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We first prove local-in-time well-posedness for the Muskat problem, modeling fluid flow in
a two-dimensional inhomogeneous porous media. The permeability of the porous medium
is described by a step function, with a jump discontinuity across the fixed-in-time curve
(x1,—1+ f(x1)), while the interface separating the fluid from the vacuum region is given by
the time-dependent curve (z1, h(z1,t)). Our estimates are based on a new methodology that
relies upon a careful study of the PDE system, coupling Darcy’s law and incompressibility of
the fluid, rather than the analysis of the singular integral contour equation for the interface
function h. We are able to develop an existence theory for any initial interface given by
ho € H? and any permeability curve-of-discontinuity that is given by f € H?®. In particular,
our method allows for both curves to have (pointwise) unbounded curvature. In the case
that the permeability discontinuity is the set f = 0, we prove global existence and decay
to equilibrium for small initial data. This decay is obtained using a new energy-energy
dissipation inequality that couples tangential derivatives of the velocity in the bulk of the
fluid with the curvature of the interface. To the best of our knowledge, this is the first global
existence result for the Muskat problem with discontinuous permeability.
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1 Introduction

1.1 The Muskat problem

The Muskat problem, introduced in [38], models the dynamics of an evolving material inter-
face separating two fluids flowing through a porous medium, i.e. a medium consisting of a
solid matrix with fluid-filled pores. Porous media flow is modelled by Darcy’s law

Lu=—Vp—(0,9p)", (1.1)

g
where p is the viscosity of the fluid, p denotes the density, w is the incompressible fluid
velocity, and p is the pressure function; additionally, 8 > 0 denotes the permeability of the
solid matrix, and g is the acceleration due to gravity, which we shall henceforth set to 1.
Darcy’s law (L)) is an empirical relation between momentum and force (see, for example,
[3, B9]), and replaces conservation of momentum, which is used to model the evolution of
inviscid fluid flows.

The purpose of this paper is to study the evolution of an interface moving through porous
media with a discontinuous permeability. As the permeability takes two different values, this
case is known in the literature as the inhomogeneous Muskat problem. Specifically, we are
interested in the well-posedness and decay to equilibrium for the inhomogeneous Muskat
problem.

Vacuum

Figure 1: The solid curve (blue) is the interface I'(t) and the dashed curve (red) denotes the interface

I'perm, across which the permeability is discontinuous.

We let S! denote the circle, so that functions h : S' — R are identified with [—m,7)-
periodic functions on R. As shown in Figure [l we consider a porous medium occupying an
open time-dependent subset Q(t) C S' x R such that

Q) =Q"#)UQ UTperm
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where
QF(t) = {(z1,22) € S' xR, —1+ f(z1) < 2 < h(z1,1)}, (1.2a)
Q" = {(z1,12) €ES' xR, —2<x9 < —1+ f(x1)}, (1.2b)
Tperm = {(z1, =1+ f(x1)), z1 € S'}, (1.2¢)

and where the functions f and h satisfy

min f(x1) > —1 and h(z1,0) > =1+ f(z1). (1.3)
1‘1€S1
The fixed-in-time permeability interface I'perm denotes the curve, across which the perme-
ability function (z) is discontinuous; specifically, the permeability function §(x) is defined

as N “
BT inQT(¢)
/8(.'1:) - { /8— in Q_ 9
for given constants 5+ > 0. The domain for this problem is also an unknown; thus, we must

track the evolution of the time-dependent interface or free-boundary I'(¢), which is defined
as the set

L(t) = {(z1, h(x1,1)), z1 € S'}.

For simplicity, we shall set the fluid density p and viscosity p to 1. As the fluid is
incompressible, it follows that

[w - nperm] = 0 on Iperm % [0,77].

With the domains defined, the Muskat problem consists of the following system of cou-
pled equations:

u:l:
5T VpT = —ey, in QF(t) x [0,7], (1.4a)
V-ut =0, in QF(t) x [0,77], (1.4b)
[Pl =0 on Tperm % [0, 7], (1.4c)
[Vp - nperm] = — [% um - Nperm on I'perm % 0,77, (1.44d)
pT =0 on I'(t) x [0,T], (1.4e)
VI(@t) =u"-n on I'(t) x [0,T], (1.4f)
u -ea=0 on I'het x 0,77, (1.4g)

where V(I'(t)) denotes the normal component of the velocity of the time-dependent free-
boundary I'(t), n is the (upward) unit normal to I'(t), nperm is the (upward-pointing) unit
normal t0 I'perm, and [f] = fT — f~ denotes the jump of a discontinuous function f across

I‘perm .
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1.2 A brief history of the analysis of the Muskat problem

Darcy’s law (1)) is a standard model for flow in aquifers, oil wells, or geothermal reservoirs,
and it is therefore of practical importance in geoscience (see, for example, [9 28] and the
references therein). Furthermore, the Muskat problem is equivalent to the Hele-Shaw cell
problem with gravity (see [36]) for flow between two thinly-spaced parallel plates.

There has a been a great deal of mathematical analysis of both the Muskat problem and
the Hele-Shaw cell, and we shall only review a small fraction of the results that are, in some
sense, most closely related to our result.

For the Muskat problem with a continuous permeability function, existence of solutions
in the Sobolev space H? has been established by Coérdoba & Gancedo [I8] [19], Cérdoba,
Cordoba & Gancedo in [17], and Cordoba, Granero-Belinchon & Orive [22], using the singular
integral contour equation for the height function h. Cheng, Granero-Belinchon & Shkoller
[12] introduced the direct PDE approach (modified for use, herein), and established an
H? existence theory (see also Cheng, Coutand & Shkoller [IT] for a similar approach to
the horizontal Hele-Shaw cell problem). This was followed by an H? existence theory by
Constantin, Gancedo, Shvydkoy & Vicol [16] using the singular integral approach; they also
obtained a finite-slope global existence result. Very recently, local existence in H® s > 3/2
has been obtained by Matioc [37]. In the presence of surface tension, local existence in H°
was also obtained by Ambrose [I], 2].

