and splat singularities

(a self-interse
tion of a lo
ally smooth interfa
e) 
annot o

ur for the two-phase Muskat

problem (see also Fe�erman, Iones
u & Lie [32℄ and Coutand & Shkoller [27℄). However,

in the 
ase of the one-phase Muskat problem, Castro, Córdoba, Fe�erman & Gan
edo [7℄

proved that the splash singularities may o

ur while Córdoba & Pernás-Castaño [23℄ showed

that splat singularities 
annot o

ur. See also Coutand & Shkoller [26℄ for splash and splat

singularities for the 3-D Euler equations and related models.

Let us also mention that several results for the multiphase Muskat problem have been

obtained in the 
ompletely di�erent framework of little Hölder spa
es hk+α by Es
her &

Matio
 [30℄, Es
her, Matio
 & Matio
 [29℄ and Es
her, Matio
 & Walker [31℄.

Very re
ently, a regularity result in Hölder spa
es for the one-phase Hele-Shaw problem

has been obtained by Chang-Lara & Guillén [10℄ using the hodograph transform. Also, Prüss

& Simonett [41℄ studied the two-phase Muskat problem in a more geometri
 framework using

the Hanzawa transform. In parti
ular, these authors show well-posedness, 
hara
terize and

study the dynami
 stability of the equilibria.

Finally, using a 
onvex integration approa
h, Castro, Córdoba & Fara
o [5℄ very re
ently

proved the existen
e of weak solutions for the Muskat problem in the 
ase where the denser

�uid lies above the lighter �uid, so, it is in the Rayleigh-Taylor unstable regime. Remarkably,

these solutions develop a mixing zone (a strip 
ontaining parti
les from both phases and,


onsequently, with �uid parti
les having both densities), growing linearly in time.

1.3 Methodology

As noted above, most prior existen
e theorems have relied upon the singular integral 
ontour

equation for the height fun
tion h; in the 
ase of the in�nitely deep two-phase Muskat

problem with 
ontinuous permeability, the evolution equation for h 
an be written as

ht(x1) = p.v.

∫

R

h′(x1)− h′(x1 − y)

y

1

1 +
(
h(x1)−h(x1−y)

y

)2dy; (1.5)

see, for example, [18℄ for the derivation.

The 
ontour equation (1.5) depends 
ru
ially on the geometry of the domain and the

permeability fun
tion. In parti
ular, when the porous medium has �nite depth (equal to

π/2) and the permeability fun
tion is dis
ontinuous a
ross the 
urve (x1,−1), it was shown
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in [4℄ that (1.5) takes the form:

ht(x1) =
β+(−[[ρ]])

4π
p.v.

∫

R

(h′(x1)− h′(y)) sinh(x1 − y)

cosh(x1 − y)− cos(h(x1)− h(y))
dy

+
β+(−[[ρ]])

4π
p.v.

∫

R

(h′(x1)− h′(y)) sinh(x1 − y)

cosh(x1 − y) + cos(h(x1) + h(y))
dy

+
1

4π
p.v.

∫

R

̟2(y)(sinh(x1 − y) + h′(x1) sin(h(x1) + 1))

cosh(x1 − y)− cos(h(x1) + 1)
dy

+
1

4π
p.v.

∫

R

̟2(y)(− sinh(x1 − y) + h′(x1) sin(h(x1)− 1))

cosh(x1 − y) + cos(h(x1)− 1)
dβ, (1.6)

where

̟2(x1) =
β+ − β−

β+ + β−
β+(−[[ρ]])

2π
p.v.

∫

R

h′(y)
sin(1 + h(y))dy

cosh(x1 − y)− cos(1 + h(y))

−β
+ − β−

β+ + β−
β+(−[[ρ]])

2π
p.v.

∫

R

h′(y)
sin(−1 + h(y))dy

cosh(x1 − y) + cos(−1 + h(y))

+

(
β+−β−

β++β−

)2

√
2π

β+(−[[ρ]])

2π
Gβ ∗ p.v.

∫

R

h′(y) sin(1 + h(y))dy

cosh(x1 − y)− cos(1 + h(y))

−

(
β+−β−

β++β−

)2

√
2π

β+(−[[ρ]])

2π
Gβ ∗ p.v.

∫

R

h′(y) sin(−1 + h(y))dy

cosh(x1 − y) + cos(−1 + h(y))
, (1.7)

with

Gβ(x1) = F−1




F
(

sin(2)
cosh(x1)+cos(2)

)
(ζ)

1 +
β+−β−

β++β−√
2π

F
(

sin(2)
cosh(x1)+cos(2)

)
(ζ)


 ,

a S
hwartz fun
tion, and where F denotes the Fourier transform. Let us emphasize that,

due to the non-lo
al 
hara
ter of ̟2 given by (1.7), the 
ontour equation (1.6) is signi�
antly

more 
hallenging to analyse than (1.5). Note also, from the de�nition of Gβ(x1) that the
highly non-lo
al 
onvolution terms in (1.7) are not expli
itly de�ned.

Be
ause of the 
ompli
ations inherent in the singular integral approa
h of (1.7), we

shall instead analyze the system (1.4) dire
tly. As (1.4) is set on the time-dependent a

priori unknown domain Ω(t), in order to build an existen
e theory, we �rst pull-ba
k this

system of equations onto a �xed-in-time spatial domain. We use a 
arefully 
hosen 
hange-

of-variables that transforms the free-boundary problem (1.4) into a system of equations set

on a smooth and �xed domain, but having time-dependent 
oe�
ients.

To pull-ba
k our problem, we employ a family of di�eomorphisms ψ±
whi
h are ellipti


extensions of the interfa
e parametrizations, and thus have optimal Hs
Sobolev regularity.

The time-dependent 
oe�
ients (in the pulled-ba
k des
ription) arise from di�erentiation

and inversion of these maps ψ±
; by studying the transformed Dar
y's Law, we obtain a

new higher-order energy integral that provides the regularity of the moving interfa
e Γ(t).
Additionally, we obtain an L2

-in-time paraboli
 regularity gain, analogous to the regularity
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gain for solutions to the heat equation, ex
ept that we gain a 1/2-derivative in spa
e rather

than a full derivative. The regularity of the interfa
e Γ(t) as well as the improved L2
-in-

time paraboli
 regularity gain are found from the non-linear stru
ture of the pulled-ba
k

representation of the Muskat problem. In parti
ular, we do no rely on the expli
it stru
ture

of the singular integral 
ontour equation, and as su
h, we are free to study general domain

geometries and permeability fun
tions.

1.4 The main results

As we will show, the Rayleigh-Taylor (RT) stability 
ondition, given by − ∂p
∂n > 0 on Γ(t), is

a su�
ient 
ondition for well-posedness of the Muskat problem (1.4) in Sobolev spa
es. In

parti
ular, with

p0 := p(·, 0) and Γ := Γ(0) ,

and letting N := n(·, 0) denote the outward unit normal to Γ, we prove that for any initial

interfa
e Γ of arbitrary size and of 
lass H2
, 
hosen su
h that the RT stability 
ondition

−∂p0
∂N

> 0 on Γ (1.8)

is satis�ed, there exists a unique solution (u±(x, t), p±(x, t), h(x1, t)) to the one-phase Muskat

problem with dis
ontinuous permeability fun
tion.

More pre
isely, we prove the following

Theorem 1 (Lo
al well-posedness in H2
). Suppose the initial interfa
e Γ is given as the

graph (x1, h0(x1)) where h0 ∈ H2(S1) and
∫
S1
h0(x1)dx1 = 0, and that the RT 
ondition (1.8)

is satis�ed. Let Γperm be given as the graph (x1,−1 + f(x1)) for a fun
tion f ∈ H2.5(S1).
Assume also that (1.3) holds. Then, there exists a time T (h0, f) > 0 and a unique solution

h ∈ C([0, T (h0, f)];H
2(S1)) ∩ L2(0, T (h0, f);H

2.5(S1)) ,

u± ∈ C([0, T (h0, f)];H
1.5(Ω±(t))) ∩ L2(0, T (h0, f);H

2(Ω±(t))) ,

p± ∈ C([0, T (h0, f)];H
2.5(Ω±(t))) ∩ L2(0, T (h0, f);H

3(Ω±(t))) ,

to the system (1.4), satisfying

‖h(t)‖2L2(S1) + 2

∫ t

0

∥∥∥∥
u+(s)

β+

∥∥∥∥
2

L2(Ω+(s))

ds+ 2

∫ t

0

∥∥∥∥
u−(s)
β−

∥∥∥∥
2

L2(Ω−)

ds = ‖h0‖2L2(S1),

and

‖h‖C([0,T (h0,f)],H2(S1)) + ‖ht‖L2(0,T (h0,f);H1.5(S1)) + ‖h‖L2(0,T (h0,f);H2.5(S1))

+ ‖p‖C([0,T (h0,f)],H2.5(Ω+(t)∪Ω−)) + ‖p‖L2(0,T (h0,f);H3(Ω+(t)∪Ω−))

+ ‖u‖C([0,T (h0,f)],H1.5(Ω+(t)∪Ω−)) + ‖u‖L2(0,T (h0,f);H2(Ω+(t)∪Ω−)) ≤ C(h0, f)

for a 
onstant C(h0, f) whi
h depends on h0 and f .
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Remark 1. It is easy to see that if h0(x1) = f(x1) = 0, the solution is given by

u±(x, t) = 0, h(x1, t) = 0, p±(x, t) = −x2, (1.9)

and the RT 
ondition is satis�ed. There exist in�nitely many initial data h0 satisfying the

RT 
ondition; for example, small perturbations of (1.9) satisfy the RT 
ondition (1.8) via

impli
it fun
tion theorem arguments.

Theorem 2 (Global well-posedness and de
ay to equilibrium in H2
). Suppose the initial

interfa
e Γ is given as the graph (x1, h0(x1)) where h0 ∈ H2(S1) and
∫
S1
h0(x1)dx1 = 0. Let

Γperm be given as the graph (x1,−1). Then, there exists a 
onstant C su
h that if

|h0|2 < C ,

the RT 
ondition (1.8) is satis�ed and there exists a unique solution

h ∈ C([0,∞);H2(S1)) ∩ L2(0,∞;H2.5(S1)) ,

u± ∈ C([0,∞);H1.5(Ω±(t))) ∩ L2(0,∞;H2(Ω±(t))) ,

p± ∈ C([0,∞);H2.5(Ω±(t))) ∩ L2(0,∞;H3(Ω±(t))) ,

to the system (1.4), satisfying

‖h(t)‖H2(S1) ≤ ‖h0‖H2(S1)e
−γt/2

for a 
onstant γ(h0, β
±), whi
h depends on h0 and β±.

Remark 2. Note that the question of whether the free boundary Γ(t) 
an rea
h the 
urve

Γperm in �nite time, in a a situation that resembles the splash/splat singularity, remains an

open problem. In fa
t, su
h behavior 
an be seen as a singular phenomena (for instan
e,

some of the (non-singular) terms in (1.6) and (1.7) be
ome singular integral operators). As

Theorem 2 implies that Γ(t) 
annot rea
h the 
urve Γperm in �nite time if h0 is small enough,

this result rules out the possibility of interfa
e 
ollision in �nite time for small initial data.

Remark 3. We note that the dry zone (the region without �uid) lies above the 
urve Γ(t),
and so, as long as (1.3) holds, the dry zone lies above Γperm. The question of whether a

dry zone 
an form inside Ω−
remains an open problem. In other words, assume that there

exists a solution h(x1, t) up to time T and assume also that Γ(t) interse
ts Γperm at the

point (x0, t
′) ∈ S

1 × (0, T ), i.e.

h(x0, t
′) = −1 + f(x0).

Then, it is not 
lear if the 
urve Γ(t) may 
ross the 
urve Γperm, i.e.

h(x1, t) < −1 + f(x1), ∀ (x1, t) ∈ (x0 − ǫ, x0 + ǫ)× (t′, t′ + δ), ,

for 
ertain ǫ, δ > 0. Note also that, if this happens, then the region

{(x1, x2), x1 ∈ (x0 − ǫ, x0 + ǫ), h(x1, t) < x2 < −1 + f(x1)} ⊂ Ω−

is 
ontained in the dry zone.
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Remark 4. The exponential de
ay of the solution h(t) is a 
onsequen
e of an energy-

energy dissipation inequality establishing a relationship between the interfa
e regularity and

the regularity of the semi-ALE velo
ity (see Se
tions 5 and 6):

‖h′′(t)‖L2(S1) ≤ C‖w′′‖L2(S1×(−2,−1)∪S1×(−1,0)).

Remark 5. Note that the linearized evolution equation for a small perturbation of the

�at interfa
e 
an be written as

ht = −ΛD+h,

where ΛD+ is the Diri
hlet-to-Neumann map asso
iated with the ellipti
 system (5.1):

ΛD+h(x1) = δψ,2 (x1, 0).

An integration by parts shows that

∫

S

∫ 0

−1
δψ+∆δψ+dx2dx1 =

∫

S

δψ+(x1, 0)δψ
+,2 (x1, 0)dx1 −

∫

S

δψ+(x1,−1)δψ+,2 (x1,−1)dx1

−
∫

S

∫ 0

−1
|∇δψ+|2dx2dx1,

so that, ∫

Γ
ΛD+hhdx1 =

∫

D+

|∇δψ+|2dx.

We also have the following Poin
aré-Wirtinger inequality

∫

D+

|δψ+(x)|2dx =

∫

D+

∣∣∣∣
∫ 1

0
δψ+,2 (x1, sx2 + (1− s)(−1))(x2 + 1)ds

∣∣∣∣
2

dx

≤
∫

S

∫ 0

−1

∫ 1

0

∣∣δψ+,2 (x1, sx2 + (1− s)(−1))
∣∣2 (x2 + 1)2dsdx2dx1

=

∫ 0

−1
(x2 + 1)

∫

S

∫ x2

−1

∣∣δψ+,2 (y)
∣∣2 dy2dy1dx2

≤
∫ 0

−1
(x2 + 1)

∫

D+

∣∣δψ+,2 (y)
∣∣2 dydx2

≤ 1

2

∫

D+

∣∣δψ+,2 (y)
∣∣2 dy.

Thus, using the tra
e theorem, we 
on
lude that

∫

Γ
ΛD+hhdx1 ≥ 0.5‖δψ+‖21,+ ≥ ν|h|20.5 ≥ ν|h|20,

for ν > 0. Exponential de
ay for the nonlinear problem (under smallness assumptions) is

hen
e also expe
ted.
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1.5 Notation used throughout the paper

For a matrix A, we write Aij for the 
omponent of A lo
ated in row i and 
olumn j. We use

the Einstein summation 
onvention, wherein repeated indi
es are summed from 1 to 2. We

denote the jth 
anoni
al basis ve
tor in R
2
by ej .

For s ≥ 0, we set

‖u‖s,+ := ‖u+‖Hs(D+) , ‖u‖s,− := ‖u−‖Hs(D−) , ‖u‖s,± := ‖u+‖s,+ + ‖u−‖s,−
and

|h|s := ‖h‖Hs(Γ) .

For fun
tions h de�ned on Γperm, we shall also denote the Hs
norm by |h|s := ‖h‖Hs(Γperm),

whenever the 
ontext is 
lear.

We write

f ′ =
∂f

∂x1
, f,k =

∂f

∂xk
, and ft =

∂f

∂t
.

For a di�eomorphism ψ, we let A = (∇ψ)−1
, and de�ne

curlψv = Aj1v
2,j −Aj2v1,j , (1.10)

divψv = Aijv
j ,i . (1.11)

2 The Muskat problem in the ALE formulation

2.1 Constru
ting the family of di�eomorphisms ψ(·, t)
2.1.1 The idea for the 
onstru
tion

Our analysis of the Muskat problem (1.4) is founded on a time-dependent 
hange-of-variables

whi
h 
onverts the free boundary problem to one set on smooth referen
e domains D±

D+ = S
1 × (−1, 0) ,D− = S

1 × (−2,−1) , (2.1)

The boundaries of the domains D±
are de�ned as

Γbot = {(x1,−2), x1 ∈ S
1} ,Γperm = {(x1,−1), x1 ∈ S

1} , and Γ = {(x1, 0), x1 ∈ S
1} . (2.2)

We let N = e2 denote the unit normal ve
tor on Γ (outwards), Γperm and Γbot.

As our analysis 
ru
ially relies on obtaining a paraboli
 regularity gain, we need a refer-

en
e domain D+
with C∞

boundary. In parti
ular, the initial domain Ω+(0) 
annot serve
as a referen
e domain.

We adapt the ideas from [12℄ to 
onstru
t the time-dependent family of di�eomorphisms

with optimal Sobolev regularity, ψ(x, t), that we shall use to pull-ba
k (1.4) onto the �xed

domain D±
. Before detailing this 
onstru
tion, let us sket
h the pro
edure. First, we


onstru
t a di�eomorphism with optimal Sobolev regularity at t = 0:

ψ+(0) : D+ → Ω+(0), ψ− : D− → Ω−.

To do so we follow a three step pro
edure:

10
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• For 0 < δ ≪ 1 a su�
iently small parameter (to be �xed later), we de�ne auxiliary

domains, D±,δ(0). These auxiliary domains are 
onstru
ted via molli�
ation of h(x1, 0)
and f(x1) and, thus, they are in�nitely smooth. We de�ne the graph di�eomorphism

φ±1 : D± → D±,δ.

These di�eomorphisms are of 
lass C∞
be
ause of the smoothness of the domains D±

and D±,δ
.

• We need another di�eomorphisms from the auxiliary domain D±,δ
to Ω±(0). We need

these di�eomorphisms to gain 1/2 derivatives with respe
t to the regularity of Ω±(0).
In order that this optimal regularity is obtained, we make use of the de�nition of D±,δ

and the properties of our molli�ers. We de�ne

φ±2 : D±,δ → Ω±(0)

as the solution to Lapla
e problems with appropriate boundary 
onditions. Using the

boundary data and the inverse fun
tion theorem, these mappings φ±2 are H2.5−
lass
di�eomorphisms.

• Finally, we de�ne

ψ+(0) = φ+2 ◦ φ+1 , ψ− = φ−2 ◦ φ−1 .
As 
omposition of di�eomorphisms, ψ±(0) is a di�eomorphism.