In the case of a discontinuous permeability function (with a jump across the flat curve
(z1,—1)), the local-in-time existence of solutions has been proved by Berselli, Cordoba &
Granero-Belinchon [4]. In the case of two fluids with different viscosities and densities and
permeability function with a jump given by an arbitrary smooth curve (fi(a), fo(«)) the
local-in-time existence of solutions has been established by Pernas-Castano [40] .

For the case of a continuous permeability, there are a variety of results showing global
existence of strong solutions under certain conditions on the initial data. In particular,
Cheng, Granero-Belinchon & Shkoller [12] proved global existence under restrictions on the
size of ||ho|| 2, while Cordoba, Constantin, Gancedo & Strain [I5] and Cérdoba, Constantin,
Gancedo, Strain & Rodriguez-Piazza [14] proved global existence under restrictions on the
size of ||I/o|| 1, where h denotes the Fourier transform. The global existence of weak solution
has been proved by Cordoba, Constantin, Gancedo & Strain [I5] and Granero-Belinchon [35]
for initial data satisfying restrictions on ||hgl|}j;1,c and [|ho|ly1.00, respectively. Note that
the condition on ||hg||z~ in [35] is a consequence of having a bounded porous media.

Finite time singularities of turning type are known to occur. A turning wave is a solution
which starts as a graph, but then turns-over and loses the graph property. The existence of
such waves in the Rayleigh-Taylor stable regime has been established by Castro, Coérdoba,
Fefferman, Gancedo & Lopez-Fernandez [§]], Cordoba, Granero-Belinchon & Orive-Illera [22],
Berselli, Cordoba & Granero-Belinchon [4] and Gomez-Serrano & Granero-Belinchon [34].

Finally, some deeper insight on the turning behaviour has been obtained by Coérdoba,
Gomez-Serrano & Zlatos [20], 21], where, in particular, they proved that certain solutions to
the two-phase Muskat problem start as a graph, then turn-over and lose the graph property
and hence violate the Rayleigh-Taylor condition but then stabilize and return to being a
graph. Furthermore Castro, Cordoba, Fefferman & Gancedo [6] also proved that there exist
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interfaces such that, after turning, the interface is no longer analytic and, in fact,

limsup [|z(t)[| g+ = oo,
T

for a finite time 7" > 0.

Gancedo & Strain [33] have shown that the finite-time splash and splat singularities
(a self-intersection of a locally smooth interface) cannot occur for the two-phase Muskat
problem (see also Fefferman, Ionescu & Lie [32] and Coutand & Shkoller [27]). However,
in the case of the one-phase Muskat problem, Castro, Cérdoba, Fefferman & Gancedo [7]
proved that the splash singularities may occur while Cordoba & Pernas-Castano [23] showed
that splat singularities cannot occur. See also Coutand & Shkoller [26] for splash and splat
singularities for the 3-D Euler equations and related models.

Let us also mention that several results for the multiphase Muskat problem have been
obtained in the completely different framework of little Hélder spaces hFT by Escher &
Matioc [30], Escher, Matioc & Matioc [29] and Escher, Matioc & Walker [31].

Very recently, a regularity result in Holder spaces for the one-phase Hele-Shaw problem
has been obtained by Chang-Lara & Guillén [10] using the hodograph transform. Also, Priiss
& Simonett [41] studied the two-phase Muskat problem in a more geometric framework using
the Hanzawa transform. In particular, these authors show well-posedness, characterize and
study the dynamic stability of the equilibria.

Finally, using a convex integration approach, Castro, Cordoba & Faraco [5] very recently
proved the existence of weak solutions for the Muskat problem in the case where the denser
fluid lies above the lighter fluid, so, it is in the Rayleigh-Taylor unstable regime. Remarkably,
these solutions develop a mizing zone (a strip containing particles from both phases and,
consequently, with fluid particles having both densities), growing linearly in time.

1.3 Methodology

As noted above, most prior existence theorems have relied upon the singular integral contour
equation for the height function h; in the case of the infinitely deep two-phase Muskat
problem with continuous permeability, the evolution equation for h can be written as

h (x )va / h,(‘rl)_h,('xl_y) 1
AR y W) —h(r1—y) ) 2
14 ( )

Y

dy; (1.5)

see, for example, [18] for the derivation.

The contour equation (LI]) depends crucially on the geometry of the domain and the
permeability function. In particular, when the porous medium has finite depth (equal to
7/2) and the permeability function is discontinuous across the curve (1, —1), it was shown
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in [4] that (L5]) takes the form:

BT (=lrD) (W (z1) = I (y)) sinh(z1 — y)
fulzr) = 47 p.v./R cosh(z1 —y) — cos(h(z1) — h(y)) dy
ﬁ+( [[ ]])pv / (W'(z1) = W(y)) sinh(z1 —y)
cosh(z1 —y) + cos(h(z1) + h(y))
/ wa(y)(sinh(zy —y) + A/ (z1) sin(h(z1) + 1))dy
cosh (1 —y) — cos(h(x1) + 1)

Y

w2 (y)(—sinh(z; —y) + /(1) sin(h(z1) — 1))
/ cosh (x1 —y) + cos(h(zq1) — 1) dp,  (1.6)
where
sy = BT I, [y sn by
2 Gr+5  2r 7 R Y cosh(xy —y) — cos(1 + h(y))
BT =B~ B (=leD : sin(—1+ h(y))dy
Bt 2n Py /R Iy cosh(z1 —y) + cos(—1 + h(y))
i > .
(555) st () sl + h(y))dy
T on  CORPY /]R cosh(z1 — y) — cos(1 + h(y))
Br=p ) .
(EE) prem () sin(-1 + hiy)dy
Vor 27 Gy xpv. /R cosh(zy — y) + cos(—1 + h(y))’ (17)
with

7 (i) ©)

6176: (2 ’

1+ ﬁ\/g—i f(cosh(ssclf)(-i—)cos@)) (€)
a Schwartz function, and where F denotes the Fourier transform. Let us emphasize that,
due to the non-local character of wy given by (7)), the contour equation (L.G) is significantly
more challenging to analyse than (IL5). Note also, from the definition of Gg(x1) that the
highly non-local convolution terms in (7)) are not explicitly defined.