On
e the initial di�eomorphism with optimal Sobolev regularity is 
onstru
ted, we solve

Poisson problems (to be detailed below) for ψ±(x, t). An appli
ation of the inverse fun
tion

theorem together with standard ellipti
 estimates will show that these mappings ψ±(x, t)
are a family of di�eomorphisms with the desired smoothness.

2.1.2 Constru
ting the initial regularizing di�eomorphism ψ(·, 0)

Given a fun
tion h ∈ C(0, T ;H2) with initial data h(x1, 0) = h0(x1), we �x 0 < δ ≪ 1 and

de�ne our auxiliary domains and boundaries

D+,δ(0) = {(x1, x2), x1 ∈ S
1, −1 + Jδf(x1) < x2 < Jδh0(x1)},

D−,δ = {(x1, x2), x1 ∈ S
1, −2 < x2 < −1 + Jδf(x1)},

Γδ(0) = {(x1,Jδh0(x1)), x1 ∈ S
1}, Γδperm = {(x1,−1 + Jδf(x1)), x1 ∈ S

1}.
As we said previously, we de�ne the graph di�eomorphism

φ+1 (x1, x2) = (x1, (x2 + 1)Jδh0(x1)− (−1 + Jδf(x1))x2) ,

φ−1 (x1, x2) = (x1, x2 + Jδf(x1)(x2 + 2)) ,

where Jδ denotes the 
onvolution with a standard Friedri
h's molli�er. This fun
tion

φ±1 : D± → D±,δ(0)
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is a C∞
di�eomorphism.

Next, we have to de�ne the regularizing di�eomorphisms

φ±2 : D±,δ(0) → Ω±(0).

We de�ne these mappings as the solution to the following ellipti
 problems:

∆φ+2 = 0 in D+,δ(0) , (2.3a)

φ+2 = (x1, x2) + [h0(x1)−Jδh0(x1)]e2 on Γδ(0) , (2.3b)

φ+2 = (x1, x2) + [f(x1)− Jδf(x1)]e2 on Γδperm , (2.3
)

∆φ−2 = 0 in D−,δ , (2.4a)

φ−2 = (x1, x2) + [f(x1)− Jδf(x1)]e2 on Γδperm (2.4b)

φ−2 = (x1, x2) on Γbot . (2.4
)

Using standard ellipti
 regularity theory, we have that

‖φ2 − e‖H2.5(D±,δ) ≤ C(|h0 −Jδh0|2 + |f − Jδf |2),

where e = (x1, x2) denotes the identity mapping. Using the Sobolev embedding theorem,

and taking δ > 0 su�
iently small, we have that

‖φ2 − e‖C1(D±,δ) ≪ 1,

so, due to the inverse fun
tion theorem, we obtain that φ±2 is an H2.5
-
lass di�eomorphism.

As in [12℄, we de�ne

ψ+(0) = φ+2 ◦ φ+1 : D+ → Ω+(0), ψ− = φ−2 ◦ φ−1 : D− → Ω−. (2.5)

Then, this mapping is also an H2.5
-
lass di�eomorphism.

2.1.3 Constru
ting the time-dependent family of regularizing di�eomorphisms

ψ(·, t)

We de�ne the time-dependent family of di�eomorphisms ψ(t) = ψ(·, t) as solutions to Poisson
equations with for
ing depending on ψ(0). The main point of this 
onstru
tion is that due to

the 
ontinuity in time of the interfa
e h and standard ellipti
 estimates, the time-dependent

family of di�eomorphisms ψ(t) = ψ(·, t) is going to remain 
lose to the initial di�eomorphism

ψ(0).
In parti
ular, we 
onsider the following ellipti
 system:

∆ψ+(t) = ∆ψ+(0) in D+ × [0, T ] , (2.6a)

ψ+(t) = (x1, x2) + h(x1, t)e2 on Γ× [0, T ] , (2.6b)

ψ+(t) = (x1, x2) + f(x1)e2 on Γperm × [0, T ] . (2.6
)
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and ψ−(t) = ψ−
. Be
ause of the for
ing term present in (2.6a), we have that ψ+(t)−ψ+(0)

solves

∆(ψ+(t)− ψ+(0)) = 0 in D+ × [0, T ] ,

ψ+(t)− ψ+(0) = (h(x1, t)− h(x1, 0))e2 on Γ× [0, T ] ,

ψ+(t)− ψ+(0) = 0 on Γperm × [0, T ] .

Due to ellipti
 estimates, we have the bound

‖ψ(t) − ψ(0)‖2.25,± ≤ C|h(t)− h0|1.75. (2.8)

By taking su�
iently small time t and re
alling that h ∈ C(0, T ;H2), we have that

‖ψ(t)‖2.25,± ≤ C|h(t)− h0|1.75 + C(|h0|1.75 + |f |1.75 + 1) ≤ 2C(|h0|1.75 + |f |1.75 + 1).

Writing

J(t) = det(∇ψ(t)) = ψ1,1 ψ
2,2 −ψ2,1 ψ

1,2 ,

we have the bound

‖J(t) − J(0)‖1.25,± ≤ C|h(t)− h0|1.75. (2.9)

Consequently, using h ∈ C(0, T ;H2), for su�
iently small time t, we have that

min
x∈D±

J(0)

2
< J(t) < 2 max

x∈D±
J(0),

and, thanks to (2.8), we have that

‖ψ(t) − ψ(0)‖C1 ≤ C|h(t)− h0|1.75 ≪ 1.

Due to the inverse fun
tion theorem and using the fa
t that ψ(0) is a di�eomorphism, we

see that

ψ±(t) : D± → Ω±(t)

is a di�eomorphism. From the ellipti
 estimate

‖ψ(t)‖2.5,± ≤ C(|h(t)|2 + |f |2 + 1),

we have that ψ(t) is an H2.5
-
lass di�eomorphism.

2.1.4 The matrix A(·, t)

We write A = (∇ψ)−1
. Thus,

Airψ
r,j = δij

and we obtain the useful identities

(At)
i
k = −Air(ψt)r,j Ajk, A′′ = −2A′∇ψ′A−A∇ψ′′A. (2.10)

We will also make use of the Piola's identity: (JAki ),k = 0.
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2.2 The Muskat problem in the referen
e domains D±

With ψ(t) = ψ(·, t) de�ned in Se
tion 2.1, we de�ne our new variables in the referen
e

domains D±
: v = u ◦ ψ, q = p ◦ ψ.

We let

τ̃ = ψ′, ñ = (ψ′)⊥, g = |ψ′|2

denote the (non-normalized) tangent and normal ve
tors and the indu
ed metri
, respe
-

tively, on Γ(t). We also de�ne the unit tangent ve
tor τ = τ̃ /
√
g and the unit normal ve
tor

n = ñ/
√
g. In the same way, we de�ne τ̃perm, ñperm, gperm, τperm, nperm as the analogous

quantities on Γperm. Re
all that

JAkiN
k = ñi on Γ, JAkiN

k = ñiperm on Γperm.

Hen
e, the ALE representation of the one-phase inhomogeneous Muskat problem is given

by

(v±)i

β±
+ (A±)ki (q

± + ψ± · e2),k = 0 in D± × [0, T ] , (2.11a)

(A±)ki (v
±)i,k = 0 in D± × [0, T ] , (2.11b)

ht(t) = (v+)iJ+(A+)jiN
j

on Γ× [0, T ] , (2.11
)

q+ = 0 on Γ× [0, T ] , (2.11d)

[[q]] = 0 on Γperm × [0, T ] , (2.11e)

[[q,k A
k
i JA

j
iN

j]] = −
[[ 1
β

]]
viJAjiN

j
on Γperm × [0, T ] (2.11f)

v−2 = 0 on Γbot × [0, T ] . (2.11g)

3 A priori estimates

In this se
tion we establish the a priori estimates for the one-phase Muskat problem with

dis
ontinuous permeability (1.4).

We de�ne the higher-order energy fun
tion

E(t) = max
0≤s≤t

|h(s)|22 +
∫ t

0
‖v(s)‖22,± + |h(s)|22.5ds.

Remark 6. Another possible de�nition for a higher-order energy fun
tion is (see [12℄)

E(t) = max
0≤s≤t

|h(s)|22 +
∫ t

0
‖v(s)‖22,±.

In fa
t, as will be shown,

E(t) ≤ CE(t).
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As in [12℄, our goal is to obtain the polynomial inequality

E(t) ≤ M0 +Q(E(t))tα,

for 
ertain α > 0, a generi
 polynomial Q, and a 
onstant M0 depending on h0 and f . When

E(t) is 
ontinuous, the previous inequality implies the existen
e of T ∗(h0, f) su
h that

E(t) ≤ 2M0. (3.1)

We assume that we have a smooth solution de�ned for t ∈ [0, T ]. We take 0 < T ≤ 1
small enough su
h that the following 
onditions hold: for a �xed 
onstant 0 < ǫ ≪ 1
(possibly depending on h0 and f ) and for t ∈ [0, T ],

‖ψ(t) − ψ(0)‖L∞ + ‖A(t)−A(0)‖L∞ + ‖J(t) − J(0)‖L∞ ≤ ǫ ; (3.2a)

‖h(t) − h0‖L∞ + ‖∇q(t)−∇q(0)‖L∞ ≤ ǫ ; (3.2b)

E(t) ≤ 3M0 ; (3.2
)

min
0≤t≤T

min
x1∈S1

q,2 (t) ≥ min
x1∈S1

q,2 (0)/4. (3.2d)

We will show that 
onditions even stri
ter than (3.2
,d) a
tually holds. Let us emphasize

that, due to the RT 
ondition, we have that

min
x1∈S1

q,2 (0) > 0.

Again, we let C = C(h0, f, δ) denote a 
onstant that may 
hange from line to line. We

let P(x) denote a polynomial with 
oe�
ients that may depend on h0(·) := h(·, 0), f, δ. This
polynomial may 
hange from line to line.

3.1 Estimates for some lower-order norms

In the following, we 
olle
t some estimates of lower-order norms. The proofs are similar to

those in [12℄, so, we omit them.

Lemma 3 (Estimates for some lower-order norms of h, [12℄, Se
tion 8.4.1). Given a smooth

solution to the Muskat problem (2.11a-g),

∫ t

0
|ht|21ds ≤ C E(t). (3.3a)

|h(t)− h0|1 ≤ C
√
E(t)t1/2. (3.3b)

Lemma 4 (Estimates for some lower-order norms of the ALE mapping ψ, [12℄, Se
tion
8.4.2). Given a smooth solution to the Muskat problem (2.11a-g),

‖ψ(t)‖2.5,± ≤ C(1 + |h(t)|2), ‖ψ(t)‖3,± ≤ C(1 + |h(t)|2.5) (3.4a)

‖ψ(t) − ψ(0)‖2.25,± + ‖A(t) −A(0)‖1.25,± + ‖J(t)− J(0)‖1.25,± ≤ 4
√
tC

√
E(t). (3.4b)

Noti
e that (3.4b) implies a stri
ter version of (3.2a). As a 
onsequen
e we obtain that

|h(t)|1.75, ‖ψ(t)‖2.25,±, ‖J(t)‖1.25,± and ‖A(t)‖1.25,± are bounded by C(h0, f) uniformly for

all t ∈ [0, T ]. Furthermore, we also have that

0 <
1

2
min

x∈D+∪D−
J(0) ≤ J(t) ≤ 1.5 max

x∈D+∪D−
J(0). (3.5)
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3.2 Basi
 L2
energy law

Lemma 5 (Estimates for some lower-order norms of v). For a smooth solution to the Muskat

problem (2.11a-g),

|h(t)|20 + 2

∫ t

0

∥∥∥∥∥

√
J

β
v

∥∥∥∥∥

2

0,±
ds = |h0|20 . (3.6)

Proof. We test the equation (2.11a) against Jv and integrate. Using Piola's identity, inte-

grating by parts and using the divergen
e free 
ondition (2.11b), we obtain that

∥∥∥∥∥

√
J

β
v

∥∥∥∥∥

2

0,±
+

∫

Γ
viJAki (q + ψ · e2)Nkdx1

−
∫

Γperm

[[viJAki (q + ψ · e2)Nk]]dx1 −
∫

Γbot

viJAki (q + ψ · e2)Nkdx1 = 0.

Then, using the jump and boundary 
onditions on Γperm and Γbot,

∥∥∥∥∥

√
J

β
v

∥∥∥∥∥

2

0,±
+

1

2

d

dt
|h|20 = 0.

3.3 Estimates for h ∈ L2(0, T ;H2.5(Γ)) and ht ∈ L2(0, T ;H1.5(Γ))

From (2.11a)

(vi + β+δ2i )τi = 0 on Γ, and v′iτi = −β+JA2
iA

2
i q,2

h′′

g3/2
on Γ . (3.7)

Lemma 6 (Paraboli
 smoothing, [12℄, Se
tion 8.4.6). Given a smooth solution to the Muskat

problem (2.11a-g),

h ∈ C([0, T ],H2(S1)).

In parti
ular,

∫ t

0
|ht(s)|21.5ds+

∫ t

0
|h(s)|22.5ds ≤ C

(
max
0≤s≤t

|h(s)|22 +
∫ t

0
‖v(s)‖22,±ds

)
. (3.8)

Note that Lemma 6 implies that the energy fun
tion E(t) is 
ontinuous.

16



R. Granero-Belin
hón and S. Shkoller Inhomogeneous Muskat problem

3.4 Pressure estimates

Using (2.11a) and (2.11b), q± solves

−(β±J±(A±)ji (A
±)ki q

±,k ),j = 0 in D± , (3.9)

q+ = 0 on Γ , (3.10)

[[q]] = 0 on Γperm , (3.11)

[[βq,k A
k
i JA

r
iN

r]] = −[[β]]δ2i JA
r
iN

r
on Γperm , (3.12)

β−q−,k (A
−)ki J

−(A−)riN
r = −β− on Γbot . (3.13)

We have that A(0)A(0)T is symmetri
 and positive de�nite:

[A(0)A(0)T ]ijξiξj ≥ L|ξ|2;


onsequently, due to (3.4b),

‖A0A
T
0 −A(t)AT (t)‖L∞ ≤ C

√
t
√
E(t) ,

and we see that for t su�
iently small,

L
2
|ξ|2 ≤ [A(·, t)AT (·, t)]ijξiξj ≤ 2L|ξ|2.

Thus, A(t)AT (t) form a uniformly ellipti
 operator for t on [0, T ], and ellipti
 estimates

(following the same approa
h as in [12℄ and [13℄) lead to

‖q‖2.5,± ≤ C
√
E(t) , ‖v(t)‖1.5,± ≤ C

√
E(t). (3.14)

Furthermore, using the same argument as in [12, Se
tion 8.4.5℄, we obtain that

‖q(t)− q(0)‖2.25,± ≤ t1/8P(E(t)), (3.15)

and,

‖q,2 (t)− q,2 (0)‖L∞(Γ) ≤ C|q,2 (t)− q,2 (0)|0.75 ≤ t1/8P(E(t)).

As a 
onsequen
e of the latter inequality, the Rayleigh-Taylor sign 
ondition holds in [0, T ]
for small enough T . Furthermore, using the Sobolev embedding theorem,

‖∇q(t)−∇q(0)‖L∞ ≤ t1/8P(E(t)),

and a stronger version of the bootstrap assumption (3.2d) also holds.

3.5 The energy estimates

In this se
tion we will perform the basi
 energy estimates. Integrals of lower-order terms

will be denoted by R(t), meaning that

∫ t

0
R(s)ds ≤ M0 +

√
tP(E(t)).
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We take two horizontal derivatives of (2.11a), test against Jv′′, and integrate by parts

to �nd that

∫ t

0

∫

D+∪D−

J

β
|v′′|2dxds+

∫ t

0

∫

D+∪D−

J
[
Aki (q + ψ2)′′,k +(Aki )

′′(q + ψ2),k

]
v′′i dxds+

∫ t

0
R(s)ds = 0.

Due to the divergen
e free 
ondition (2.11b) we obtain that

Aki (v
i)′′,k = −(A′′)ki v

i,k +R(t). (3.16)

Thus, integrating by parts and using (3.16) and the identities JAkiN
k = ñi, JAkiN

k = ñiperm
and JAkiN

k = N i
on Γ, Γperm and Γbot, respe
tively, we �nd that

I1 =

∫ t

0

∫

D+∪D−

JAki (q + ψ2)′′,k v
′′
i dxds

=

∫ t

0

∫

Γ
ñi(q + ψ2)′′v′′i dx1ds −

∫ t

0

∫

Γperm

[[v′′i (q + ψ2)′′ñiperm]]dx1ds

−
∫ t

0

∫

Γbot

N i(q + ψ2)′′v′′i dx1ds−
∫ t

0

∫

D+∪D−

JAki (q + ψ2)′′(vi),′′k dxds

=

∫ t

0

∫

D+∪D−

J(A′′)ki (q + ψ2)′′(vi),k dxds+
∫ t

0

∫

Γ
ñih′′v′′i dx1ds

−
∫ t

0

∫

Γperm

(q+ + f)′′[[v′′i ñ
i
perm]]dx1ds+

∫ t

0
R(s)ds.

The 2-D integral is now a lower-order term that 
an be estimated with a L2−L4−L4−L∞

Hölder argument together with the Sobolev embedding theorem. Thus, we are left with the

integrals on the boundaries Γ and Γperm. Due to the in
ompressibility 
ondition, we have

that [[viñ
i
perm]] = 0, so that

I1 =

∫ t

0

∫

Γ
h′′h′′t dx1ds−

∫ t

0

∫

Γ
(
√
gni)

′′h′′vidx1ds

+

∫ t

0

∫

Γperm

(q+ + f)′′[[v1]]f
′′′dx1ds +

∫ t

0
R(s)ds

=
1

2
|h′′|20 −

1

2
|h′′0 |20 −

1

2

∫ t

0

∫

Γ
(h′′)2v′1dx1ds+

∫ t

0
|q′′[[v1]]|0.5|f |2.5ds

− 1

2

∫

Γperm

(f ′′)2[[v′1]]dx1ds+
∫ t

0
R(s)ds

≥ 1

2
|h′′|20 −

1

2
|h′′0 |20 −

√
tP(E(t)),

where we have used Hölder inequality, the tra
e theorem, (3.14) and the inequality

|fg|0.5 ≤ Cλ|f |0.5|g|0.5+λ. (3.17)
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The remaining high order term 
an be handled as follows: using (2.10) and integrating

by parts,

I2 =

∫ t

0

∫

D+∪D−

J(Aki )
′′(q + ψ2),k v

′′
i dxds

= −
∫ t

0

∫

D+∪D−

JAkrψ
r,11j A

j
i (q + ψ2),k v

′′
i dxds+

∫ t

0
R(s)ds

=

∫ t

0

∫

D+∪D−

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i ),j dxds −

∫ t

0

∫

Γ
ψr,11 JA

j
i (A

k
r (q + ψ2),k v

′′
i )N

jdx1ds

+

∫ t

0

∫

Γperm

[[ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i )]]N

jdx1ds

−
∫ t

0

∫

Γbot

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i )N

jdx1ds+

∫ t

0
R(s)ds

=

∫ t

0

∫

D+∪D−

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i ),j dxds −

∫ t

0

∫

Γ
h′′ñiA

k
2(q + ψ2),k v

′′
i dx1ds

+

∫ t

0

∫

Γperm

f ′′[[ñipermA
k
2(q + ψ2),k v

′′
i ]]dx1ds+

∫ t

0
R(s)ds.

The integral in the bulk of the �uid 
an be estimated using (3.16) so that

∫ t

0

∫

D+∪D−

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i ),j dxds ≥ −

√
tP(E(t)).