Because of the complications inherent in the singular integral approach of (L7), we
shall instead analyze the system ([.4]) directly. As (I4]) is set on the time-dependent a
priori unknown domain €2(¢), in order to build an existence theory, we first pull-back this
system of equations onto a fixed-in-time spatial domain. We use a carefully chosen change-
of-variables that transforms the free-boundary problem (4] into a system of equations set
on a smooth and fixed domain, but having time-dependent coefficients.

To pull-back our problem, we employ a family of diffeomorphisms ¥+ which are elliptic
extensions of the interface parametrizations, and thus have optimal H® Sobolev regularity.
The time-dependent coefficients (in the pulled-back description) arise from differentiation
and inversion of these maps 1*; by studying the transformed Darcy’s Law, we obtain a
new higher-order energy integral that provides the regularity of the moving interface T'(t).
Additionally, we obtain an L?-in-time parabolic regularity gain, analogous to the regularity

Ga(ay) =F !
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gain for solutions to the heat equation, except that we gain a 1/2-derivative in space rather
than a full derivative. The regularity of the interface I'(t) as well as the improved L?-in-
time parabolic regularity gain are found from the non-linear structure of the pulled-back
representation of the Muskat problem. In particular, we do no rely on the explicit structure
of the singular integral contour equation, and as such, we are free to study general domain
geometries and permeability functions.

1.4 The main results

As we will show, the Rayleigh-Taylor (RT) stability condition, given by —g—z > 0on I['(t), is
a sufficient condition for well-posedness of the Muskat problem (I4)) in Sobolev spaces. In

particular, with
po :=p(-,0) and T :=T(0),

and letting N := n(-,0) denote the outward unit normal to I', we prove that for any initial
interface I' of arbitrary size and of class H?, chosen such that the RT stability condition
Ipo
———>0 on T 1.8
ON " (18)
is satisfied, there exists a unique solution (u*(x,t), p* (z,t), h(x1,t)) to the one-phase Muskat
problem with discontinuous permeability function.
More precisely, we prove the following

THEOREM 1 (Local well-posedness in H?). Suppose the initial interface T is given as the
graph (z1, ho(21)) where hg € H*(SY) and [ ho(z1)dz1 = 0, and that the RT condition (L)
is satisfied. Let Tperm be given as the graph (w1, —1+ f(z1)) for a function f € H*3(S').
Assume also that (L3) holds. Then, there exists a time T(ho, f) > 0 and a unique solution
h € C([0,T(ho, f)]; H*(S') N L*(0, T (ho, f); H**(81)),
u™ € C([0,T(ho, f)]; H*(QF(£))) N L*(0, T(ho, f); H(
P € C(0,T(ho, f)]; H**(F(1))) N L*(0, T (ho, [); H(

2H(1))
2H(1))).

to the system (L4), satisfying

2

+ 2
ds + 2/
L2(Qt(s)) 0

u'(s)

ﬁ-l—

u(s)
e

dS = ”hOH%Q(Sl),
L2(Q-)

1h(8) 22 1, +2/

and

I~ lleo,r ko, 1, H2(51Y) + I1Btl L2 0,0 ho, ) -5 81)) + 1B L2 (0,7 (Ro, £); 25 (S1Y)
+ I2lleo,rho,)], 25 @+ tyua-)) T 1P 20,7 (ho, ) B3 @+ (1)U ))
+ [ulleqo,r o, o1, 515 @yua-)) T 1l 20,7k, £); 20+ 1)Uy < C(ho, f)

for a constant C(hg, f) which depends on hy and f.
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REMARK 1. It is easy to see that if ho(x1) = f(x1) = 0, the solution is given by
ut(x,t) =0, h(z1,t) =0, p(x,t) = —x2, (1.9)

and the RT condition is satisfied. There exist infinitely many initial data hg satisfying the
RT condition; for example, small perturbations of (L)) satisfy the RT condition (L8] via
implicit function theorem arguments.

THEOREM 2 (Global well-posedness and decay to equilibrium in H?). Suppose the initial
interface T is given as the graph (z1, ho(x1)) where hg € H*(S') and [g1 ho(x1)dxy = 0. Let
Lperm be given as the graph (z1,—1). Then, there exists a constant € such that if

lhol2 < €,
the RT condition (L8)) is satisfied and there exists a unique solution
h € C([0,00); H(S')) N L*(0,00; H*5(S1))
u* € O([0, 00); H'(QF(2))) N L*(0, 003 H*(QXF(2)))
p* € C([0,00); H**(QF(t))) N L*(0, 00 H*(Q5(1))),
to the system (L4), satisfying

A F2(s1y < ||ho||H2(g1)e_“Yt/2

for a constant v(hg, 3T), which depends on hy and BF.

REMARK 2. Note that the question of whether the free boundary I'(¢) can reach the curve
Iperm in finite time, in a a situation that resembles the splash/splat singularity, remains an
open problem. In fact, such behavior can be seen as a singular phenomena (for instance,
some of the (non-singular) terms in (L6]) and (7)) become singular integral operators). As
Theorem Rlimplies that I'(¢) cannot reach the curve I'pepm in finite time if hg is small enough,
this result rules out the possibility of interface collision in finite time for small initial data.

REMARK 3. We note that the dry zone (the region without fluid) lies above the curve I'(¢),
and so, as long as (L3)) holds, the dry zone lies above I'perm. The question of whether a
dry zone can form inside {27 remains an open problem. In other words, assume that there
exists a solution h(xi,t) up to time T and assume also that I'(¢) intersects I'perm at the
point (zg,t') € St x (0,7T), i.e.

h(zo,t") = =1+ f(zo).
Then, it is not clear if the curve I'(t) may cross the curve I'perm, i.e.
h(xy,t) < =1+ f(x1), V(21,t) € (0 — 6,00 + €) X (', ¥’ +9), ,
for certain €, > 0. Note also that, if this happens, then the region
{(z1,22),21 € (x0 — €,x0 + €), h(z1,t) <x2 < =1+ f(21)} T Q™

is contained in the dry zone.
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REMARK 4. The exponential decay of the solution h(t) is a consequence of an energy-
energy dissipation inequality establishing a relationship between the interface regularity and
the regularity of the semi-ALE velocity (see Sections [l and [6)):

IR ()l L2sty < Clw” I L2(st x(=2,-1)u8! x (~1,0))

REMARK 5. Note that the linearized evolution equation for a small perturbation of the

flat interface can be written as
ht — —A'D+h,

where Ap+ is the Dirichlet-to-Neumann map associated with the elliptic system (G.1)):
Ap+h(z1) = 69,2 (21,0).

An integration by parts shows that

0
// 5¢+A51/)+d$2dl‘1 :/5¢+(l‘1,0)5¢+,2 (:El,O)dl‘l —/51/)+(:E1,—1)5¢+,2 (:El,—l)dl‘l
SJ-1 S S
0
—// (Vo T P deodey,
SJ-1

/AD+hhdx1 :/ Vot |2d.
I D+

We also have the following Poincaré-Wirtinger inequality

| vt @pan= [

// / ‘5¢+,2 (x1,sm2 4+ (1 — 5)(— 1))‘ (z9 4 1)?dsdzadry

:/_1(:E2+1)/S/_1 |60+ (y)|2dy2dy1dx2

0
< / (@2+1) /D (502 ()] dydes
= %/m [50% 2 ()] dy.

so that,

2
/ ot o (w1, 810 + (1 — 5)(—1)) (22 + 1)ds| dx

Thus, using the trace theorem, we conclude that
[ Aviihdar = 05187 |} , = vIbf s = vinf,
r

for v > 0. Exponential decay for the nonlinear problem (under smallness assumptions) is
hence also expected.
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1.5 Notation used throughout the paper

For a matrix A, we write A;‘ for the component of A located in row ¢ and column j. We use
the Einstein summation convention, wherein repeated indices are summed from 1 to 2. We
denote the jth canonical basis vector in R? by ej.

For s > 0, we set

ulls,+ == llut sy s Nulls,— = llu™llgs@-y s Nullse = lu s+ + lu”lls,-
and
hls := Al s () -
For functions A defined on T'perm, We shall also denote the H* norm by |hls := ||| gs (rperm)
whenever the context is clear.
We write o7 of of
!
f (9x1 ) fak 8$k7 an ft ot
For a diffeomorphism v, we let A = (V1)™!, and define
curlyv = A{v2,j —Agvl,j ) (1.10)
divyv = Abol ;. (1.11)

2 The Muskat problem in the ALE formulation

2.1 Constructing the family of diffeomorphisms (-, )
2.1.1 The idea for the construction

Our analysis of the Muskat problem (4] is founded on a time-dependent change-of-variables
which converts the free boundary problem to one set on smooth reference domains D*

DT =S! x (-1,0),D” =s! x (-2,-1), (2.1)
The boundaries of the domains D* are defined as
Thot = {(z1,-2),21 € Sl},I‘pcrm ={(z1,-1),21 € Sl}, and I' = {(x1,0), 27 € Sl}. (2.2)

We let N = ey denote the unit normal vector on I' (outwards), I'perm and I'yet.

As our analysis crucially relies on obtaining a parabolic regularity gain, we need a refer-
ence domain DT with C* boundary. In particular, the initial domain Q7 (0) cannot serve
as a reference domain.

We adapt the ideas from [I2] to construct the time-dependent family of diffeomorphisms
with optimal Sobolev regularity, 1(z,t), that we shall use to pull-back (4] onto the fixed
domain D*. Before detailing this construction, let us sketch the procedure. First, we
construct a diffeomorphism with optimal Sobolev regularity at ¢ = 0:

YT (0) : DT — QT (0), v~ : DT = Q.

To do so we follow a three step procedure:

10
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e For 0 < § < 1 a sufficiently small parameter (to be fixed later), we define auxiliary
domains, D*9(0). These auxiliary domains are constructed via mollification of h(z1,0)
and f(x1) and, thus, they are infinitely smooth. We define the graph diffeomorphism

¢ : DF — D,

These diffeomorphisms are of class C* because of the smoothness of the domains D*
and DE?.

e We need another diffeomorphisms from the auxiliary domain D to Q% (0). We need
these diffeomorphisms to gain 1/2 derivatives with respect to the regularity of Q¥(0).
In order that this optimal regularity is obtained, we make use of the definition of D*?
and the properties of our mollifiers. We define

¢y : DE = OF(0)

as the solution to Laplace problems with appropriate boundary conditions. Using the
boundary data and the inverse function theorem, these mappings qﬁét are H?%—class
diffeomorphisms.

e Finally, we define
WH(0) = ¢f o of, vT =y 0y

As composition of diffeomorphisms, ¢*(0) is a diffeomorphism.

Once the initial diffeomorphism with optimal Sobolev regularity is constructed, we solve
Poisson problems (to be detailed below) for ¢ (x,t). An application of the inverse function
theorem together with standard elliptic estimates will show that these mappings ¥ (z,t)
are a family of diffeomorphisms with the desired smoothness.

2.1.2 Constructing the initial regularizing diffeomorphism (-, 0)

Given a function h € C(0,T; H?) with initial data h(z1,0) = ho(z1), we fix 0 < § < 1 and
define our auxiliary domains and boundaries

DH(0) = {(z1,22), 21 € S, =1+ T5f (21) < 22 < Tsho(a1)},
D0 = {(ZE1,$2), xr1 € Sl, —2 <z <1+ jéf(xl)}v
FJ(O) = {(x17j6h0($1))7 T € Sl}v Ff)orm = {(3317 -1+ j&f($1))7 Tl € Sl}
As we said previously, we define the graph diffeomorphism
of (21, 29) = (1, (22 + 1) Tsho(z1) — (=1 + Tsf (x1))z2) ,

&1 (@1, 22) = (@1, 22 + Tsf(21) (22 + 2)) ,

where J5 denotes the convolution with a standard Friedrich’s mollifier. This function

¢t : D — DF(0)

11
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is a C*° diffeomorphism.
Next, we have to define the regularizing diffeomorphisms

o5 : DE°(0) — QF(0).