The integral over Γperm 
an be estimated using the H0.5−H−0.5
duality and (3.17) as follows:

∫ t

0

∫

Γperm

f ′′[[ñipermA
k
2(q + ψ2),k v

′′
i ]]dx1ds ≥ −

∫ t

0
C|f |2.5(1 + |f |1.75)|A∇(q + ψ2)|0.75|v|1.5ds

≥ −
∫ t

0
C‖A∇(q + ψ2)‖1.25,±‖v‖2,±ds

≥ −
√
tP(E(t)).

Using that Ak2ψ
2,k = δ22 = 1,

I2 ≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′ñiv

′′
i (A

1
2(q + ψ2),1 +A

2
2(q + ψ2),2 )dx1ds

≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′ñiv

′′
i (A

2
2q,2+1)dx1ds

≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′(h′′t − h′′′v1)(J

−1q,2 +1)dx1ds

≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′h′′t

(
q,2 (t)

J(t)
− q,2 (0)

J(0)
+
q,2 (0)

J(0)
+ 1

)
dx1ds.

From (3.15),

I2 ≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′h′′t

(
q,2 (0)

J(0)
+ 1

)
dx1ds.
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Thus,

∫ t

0

∥∥∥∥∥

√
J

β
v′′
∥∥∥∥∥

2

0,±
ds +

1

2

∣∣∣∣∣

√
−q,2 (0)
J(0)

h′′(t)

∣∣∣∣∣

2

0

≤ 1

2

∣∣∣∣∣

√
−q,2 (0)
J(0)

h′′0

∣∣∣∣∣

2

0

+
√
tP(E(t)). (3.18)

3.6 Ellipti
 estimates via the Hodge de
omposition

In this se
tion, we use the following

Lemma 7 ([13℄). Let Ω be a domain with boundary ∂Ω of Sobolev 
lass Hk+0.5
, k ≥ 2.

Let ψ0 be a given smooth mapping and de�ne curlψ0
v and divψ0

v as in (1.10) and (1.11),

respe
tively. Then for v ∈ Hk(Ω),

‖v‖Hk(Ω) ≤ C
[
‖v‖L2(Ω) + ‖curlψ0

v‖Hk−1(Ω) + ‖divψ0
v‖Hk−1(Ω) + ‖v′ · n‖Hk−1.5(∂Ω)

]
,

where n = (ψ′
0)

⊥/|ψ′
0|.

Sin
e in ea
h phase, curlu = 0 and div u = 0, it follows (see [12℄, Se
tion 8.4.8) that

∫ t

0
‖
urlψ0

v‖21,±dy ≤
√
tP(E(t)), (3.19)

∫ t

0
‖divψ0

v‖21,±dy ≤
√
tP(E(t)). (3.20)

First, we want to use Lemma 7 to obtain an estimate for ‖v′‖1,±. The only term that is

deli
ate is the boundary term |v′′ · n|−0.5. For that term we have the following

Lemma 8 (Estimates for the normal tra
e of v). Given a smooth solution to the Muskat

problem (2.11a-g),

∫ t

0
|v′′ · n|2H−0.5(∂D−∪∂D+)ds ≤ C

∫ t

0
‖v′′‖20,±ds+

√
tP(E(t)) , (3.21)

where n = (ψ′
0)

⊥/|ψ′
0|.

Proof. In order to estimate |v′′ ·n|−0.5 using the H
1/2−H−1/2

duality, we 
onsider a fun
tion

φ ∈ H1(D+ ∪D−). Due to the tra
e theorem, we have that φ ∈ H0.5(Γ ∪ Γperm ∪ Γbot). We

de�ne the following integrals:

I1 =

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1,

I2 =

∫

Γperm

g−1/2(v+)′′i JA
k
iN

kφdx1,

and

I3 =

∫

Γ
g−1/2v′′i JA

k
iN

kφdx1.

20



R. Granero-Belin
hón and S. Shkoller Inhomogeneous Muskat problem

Using the fa
t that

(ψ′
i)
⊥ = JAkiN

k

together with v2 = 0 on Γbot, we see that in order we have the appropriate estimate for

|v′′ · n|−0.5, it is enough to obtain good bounds for |I1|, |I2| and |I3|. To do that we use the

divergen
e theorem and Dar
y's law (2.11a). We 
ompute

I1 =

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1

=

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1 +

∫

Γbot

g−1/2(v−)′′i JA
k
iN

kφdx1

=

∫

D−

(g−1/2v′′i JA
k
i φ),k dx

=

∫

D−

g−1/2v′′i JA
k
i φ,k dx+

∫

D−

g−1/2,k v
′′
i JA

k
i φdx+

∫

D−

(vi,k )
′′g−1/2JAki φdx .

Integrating by parts, we obtain that

∫

D−

(vi,k )
′′g−1/2JAki φdx = −

∫

D−

divψv
′(Jg−1/2φ)′dx−

∫

D−

(vi,k )
′Jg−1/2(Aki )

′φdx .

So, we �nd that

I1 =

∫

D−

g−1/2v′′i JA
k
i φ,k dx+

∫

D−

g−1/2,k v
′′
i JA

k
i φdx

−
∫

D−

divψv
′(Jg−1/2φ)′dx−

∫

D−

(vi,k )
′Jg−1/2(Aki )

′φdx . (3.22)

Integrating by parts and using Piola's identity, we have that

−
∫

D−

(vi,k )
′Jg−1/2(Aki )

′φdx =

∫

D−

(vi)′J(Aki )
′(g−1/2φ),k dx

−
∫

Γperm

(vi)′Jg−1/2(Aki )
′φNkdx1

+

∫

Γbot

(vi)′Jg−1/2(Aki )
′φNkdx1. (3.23)

Substituting (3.23) into equation (3.22) and using the boundary 
ondition (2.11g) we obtain

that

I1 =

∫

D−

g−1/2v′′i JA
k
i φ,k dx+

∫

D−

g−1/2,k v
′′
i JA

k
i φdx

−
∫

D−

divψv
′(Jg−1/2φ)′dx+

∫

D−

(vi)′J(Aki )
′(g−1/2φ),k dx

−
∫

Γperm

(vi)′Jg−1/2(Aki )
′φNkdx1 . (3.24)
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Thus, using Hölder inequality, the Sobolev embedding theorem and the tra
e theorem to-

gether with Lemma 4, we obtain that

|I1| ≤ C
(
‖v′′‖0,− + ‖divψv′‖0,−

)
‖φ‖1,−

+ C‖v‖1.5,−‖ψ‖2.5,− (1 + ‖ψ‖2.5,−) ‖φ‖1,−
+ C‖v‖1.75,−‖ψ‖2.5,−‖φ‖1,− . (3.25)

We 
an use the 
ontinuity of the normal 
omponent of the velo
ity through Γperm

[[viJA
k
iN

k]] = 0 on Γperm × [0, T ] ,

to write

[[v′′i JA
k
iN

k]] = −[[vi(JA
k
iN

k)′′]]− 2[[v′i(JA
k
iN

k)′]] on Γperm × [0, T ] .

Thus, on
e that we have an estimate for I1, we have that

I2 = I1 −
∫

Γperm

[[g−1/2v′i(JA
k
i )

′Nk]]φdx1 −
∫

Γperm

[[g−1/2vi(JA
k
i )

′′Nk]]φdx1

= I1 −
∫

Γperm

[[g−1/2v′i(JA
k
i )

′Nk]]φdx1 −
∫

Γperm

[[v1]]
f ′′′√

1 + (f ′)2
φdx1.