We define these mappings as the solution to the following elliptic problems:

Apg =0 in DT0), (2.3a)
¢3 = (x1,22) + [ho(21) — Tsho(z1)le2 on T°(0), (2.3b)
o3 = (z1,m2) + [f(z1) — Tsf(z1)]e2 on T, (2.3¢)
Apy =0 in DY, (2.4a)

¢y = (x1,22) + [f(21) — Tof(x1)]ez  on T, (2.4b)

=
5 =

Using standard elliptic regularity theory, we have that

x1,12) on Ihot - (2.4¢)

||¢2 - €||H2.5('D:|:,6) < C(|h0 - j6h0|2 + |f - j6f|2)7

where e = (x1,z2) denotes the identity mapping. Using the Sobolev embedding theorem,
and taking § > 0 sufficiently small, we have that

||¢2 - e||cl(D:t,6) < 1,

so, due to the inverse function theorem, we obtain that (ﬁ;t is an H?®-class diffeomorphism.
As in [12], we define

YT (0) =5 o] : DT = QT (0), v~ =¢,0¢] : D = Q. (2.5)

Then, this mapping is also an H??-class diffeomorphism.

2.1.3 Constructing the time-dependent family of regularizing diffeomorphisms

We define the time-dependent family of diffeomorphisms ¢(¢) = (-, t) as solutions to Poisson
equations with forcing depending on 1(0). The main point of this construction is that due to
the continuity in time of the interface h and standard elliptic estimates, the time-dependent
family of diffeomorphisms ¢ (t) = (-, t) is going to remain close to the initial diffeomorphism
(0).

In particular, we consider the following elliptic system:

At (t) = At (0) in D x[0,7], (2.6a)
YT (t) = (21, 22) + h(z1,t)ez on I'x[0,7], (2.6b)
YT (t) = (z1,22) + f(x1)ea on Iperm % [0,77. (2.6¢)

12
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and 1~ (t) = 1)~. Because of the forcing term present in ([2.6h), we have that ¢ (t) — 7 (0)
solves

AT () —¢T(0)) =0 in Dt x [0,7],
U (t) = T(0) = (h(21,t) — h(z1,0))e2  on T x[0,T],
() =T (0) =0 on  Tperm x [0,7].
Due to elliptic estimates, we have the bound
[1(t) = 9(0)|l2.25.+ < Clh(t) — hol1.75- (2.8)

By taking sufficiently small time ¢ and recalling that h € C(0,T; H?), we have that

1¥(t)]]2.25,+ < C|h(t) = holirs + C(|holi7s + | flizs +1) < 2C(|holirs + | flizs + 1).

Writing
J(t) = det(V(t) = ' 1 ¢% 0 =1 ¥ 2,

we have the bound
[J(t) — J(0)|l1.25+ < C|h(t) — hol1.75. (2.9)

Consequently, using h € C(0,T; H?), for sufficiently small time ¢, we have that

and, thanks to (2.8]), we have that

[9(t) = $(0)llcr < Clh(t) = holrrs < 1.

Due to the inverse function theorem and using the fact that ¢(0) is a diffeomorphism, we
see that
YE(t) : DF = QE(1)

is a diffeomorphism. From the elliptic estimate

[¥(®)ll25,+ < C(AE)]2 + [fl2+ 1),

we have that (¢) is an H*5-class diffeomorphism.

2.1.4 The matrix A(-,t)

We write A = (V¢)~1. Thus, ' '
A=,
and we obtain the useful identities

(A, = —AL(n)" ; AL, A" =—24'Vy/A— AVY/A. (2.10)

We will also make use of the Piola’s identity: (JA¥),, = 0.

13
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2.2 The Muskat problem in the reference domains D*

With 9(t) = ¢(-,t) defined in Section 2.1, we define our new variables in the reference
domains DF: v =uo),q=po1p.
We let

~ ~ L

F=v =) 9=
denote the (non-normalized) tangent and normal vectors and the induced metric, respec-
tively, on I'(t). We also define the unit tangent vector 7 = 7/,/g and the unit normal vector
n=mn/ V9. In the same way, we define Tperm, Mperms Jperm, Tperms Mperm aS the analogous
quantities on I'perm. Recall that

JAFNF = 7" on T, JAFN® = fil . on Tperm.

Hence, the ALE representation of the one-phase inhomogeneous Muskat problem is given
by

+\i
C i) + (A5 (g +9F ex) =0 in D* x (0,77, (2.11a)
(AR, =0 in D* x[0,77, (2.11b)
he(t) = () JT(AT)YIN?  on T x[0,77], (2.11c)
gt =0 on T x[0,77], (2.11d)
[¢ =0 on Iperm % [0,77, (2.11e)
[g.x AFTAINT] = — [%]viJAg‘Nj on Tperm X [0,7] (2.11f)
vy =0 on Tt x [0,77]. (2.11g)

3 A priori estimates

In this section we establish the a prior: estimates for the one-phase Muskat problem with
discontinuous permeability (I4).
We define the higher-order energy function

t
B0) = uax BB+ [ [0(s)]B -+ (5) s

REMARK 6. Another possible definition for a higher-order energy function is (see [12])

t
&) = guax I0Gs)E + [ 1)l

In fact, as will be shown,

E(t) < CE().

14
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As in [12], our goal is to obtain the polynomial inequality
E(t) < Mo + Q(E(t))te,
for certain o > 0, a generic polynomial Q, and a constant Mg depending on hg and f. When
E(t) is continuous, the previous inequality implies the existence of T*(hg, f) such that
E(t) < 2M,. (3.1)

We assume that we have a smooth solution defined for ¢ € [0,7]. We take 0 < T <1
small enough such that the following conditions hold: for a fixed constant 0 < ¢ < 1
(possibly depending on hy and f) and for ¢ € [0, 7],

[(t) = ¥(0)|[Lee + |A(E) — A(0) || Loe + [|J(t) — J(0)[|Loe < €; (3.2a)
17(t) = ol + IVa(t) — Vq(0)[[ 1= < €; (3.2b)

E(t) < 3Mo; (3.2¢)

o0 min ¢, (t) = min, g2 (0)/4. (3.2d)

We will show that conditions even stricter than ([8.2k,d) actually holds. Let us emphasize
that, due to the RT condition, we have that

min ¢,2 (0) > 0.
z1€S?

Again, we let C'= C(hg, f,0) denote a constant that may change from line to line. We
let P(x) denote a polynomial with coefficients that may depend on hg(+) := h(+,0), f,d. This
polynomial may change from line to line.

3.1 Estimates for some lower-order norms
In the following, we collect some estimates of lower-order norms. The proofs are similar to
those in [12], so, we omit them.

LEMMA 3 (Estimates for some lower-order norms of h, [12], Section 8.4.1). Given a smooth
solution to the Muskat problem (211a-g),

/t Ihe|2ds < C E(2). (3.30)
0
|h(t) — hol1 < C/E(b)tY2. (3.3b)

LEMMA 4 (Estimates for some lower-order norms of the ALE mapping v, [12], Section
8.4.2). Given a smooth solution to the Muskat problem (211a-g),

[P@)l25.2 < CA+[A({E)]2), [Pz < COA+ [(H)l2s5) (3.4a)
1 (t) = (0)ll225,4 + [1A®#) — A(O)|[1.25,4 + 1T (t) = J(0) 125+ < VICVE().  (3.4b)

Notice that (34b) implies a stricter version of (8:2h). As a consequence we obtain that
|h(7f)|1.75, ||1/)(7f)||2.257:|:, ||J(7f)||1.257:|: and ||A(t)||1.25,:|: are bounded by C(ho,f) uniformly for
all t € [0,T]. Furthermore, we also have that

1
— i < <1. . .
0< 5 o min J0) < J(t) <1 5:66%133%7 J(0) (3.5)

15
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3.2 Basic L? energy law

LEMMA 5 (Estimates for some lower-order norms of v). For a smooth solution to the Muskat

problem (211a-g),
t J
h(t)[ =
e+ [ /50

Proof. We test the equation (2ITh) against Jv and integrate. Using Piola’s identity, inte-
grating by parts and using the divergence free condition (2.11b), we obtain that

7.

Then, using the jump and boundary conditions on I'perm and ',

2

ds = |hol3. (3.6)
0,+

v TJAM (g4 - eg) N¥day

—/ [ JAF(q + 9 - e2) N¥]day —/ VI JAF(q + 9 - eg) N¥dzy = 0.
I‘lperm Thot

+ §E|h|(2) =0
]
3.3 Estimates for h € L?(0,T; H**(T')) and h; € L*(0,T; H**(T))
From (2.ITh)
(v; + BT6H) T =00n T, and vim; = —fTJAZA2q, 3;/2 onT. (3.7)

LEMMA 6 (Parabolic smoothing, [12], Section 8.4.6). Given a smooth solution to the Muskat

problem (211a-g),
h e C([0,T], H*(SY)).

In particular,

t t t
| ats)sds + [ n)Bods < € <max o)+ | ||v<s>||%,ids>. (3.8)
0 0 O=sxt 0

Note that Lemma [0l implies that the energy function E(t) is continuous.
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3.4 Pressure estimates

Using [2ITh) and 2IIb), ¢ solves

—(BFTH(AN) (A ok ),y = 0 in DF, (3.9)
g =0 onT, (3.10)

[q =0 on Iperm , (3.11)

[Bgx A¥JATNT] = —[B]62JATNT on Tperm (3.12)

B q k(AT (A7 )N = -3~ on 'y - (3.13)

We have that A(0)A(0)7 is symmetric and positive definite:
[A0)A0) 5885 = LIel
consequently, due to (B:4b),
140 AT — A AT (t)l|z= < CVEVE(),
and we see that for ¢ sufficiently small,
LIEP < [A(0AT(fiEe < oclel?

Thus, A(t)AT(t) form a uniformly elliptic operator for ¢ on [0,7], and elliptic estimates
(following the same approach as in [12] and [13]) lead to

lall25,+ < CVE(), [[vt)]is+ < CVE(). (3.14)
Furthermore, using the same argument as in [12), Section 8.4.5], we obtain that
lg(t) — q(0)]|2.05,= < t/5P(E(2)), (3.15)

and,
g2 (t) = @2 (0) || Lo (ry < Clas2 () — q,2 (0)]o.75 < t/3P(E(2)).

As a consequence of the latter inequality, the Rayleigh-Taylor sign condition holds in [0, 7]
for small enough T'. Furthermore, using the Sobolev embedding theorem,

IVa(t) = Vq(0)||r= < tV°P(E()),

and a stronger version of the bootstrap assumption (8:2d) also holds.

3.5 The energy estimates

In this section we will perform the basic energy estimates. Integrals of lower-order terms
will be denoted by R(t), meaning that

/ "R(s)ds < Mo + VIP(E(1)).
0

17
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We take two horizontal derivatives of (ZIIh), test against Jo”, and integrate by parts
to find that

t t t
L[ s [ a0t (48 G+ o] ldadst [ R(s)ds = o
0 JD+tUuD— 5 0 JDruD— 0

Due to the divergence free condition (ZIIb) we obtain that
AF(")" = —(A")70"  +R(2). (3.16)

Thus, integrating by parts and using (3.I6) and the identities JA¥N* = p?, JAKN* =
and J AfN k= NionT, Iperm and I'yot, respectively, we find that

t
B[] At ofdeds
D+UD—

/ / (¢ + )"0 dards — / / [0/ (g + V%) 71} o dc1ds
chrm

—/ Ni(q +¢*) ") dx ds—/ / JAF (q 4 )" (v"),} dxds
Thot D+UD-

/ / A” (g+v )” ) ok d:z:ds—l—/ /nh” ! dxyds
DHUD-
_/ / (q+—|-f)” " ;orm]]dxld8+/ R(s)ds.