Then, we 
an obtain an estimate for I2 using our previous estimate for I1. Thus, using (3.17)
for the last term, we have that

|I2| ≤ C
(
‖v′′‖0,− + ‖divψv′‖0,−

)
‖φ‖1,−

+ C‖v‖1.5,−‖ψ‖2.5,− (1 + ‖ψ‖2.5,−) ‖φ‖1,−
+ C‖v‖1.75,−‖ψ‖2.5,−‖φ‖1,−
+ C‖v‖1.25,±|f |2.5‖φ‖1,± . (3.26)

Similarly, we 
ompute

I+ =

∫

Γ
g−1/2v′′i JA

k
iN

kφdx1 +

∫

Γperm

g−1/2v′′i JA
k
iN

kφdx1

=

∫

D+

(g−1/2v′′i JA
k
i φ),k dx1,

so, following the same steps as in the estimate (3.25), we have that

∣∣I+
∣∣ ≤ C

(
‖v′′‖0,± + ‖divψv′‖0,±

)
‖φ‖1,±

+ C‖v‖1.5,±‖ψ‖2.5,± (1 + ‖ψ‖2.5,±) ‖φ‖1,±
+ C‖v‖1.75,±‖ψ‖2.5,±‖φ‖1,±.

Then,

|I3| ≤ C
(
‖v′′‖0,± + ‖divψv′‖0,±

)
‖φ‖1,±

+ C‖v‖1.5,±‖ψ‖2.5,± (1 + ‖ψ‖2.5,±) ‖φ‖1,±
+ C‖v‖1.75,±‖ψ‖2.5,±‖φ‖1,±
+ C‖v‖1.25,±|f |2.5‖φ‖1,± . (3.27)
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Using duality, (3.25), and that ψ−(t) = ψ−(0),

|v′′ · n|H−0.5(∂D−) = sup
|φ|0.5≤1

∣∣∣∣∣

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1

∣∣∣∣∣
≤ C

(
‖v′′‖0,− + ‖divψv′‖0,−

)
‖φ‖1,−

+ C‖v‖1.5,−‖ψ‖2.5,− (1 + ‖ψ‖2.5,−) ‖φ‖1,−
+ C‖v‖1.75,−‖ψ‖2.5,−‖φ‖1,− .

Integrating in time and using (3.8), (3.14) and (3.20), we have that

∫ t

0
|v′′ · n|2H−0.5(∂D−)ds ≤ C

∫ t

0
‖v′′‖20,±ds+

√
tP(E(t)).

Similarly, using (3.26) and (3.27), we obtain that

|v′′ · n(t)|H−0.5(∂D+) = sup
|φ|0.5≤1

∣∣∣∣
∫

Γ
g−1/2v′′i JA

k
iN

kφdx1

∣∣∣∣

+ sup
|φ|0.5≤1

∣∣∣∣∣

∫

Γperm

g−1/2(v+)′′i JA
k
iN

kφdx1

∣∣∣∣∣
≤ C

(
‖v′′‖0,± + ‖divψv′‖0,±

)
‖φ‖1,±

+ C‖v‖1.5,±‖ψ‖2.5,± (1 + ‖ψ‖2.5,±) ‖φ‖1,±
+ C‖v‖1.75,±‖ψ‖2.5,±‖φ‖1,±
+ C‖v‖1.25,±|f |2.5‖φ‖1,± .

Using Lemma 4, (3.20) and taking the lifespan T small enough, we have that

‖divψv′‖0,± = ‖divψ0
v′‖0,− + c‖A(t) −A(0)‖L∞‖v′‖1,± ≤ 4

√
tP(E(t)) + 5

√
t‖v′‖1,±.

Consequently, we have that

∫ t

0
|v′′ · n(s)|2H−0.5(∂D+)ds ≤ c

∫ t

0
‖v′′‖20,±ds+

√
tP(E(t)) .

Finally, using (3.14), (3.17), the Sobolev embedding theorem and tra
e theorem, we have

that

∣∣∣v′′ ·
(
(ψ′(t))⊥/|ψ′(t)| − (ψ′

0)
⊥/|ψ′

0|
)∣∣∣
H−0.5(∂D+)

≤ c‖v‖2,±‖J(t)A(t) − J(0)A(0)‖1.25

≤
√
tP(E(t)) .

Colle
ting these estimates, we 
on
lude that

∫ t

0
|v′′ · n|2H−0.5(∂D+)ds ≤ c

∫ t

0
‖v′′‖20,±ds +

√
tP(E(t)).
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Making use of Lemma 7 (for v′) and (3.18), we obtain that

∫ t

0
‖v′(s)‖21,±ds ≤ C

∫ t

0
‖v′′‖20,± + ‖curlψ0

v′‖20,± + ‖divψ0
v′‖20,±ds

+ C

∫ t

0
|v′′ · n|2H−0.5(∂D+∪∂D−)ds

≤ C

∫ t

0
‖v′′‖20,±ds +

√
tP(E(t))

≤ M0 +
√
tP(E(t)) ,

where M0 is a 
onstant depending on the initial data. Equipped with this last estimate and

using Lemma 7 and tra
e theorem, we obtain that

∫ t

0
‖v(s)‖22,±ds ≤ C

∫ t

0
‖v‖20,± + ‖curlψ0

v‖21,± + ‖divψ0
v‖21,±ds

+ C

∫ t

0
|v′ · n|2H0.5(∂D+)∪∂D−)ds

≤ C

∫ t

0
‖v‖20,± + ‖curlψ0

v‖21,± + ‖divψ0
v‖21,± + ‖v′ · n‖21,±ds

≤ M0 +
√
tP(E(t)) . (3.28)

3.7 Con
lusion

Colle
ting the estimates (3.6), (3.18), (3.28) and using the lower bound for J(t) and the

Rayleigh-Taylor sign 
ondition, we �nd that

E(t) ≤ M0 +
√
tQ(E(t)). (3.29)

From

h ∈ L2(0, T ;H2.5(Γ)), ht ∈ L2(0, T ;H1.5(Γ)),

the energy E(t) is 
ontinuous and this inequality implies the existen
e of a uniform time

T (h0, f) su
h that

E(t) ≤ 2M0.

Estimates showing the uniqueness of the solution follows from standard energy methods and

the detailed analysis shown in [12℄.

4 Proof of Theorem 1: Lo
al well-posedness

Based on the smoothing argument in [24, 25℄ and following [12℄, for 0 < κ, ǫ ≪ 1 small

enough, we de�ne

Ω+
κ,ǫ(0) = {(x1, x2) ∈ S

1 × R, −1 + f(x1) < x2 < JκJκJǫh(x1, 0)}.
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Now, following Se
tion 2, we 
an 
onstru
t an H2.5−
lass di�eomorphism

ψ+
κ,ǫ(0) : D+ → Ω+

κ,ǫ(0), ψ
− : D− → Ω−.

We 
onsider the so 
alled ǫκ−problem:

(v±κ,ǫ)
i

β±
+ (A±

κ,ǫ)
k
i (q

±
κ,ǫ + ψ±

κ,ǫ · e2),k = 0 in D± × [0, T ] ,

(A±
κ,ǫ)

k
i (v

±
κ,ǫ)

i,k = 0 in D± × [0, T ] ,

(hκ,ǫ)t(t) = (v+κ,ǫ)
iJ+
κ,ǫ(A

+
κ,ǫ)

2
i on Γ× [0, T ] ,

hκ,ǫ = Jǫh0 on Γ× {0} ,
q+κ,ǫ = 0 on Γ× [0, T ] ,

[[qκ,ǫ]] = 0 on Γperm × [0, T ] ,

[[qκ,ǫ,k (Aκ,ǫ)
k
i Jκ,ǫ(Aκ,ǫ)

2
i ]] = −

[[ 1
β

]]
viκ,ǫJκ,ǫ(Aκ,ǫ)

2
i on Γperm × [0, T ]

v−κ,ǫ · e2 = 0 on Γbot × [0, T ] ,

∆ψ+
κ,ǫ(t) = ∆ψ+

κ,ǫ(0) in D+ × [0, T ] ,

ψ+
κ,ǫ(t) = (x1, x2) + JκJκhκ,ǫ(x1, t)e2 on Γ× [0, T ] ,

ψ+
κ,ǫ(t) = (x1, x2) + f(x1)e2 on Γperm × [0, T ] .

Note that the ǫ-regularization a�e
ts only the initial interfa
e h0, while the κ regulariza-

tion appears also in the PDE system.

The 
onstru
tion of smooth approximate solutions 
an be a
hieved with a �xed point

s
heme. The detailed 
onstru
tion of solutions to this problem is given in [12℄. See also

[40℄ for a very di�erent approa
h to the 
onstru
tion of solutions using the integral kernel

method.

On
e we are equipped with a smooth approximate solution hκ,ǫ(x1, t), we have to obtain
uniform estimates in ǫ and κ. These uniform estimates in ǫ and κ will allow us to pass to

the limit. However, we need to take the limits in the appropriate order; to be able to take

the limit as κ → 0 we need to have a smooth initial data (Hs
, s > 2.5 is enough), so, we

need ǫ > 0. However, the term requiring ǫ > 0 is not present when κ = 0. Thus, we have

to take �rst the limit as κ → 0 and then the limit as ǫ → 0 (see [12℄ for more details). We

de�ne

Eκ,ǫ(t) = max
0≤s≤t

|Jκhκ,ǫ(s)|22 +
∫ t

0
‖vκ,ǫ(s)‖22,± + |JκJκhκ,ǫ(s)|22.5ds

and follow the estimates in in Se
tion 3. We obtain the κ-uniform bound

Eκ,ǫ(t) ≤ 2M0,ǫ ∀ 0 ≤ t ≤ Tǫ.