0 chrm

The 2-D integral is now a lower-order term that can be estimated with a L? — L* — L* — L™
Holder argument together with the Sobolev embedding theorem. Thus, we are left with the
integrals on the boundaries I' and I'perm. Due to the incompressibility condition, we have

that [v;7) ] = 0, so that

¢ ¢
I :/ /h”h;’dazlds—/ /(\/ﬁm)"h”vidazlds
o Jr o Jr
¢ ¢
+/ / (q++f)”[[vl]]f”’dx1ds+/ R(s)ds
pcrm 0

t
SR — S~ / / (W20, decyds + /0 " Tor)los  lsds

—§/F (F2[ ]]dxlds—i—/ R(s
R[5 — —!h — VIP(E(t)),

perm

l\’)l}—t

where we have used Holder inequality, the trace theorem, ([3.14) and the inequality

| fglos < Cxlfloslglo.5+x- (3.17)
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The remaining high order term can be handled as follows: using ([2.I0)) and integrating
by parts,

¢
IQ:/ / J(Af)”(q+¢2),kvg/da:ds
o Jo+tup-

¢ , ¢
= —/ / JA'ﬁwr,llj Al(qg+ ?)p vl dxds + / R(s)ds
0o Jp+up- 0

t . t _ ‘
= / / U1 JAL (A (g + %) o)), dads — / / U7 a1 JAL (AR (q + %) v )N dayds
0 Jptup- o Jr
t ' ‘
+ / / [" 11 JA] (AF(q + )k )N dzyds
chrm
/ Y JAL (AR (g +y? ),kv”)deazlds—k/ R(s
1—‘bot

// ,11JAJ(Ak(q+w2),kv ,]da:ds—/ /h” AL (g +0?) v deds
D*UD*

+/ / f”[[ﬁ;ermAg(q—i-wQ),k v!']dx1ds —|—/ R(s)ds.
0 JTperm 0
The integral in the bulk of the fluid can be estimated using ([B.I6]) so that

t .
/ / W1 JAI (AR (g + 02) o), dads > —/IP(E(D)).
0 D+UD—

The integral over I'perm can be estimated using the H%5 — H =95 duality and (3.17) as follows:

t t
/ / Pl e A8 (g +02) 4 o1y ds > — / C1f 1251 + | F175) AV (g + )05 o)1 55
1ﬂperm 0

t
- / CIIAV (g + 921254 [0]l2.1 ds
0
—VIP(E(t)).
Using that Aé?/}z,k = 5% =1,

B2 VP~ [ [ Rl (Ada+ 02 4430+ )2 )deads
> —VIP(E(t)) —/t/h” i (A3q,2 +1)dz1ds
> _VIP(E(®)) — /0 t / WY — B70) (T g +1)daryds
2 vipmey - [ [ (12020 020,

J)  JO) — J(0O)
From (B.13),

I, > —tP(E / / h”h”( 2 1> dzds.

19




R. Granero-Belinchén and S. Shkoller Inhomogeneous Muskat problem

2
B

0,4

Thus,

[

3.6 Elliptic estimates via the Hodge decomposition

1
d z
s+2

—4,2 (0) B!

—9452 (0) "

2
70) o +VIP(E(t).  (3.18)
0

1
< Z
-2

In this section, we use the following

LEMMA 7 ([I3]). Let Q be a domain with boundary 02 of Sobolev class HFT0% k > 2.
Let 1y be a given smooth mapping and define curly,v and divy,v as in (LI0) and (CII),
respectively. Then for v € HF(Q),

Il znq@y < €| lollz2(ey + lewrlygvlla-s gy + Idivygvl sy + 10" allge-soam) |
where n= ()" /10h].
Since in each phase, curlu = 0 and divu = 0, it follows (see [12], Section 8.4.8) that
t
| leutlugolf sy < VEPE(), (3.19)
0
t
| Wil sy < VEP(EC) (3.20)

First, we want to use Lemma [7] to obtain an estimate for |[v'||; +. The only term that is
delicate is the boundary term |v” - n|_g 5. For that term we have the following

LEMMA 8 (Estimates for the normal trace of v). Given a smooth solution to the Muskat

problem (Z11a-g),
. t
/ 0" nf3-056p-uop ds < C/ [0 1§, ds + VEP(E(t)) (3.21)
0 0

where n = (445)" /|1

Proof. In order to estimate |v”-n|_q 5 using the HY/2 — H~'/2 duality, we consider a function
¢ € HY(DT UD™). Due to the trace theorem, we have that ¢ € H%5(I' U Tperm U Tpor). We
define the following integrals:

Ilz/ g V2w JAFNF gday
chrm

I = / g_l/Z(v"');/JAka(bdajl,
I'perm

and
I3 = / g~ 2] JAE N ¢day .
r
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Using the fact that
()" = JATN*

together with vg = 0 on D'y, we see that in order we have the appropriate estimate for
[v" - n|_g.5, it is enough to obtain good bounds for |I1],|l2] and |I3|. To do that we use the
divergence theorem and Darcy’s law (ZITh). We compute

I = / g V2 () JAEN* pday
1—‘lperm
:/ g_1/2(v_);~'JAka¢d:E1—|—/ g_l/z(v_);'JAkaqbd:El
I‘lperm Thot
— [ Ak o
-
:/ g—1/2u;’JAf¢,kda;+/

Integrating by parts, we obtain that

g% v JAf ¢dx +/ (v')"g P T Af pdu.
/(vi,k )'g 2T Ak pda = —/D divyv'(Jg~'%¢) da — /(v",k)’Jg—l/?(Af)’qsdx.
So, we find that

L= [ P dn s [ g Ak

_ / divyd! (g2 ) dx — / (Wig ) Tg~Y2(AFY b (3.22)
-

Integrating by parts and using Piola’s identity, we have that

= [ @y e = [ @Al (6 ) o
- [ gy eNtae,
Fpelrm
N / (WY Tg= 2 (ARY o N . (3.23)
Fbot

Substituting ([B.23)) into equation (B.:22]) and using the boundary condition (2.11k) we obtain
that

I = / g V2 JAR G d + / g V2 o TAF pda

- / divy(Jg~ V2 ¢) da + / (") J(AFY (g7 /) i da
.