Passing to the limit in κ we obtain an approximate solution hǫ(x1, t). Now we de�ne

Eǫ(t) = max
0≤s≤t

|hǫ(s)|22 +
∫ t

0
‖vǫ(s)‖22,± + |hǫ(s)|22.5ds
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and follow the estimates in in Se
tion 3. Re
alling that the ǫ-regularization only a�e
ts the

initial interfa
e h0, we obtain the ǫ-uniform bound

Eǫ(t) ≤ 2M0 ∀ 0 ≤ t ≤ T.

Passing to the limit in ǫ we obtain a lo
al strong solution to the one-phase Muskat problem

with dis
ontinuous permeability (1.4).

5 The Muskat problem in the semi-ALE formulation

We again use (2.1) and (2.2), respe
tively, for our referen
e domains and boundaries. We

let N = e2 denote the unit normal ve
tor on Γ, Γperm and Γbot. Due to Theorem 1, there

exists a lo
al solution (h, u, p) to the Muskat problem (1.4).

We de�ne δψ±
as the solution to

∆δψ+ = 0 in D+ × [0, T ] , (5.1a)

δψ+ = h on Γ× [0, T ] , (5.1b)

δψ+ = f on Γperm × [0, T ] , (5.1
)

∆δψ− = 0 in D− × [0, T ] , (5.2a)

δψ− = f on Γperm × [0, T ] , (5.2b)

δψ− = 0 on Γbot × [0, T ] , (5.2
)

and

ψ±(x1, x2) = (x1, x2) + (0, δψ±) in D± × [0, T ], (5.3)

For all s ∈ R, ellipti
 estimates show that

‖ψ − e‖s+1/2,± = ‖δψ‖s+1/5,± ≤ c(|h|s + |f |s) ≪ 1, (5.4)

due to the smallness of the initial data h0 and the fun
tion f . Thus, for s = 2, due to the

Sobolev embedding and inverse fun
tion theorems, ψ±
is a H2.5−
lass di�eomorphism. We

de�ne J± = det(∇ψ±) and A± = (∇ψ±)−1
. In parti
ular,

J± = 1 + δψ±
,2 ,

A± = (J±)−1

[
(ψ±)2,2 −(ψ±)1,2
−(ψ±)2,1 (ψ±)1,1

]
=

1

1 + δψ±,2

[
1 + δψ±,2 0
−δψ±,1 1

]
.

We de�ne our ALE variables v = u ◦ψ, q = p ◦ψ as in se
tion 2. The new variables v, q
solve the system (2.11). We de�ne our new semi-ALE variables

wi = JAijv
j , Q = q + x2.
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In parti
ular, using Piola's identity and the equality JAijN
i =

√
gnj valid on Γbot, Γperm

and Γ, we have that
wi,i= JAijv

j,i= 0,

and

w−
2 = JA2

jv
−
j = δj2v

−
j = v−2 on Γbot.

We also have that

wjN j = JAjkv
kN j =

√
gnkvk,

so, due to the in
ompressibility of the �uid,

[[wjN j ]] = 0 on Γperm

Thus, these new variables solve

(w±)j

β±
+ J±(A±)ji (A

±)ki (Q
± + δψ±),k = 0 in D± × [0, T ] , (5.5a)

divw± = 0 in D± × [0, T ] , (5.5b)

ht = w+
2 on Γ× [0, T ] , (5.5
)

h = h0 on Γ× {0} , (5.5d)

Q+ = 0 on Γ× [0, T ] , (5.5e)

[[Q]] = 0 on Γperm × [0, T ] , (5.5f)

[[(Q + δψ),k A
k
i JA

j
iN

j]] = −
[[ 1
β

]]
w+
j N

j
on Γperm × [0, T ] (5.5g)

w−
2 = 0 on Γbot × [0, T ] . (5.5h)

Equivalently,

w±

β±
+∇(Q± + δψ±) =

(
Id− (∇ψ±)T∇ψ±

J±

)
w±

β±
in D± × [0, T ] , (5.6a)

divw± = 0 in D± × [0, T ] , (5.6b)

ht = w+
2 on Γ× [0, T ] , (5.6
)

h = h0 on Γ× {0} , (5.6d)

Q+ = 0 on Γ× [0, T ] , (5.6e)

[[Q]] = 0 on Γperm × [0, T ] , (5.6f)

[[(Q+ δψ),k A
k
i JA

j
iN

j]] = −
[[ 1
β

]]
w+
j N

j
on Γperm × [0, T ] (5.6g)

w−
2 = 0 on Γbot × [0, T ] . (5.6h)

Using the parti
ular form of ∇ψ± = ∇(x1, x2 + δψ±) , we have that
(
Id− (∇ψ)T∇ψ±

J±

)
w±

β±
=

(
δψ±,2 −(δψ±,1 )2 −δψ±,1 (1 + δψ±,2 )

−δψ±,1 (1 + δψ±,2 ) −δψ±,2 (1 + δψ±,2 )

)
w±

β±J± , (5.7)

and we see that the right hand side of (5.6a) 
ontains all the non-linear terms.
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6 Proof of Theorem 2: Global well-posedness when f = 0

We de�ne the energy E (t) and energy dissipation D(t) as follows

E (t) = |h′′(t)|20, D(t) = ‖w′′(t)‖20,±. (6.1)

As h(·, t) has zero mean, the Poin
aré inequality shows that

|h|n ≡ |hn)|0, n ∈ Z
+.

By hypothesis, the initial data h0 satis�es the smallness 
ondition

|h0|2 < C , (6.2)

for C a small enough 
onstant.

Note that due to Theorem 1, there exists a time T su
h that

E (t) < 2E (0) < 2C 2 ≪ 1.

Let us sket
h the proof of the theorem. Our goal is to prove that, for initial data

satisfying the smallness 
ondition (6.2), the system remains in the Rayleigh-Taylor stable

regime and veri�es the following estimates

sup
0≤t

|h(t)|2 ≤ |h0|2 < C ,

∫ t

0
‖w(s)‖22,±ds ≤ C1C

2,

where C1 is a time independent 
onstant. Then, a standard 
ontinuation argument for

ODE in Bana
h spa
es implies that the lo
al solution provided by Theorem 1 is, in fa
t, a

global-in-time solution.

This goal is a
hieved in several steps. First we prove that, for C small enough, the

system remains in the Rayleigh-Taylor stable 
ase and veri�es the estimate

d

dt
E + D ≤ D

√
EP(E ) ∀0 ≤ t ≤ T. (6.3)

This inequality implies the de
ay of E for small enough initial data; however, to obtain the

rate of de
ay, we need to relate the energy E with the energy dissipation D . To do that we

establish the estimate

|h′′|0.5 ≤ C
(
‖w‖2,±|h|1.75 + ‖w′′‖0,±

)
.

This estimate relies on Dar
y's law. Using the smallness 
ondition (6.2) and the Hodge

de
omposition ellipti
 estimate (see Lemma 7), we prove that tangential derivatives of the

velo
ity are enough to 
ontrol the full H2
norm of the velo
ity �eld:

‖w‖2,± ≤ C
[
‖w‖1.5,± + ‖w′′‖0,±

]
.

Finally, using the smallness of C , we 
an relate the energy E with the energy dissipation D

as follows

E ≤ |h′′|0.5 ≤ C‖w′′‖0,± = CD .
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Thus, using the smallness of C , the previous energy estimate (6.3) is equivalent to

γE +
d

dt
E ≤ 0. (6.4)

for a 
ertain γ > 0. Note that due to the de�nition of E , we have that (6.4) implies

|h′′(t)|0 ≤ |h′′0 |0e−γt/2.

We also obtain that ∫ t

0
‖w(s)‖22,±ds ≤ C(E (0), β±).

6.1 Pressure estimates

Re
all that, as δψ− = 0 on Γbot, we have that A veri�es

(A−)2i ((A
−)1i = 0, J(A−)2i ((A

−)2i = (A−)22 =
1

J− =
1

1 + δψ−,2
on Γbot.

Note also that (5.6f) is equivalent to

[[β(Q + δψ),k A
k
i JA

j
iN

j]] = 0 on Γperm × [0, T ],

thus, multiplying (5.6a) by β± and using the divergen
e free 
ondition (5.6b), the modi�ed

pressure Q solves

β±J±(A±)ji ((A
±)ki (Q

± + δψ±),k ),j = 0 in D± × [0, T ] , (6.5a)

Q+ = 0 on Γ× [0, T ] , (6.5b)

[[Q]] = 0 on Γperm × [0, T ] , (6.5
)

[[β(Q + δψ),k A
k
i JA

j
iN

j ]] = 0 on Γperm × [0, T ] (6.5d)

β−(A−)22(Q
− + δψ−),2 = 0 on Γbot × [0, T ] . (6.5e)

Equivalently, using (5.1) and (5.2), (6.5) 
an be written as

β∆Q = βdiv
[
(Id− JAAT )∇(Q+ δψ)

]
in D± × [0, T ] , (6.6a)

Q+ = 0 on Γ× [0, T ] , (6.6b)

[[Q]] = 0 on Γperm × [0, T ] , (6.6
)

[[βQ,2 ]] = [[βQ,k (δ
k
2 −Aki JA

2
i )]] − [[βδψ,k A

k
i JA

2
i ]]on Γperm × [0, T ] (6.6d)

β−Q−,2 = β−(Q−,2 −1)
δψ−,2

1 + δψ−,2
on Γbot × [0, T ] , (6.6e)

where

Id− JAAT =

[
−δψ±,2 δψ±,1
δψ±,1

δψ±,2−(δψ± ,1)2

1+δψ,±
2

]
,
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and, using (5.1
) and (5.2b),

A1
iJA

2
i = 0, A2

i JA
2
i =

1

1 + δψ,2
on Γperm.

Ellipti
 estimates and tra
e theorem then show that

‖∇Q‖1.5,± ≤ C

(
‖(Id− JAAT )∇(Q+ δψ)‖1.5,± +

∣∣∣[[βQ,k (δk2 −Aki JA
2
i )]]

∣∣∣
1

+
∣∣∣[[βδψ,k Aki JA2

i ]]
∣∣∣
1
+

∣∣∣∣β
−(Q−,2 −1)

δψ−,2
1 + δψ−,2

∣∣∣∣
1

)

≤ C

(
‖Id− JAAT ‖L∞‖∇Q‖1.5,± + ‖Id− JAAT ‖1.5,±‖∇Q‖L∞

+ ‖Id− JAAT ‖L∞‖∇δψ‖1.5,± + ‖Id− JAAT ‖1.5,±‖∇δψ‖L∞

+

∥∥∥∥
δψ−,2

1 + δψ−,2

∥∥∥∥
L∞

‖∇Q‖1.5,± +

∥∥∥∥
δψ,2

1 + δψ,2

∥∥∥∥
1.5,±

‖∇Q‖L∞

+

∥∥∥∥
δψ,2

1 + δψ,2

∥∥∥∥
1.5,±

)
.

Thus, using (5.4), we have that

‖∇Q‖1.5,± ≤ C|h|22P(|h|22). (6.7)

Using (5.5a), we obtain that

‖w‖1.5,± ≤ C|h|22P(|h|22). (6.8)

6.2 The Rayleigh-Taylor stability 
ondition

In the previous ALE variables (v, q), the Rayleigh-Taylor stability 
ondition (1.8) reads

−Akj q,k JAijN i = −A2
jq,2 JA

2
j > 0 on Γ .

In our semi-ALE modi�ed pressure, we have that the Rayleigh-Taylor stability 
ondition is

equivalent to

−A2
j (Q,2 −1)JA2

j > 0 on Γ ,

or, using (5.5a,
),

ht + JA2
iA

2
i (1 + δψ+,2 ) + JA2

iA
1
i h

′+ > 0 on Γ .

Thus, the Rayleigh-Taylor stability 
ondition is equivalent to

w+
2 + 1 > 0 on Γ .

Then, we see that when ‖w2‖L∞ ≪ 1, the Rayleigh-Taylor stability 
ondition holds. Thus,

using the Sobolev embedding theorem together with (6.8), we have that

‖w+
2 ‖L∞(Γ) ≤ C‖w‖1.5,± ≤ C|h|22P(|h|22) ≪ 1.
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6.3 The estimates in L2(0, T ;H2.5(Γ))

Re
alling (5.6a,d), we have that

w+
1 + β+h′ = (δψ+,2−(h′)2)

w+
1

1 + δψ+,2
− h′w+

2 on Γ.

Thus,

β+h′ = −(1 + (h′)2)
w+
1

1 + δψ+,2
− h′w+

2 on Γ,

and

−β+h′′ = (1 + (h′)2)
(w+

1 ),1
1 + δψ+,2

+ h′(w+
2 ),1 +

2h′h′′w+
1

1 + δψ+,2
+ h′′w+

2 − 1 + (h′)2w+
1

(1 + δψ+,2 )2
δψ,12

Using the smallness of |h|2, (3.17) and estimate (6.8), we then estimate

|h′′|0.5 ≤ C
(
|w′

1|0.5 + |w′
2|0.5

)

The following Lemma is an immediate 
onsequen
e of the standard normal tra
e theorem

(see Temam [42℄):

Lemma 9. Suppose that v′ ∈ L2(Ω) with divv ∈ L2(Ω). Then v′ ·N ∈ H− 1
2 (∂Ω) and

‖v′ ·N‖H−1/2(∂Ω) ≤ C
(
‖v′‖L2(Ω) + ‖div v‖L2(Ω)

)
.

Using Lemma 9 for v = w′
, we obtain that

|w′′
2 |−0.5 = |w′′ ·N |−0.5 ≤ C‖w′′‖0,±.

Using Lemma 9 for v = (w⊥)′,

|w′′
1 |−0.5 = |(w⊥)′′ ·N |−0.5 ≤ C

(
‖w′′‖0,± + ‖divw,⊥1 ‖0,±

)
= C

(
‖w′′‖0,± + ‖ curlw′‖0,±

)
.

Using that curlu = 0, we �nd that (see Cheng, Granero-Belin
hón & Shkoller [12, Se
tion

5.1.7℄)

‖curlw‖1,± ≤ C‖w‖2,±|h|1.75 + C|h|2.5|h|1.75 + C|h|2‖w‖21.5,±. (6.9)

Thus, using the Poin
aré inequality together with (6.8) and the smallness of |h|2, we �nd

that

|h′′|0.5 ≤ C
(
‖w‖2,±|h|1.75 + ‖w′′‖0,±

)
. (6.10)
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6.4 Hodge de
omposition ellipti
 estimates

Using Lemma 7 (with ψ0 = (x1, x2)) we have that

‖w‖2,± ≤ C
[
‖w‖0,± + ‖curlw‖1,± + ‖divw‖1,± + |w2|1.5

]
.

As a 
onsequen
e of (6.9), (6.10), the Poin
aré inequality and Lemma 9, we �nd that

‖w‖2,± ≤ C
[
‖w‖1.5,± + ‖curlw‖1,± + |w′′ ·N |−0.5

]

≤ C
[
‖w‖1.5,± + ‖w‖2,±|h|1.75 + |h|2.5|h|1.75 + |h|2‖w‖21.5,± + ‖w′′‖0,±

]

≤ C
[
‖w‖1.5,± + ‖w‖2,±|h|1.75 + |h|2‖w‖2,±‖w‖1.5,± + ‖w′′‖0,±

]
.

As a 
onsequen
e of the smallness of |h|2 and (6.8), we have that

‖w‖2,± ≤ C
[
‖w‖1.5,± + ‖w′′‖0,±

]
. (6.11)

Substituting this last inequality into (6.10) together with |h|2 ≪ 1 and (6.8), we obtain that

|h′′|0.5 ≤ C
(
‖w‖1.5,±|h|1.75 + ‖w′′‖0,±

)

≤ C‖w′′‖0,± (6.12)

6.5 The energy estimates

The goal in this se
tion is to prove that, the solution veri�es the following bound

D

max{β+, β−} +
1

2

d

dt
E ≤ DQ(E ),

where Q is a polynomial su
h that Q(0) = 0. Then, for small enough initial data, we have

that

CD +
d

dt
E ≤ 0,

and we 
on
lude the de
ay of E . To obtain the exponential rate of de
ay in Theorem 2, we

will invoke (6.12) and Poin
aré inequality.

We take two tangential derivatives of (5.6a) and test against w′′
. We obtain that

∫

D+∪D−

|w′′|2
β

dx+

∫

D+∪D−

(Q+ δψ)′′,i w
′′
i dx =

∫

D+∪D−

[(
Id− (∇ψ)T∇ψ

J

)
w

β

]′′
w′′dx.

(6.13)

Integrating by parts and using (5.6), we have that

∫

D+∪D−

(Q+ δψ)′′,i w
′′
i dx =

∫

Γ
(Q+ δψ)′′w′′

iN
idx1 −

∫

Γperm

[[(Q+ δψ)′′w′′
iN

i]]dx1

−
∫

Γbot

(Q+ δψ)′′(w′′
i )N

idx1

=

∫

Γ
h′′h′′t dx1.
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Thus due to (5.7), (5.4), (6.8), (6.12), Hölder's inequality and the Sobolev embedding theo-

rem, (6.13) is equivalent to

D

max{β+, β−} +
1

2

d

dt
E ≤

∫

D+∪D−

[(
Id− (∇ψ)T∇ψ

J

)
w

β

]′′
w′′dx

≤ D
√

EP(E ) +

∣∣∣∣
∫

D+∪D−

(
Id− (∇ψ)T∇ψ

J

)′′
w

β
w′′dx

∣∣∣∣

≤ D
√

EP(E ) + ‖∇δψ‖2,±P(E )‖w‖L∞

√
D

≤ D
√

EP(E ) + |h|2.5
√

EP(E )
√

D

≤ D
√

EP(E ),

where we have used Young's inequality. We note that due to Theorem 1, we have that

E (t) ≤ 2E (0) for all 0 ≤ t ≤ T ∗,

thus

P(E (t)) ≤ C(h0) for all 0 ≤ t ≤ T ∗.

Taking C small enough, we obtain the inequality

ǫD +
1

2

d

dt
E ≤ 0,

for 
ertain ǫ = ǫ(h0, β). Thus, using Poin
aré inequality and (6.12)

γE +
d

dt
E ≤ 0,

for 
ertain γ = γ(h0, β).

|h′′(t)|0 ≤ |h′′0 |0e−γt/2. (6.14)

We also obtain the bound

∫ t

0
D(s)ds ≤ C(h0, β). (6.15)
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