- / (W) Jg~ V2 (AFY o N*dxy . (3.24)
chrm
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Thus, using Holder inequality, the Sobolev embedding theorem and the trace theorem to-
gether with Lemma [ we obtain that

11| < C (J[v"]lo,— + [[divyv[Jo,~) llll1,—
+ Clvll1s,-|1Y)2.5,— (L + [|[¥ll2.5-) |#]1,—
+ Cllvllv7s,~ ¥ll2.5,~1@l1,— - (3.25)

We can use the continuity of the normal component of the velocity through I'perm
[[viJAka]] =0 on I'perm % [0,77,
to write
[v] JAFNF] = —[v;(JAFN®)"] — 2[0)(JAEN*)'] on Tperm x [0,7] .

Thus, once that we have an estimate for I;, we have that

Iy=1 — / [g~ Y20l (JAFY N¥)pday — / [g~ 20 (JAFY' N¥] pdx,
Fpelrm T

perm

_ f///
8 —/ g~ V20) (T AFY N¥] ¢d, —/ 0] ——t—
Fpelrm [[ ( ) ]] I‘lperm [[ ]] 1 + (f/)2

Then, we can obtain an estimate for I using our previous estimate for I;. Thus, using (B:17)
for the last term, we have that
|12 < € ([v"[lo,~ + lIdivyv'llo,~) ]l
+ Cllvllus~l1¥ll2s, - (1+ [1¥ll25,-) 1.
+ Cllvllrs ¥ ll2s,- 1611,
+ Cllvllr2s, | flzs/lll1,+ - (3.26)

¢d$1.

Similarly, we compute

It = / g2 JAENF pdy + / g V2 TAF N ¢day
I I

perm
=/+(g_1/21)£’JAf¢),k day,
D
so, following the same steps as in the estimate (3.:25]), we have that

17| < C (10"t + Idivyr'llos) 6]+
+ Cllvllus /Y llos« (1 +19ll2s2) [[6ll=
+ Cllollizszl[¢ll2s £l

Then,
13| < C (|v"]lo,x + ldivyo/[lo,«) ]|+
+ Clvllisllles+ (1 + [[¥]l2s2) [¢lh,+
+ Cllvll17s,£ 10 2.5, |)]]1,+
+ Cllvll1.25,4| fl2.5]Pll1,+ - (3.27)
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Using duality, ([8:25)), and that ¢~ () = ¢~ (0),

/ g P ()] JAF N ¢day
‘(mO.SSl I‘lperm

< C(I[v"llo.~ + lldivyv'llo.-) @1,
+ Cllvllis, - 9ll2s,- (T+ [¥ll25,-) 1,
+ Cllvllizs ~[[¥ll2s, - €], -

Integrating in time and using ([B.8), (3.14) and (3.20)), we have that

”U// . n’H*0'5(8'D7) = SsSup

t t
/ [v" - ﬂ’%{fo.s(aD*)dS < C/ 1" 15 +.ds + VEIP(E()).
0 0

Similarly, using (3.26) and (B.27), we obtain that

/ g~ 2] JAF N* ¢day
r

" - n(t)| g-05@p+) = sup
|#lo.5<1

+ sup
|#lo.5<1

< C ([[v"lo,+ + Ildivyv'llo.+) lpll+
+ Clvllisxllvlles+ (1 + [[¥]252) )+
+ Cllvll17s,£l1¥]l2.5,2 | 9ll1,+
+ Cllvll1.25,2 | flasll@ll,« -

/ g_l/z(er)é/JAkaquxl
chrm

Using Lemma [ ([3:20) and taking the lifespan 7" small enough, we have that
divy oo, = [[dive v lo,- + ¢l A(t) — AO) [z [[v'[l1,+ < VEP(E()) + Ve[[v' |11+
Consequently, we have that
t t
/ 0" - n(8) [f-0.5op+yds < c/ 10”5, 2ds + VEP(E(t)) .
0 0

Finally, using ([B.I4]), (3I7), the Sobolev embedding theorem and trace theorem, we have
that

o ((w’(t))L/lw’(t)l - (%)L/I%I) \Hfoﬁ(am) < dflll2,x[J()A(t) — J(0)A(0)]|1.25
<VIP(E()).

Collecting these estimates, we conclude that

. t
/ [v” - nﬁpus(apﬂds < C/ H’U””(z),ids + VIP(E()).
0 0
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Making use of Lemma [7 (for v) and (3.I8), we obtain that
! 2 ! 2 2 2
/ " / . /
J el T R P R
! 2
"

+ C/o V"l 05 9p+uop-)ds

t
<C [ ds + VEPE®)

0

< Mo+ VtP(E(t)),

where My is a constant depending on the initial data. Equipped with this last estimate and
using Lemma, [7] and trace theorem, we obtain that

t t
/0 ()3 ods < C /0 1012 4+ lleurly, vll2 o + ldivg,vll? ods

t
+C'/0 0" 305 op+yuop-) 5

t
< C/O loll§.+ + lleurlyg vl + + [ldivy, vl + + [0 - nlff +ds

< Mo+ VtP(E(t)). (3.28)

3.7 Conclusion

Collecting the estimates ([B.6), (B.I8), (B:28)) and using the lower bound for J(¢) and the
Rayleigh-Taylor sign condition, we find that

E(t) < Mo+ VIQ(E(1)). (3.29)

From

h e L?(0,T; H*3(I")), hy € L*(0,T; H5(T)),

the energy E(t) is continuous and this inequality implies the existence of a uniform time
T'(hg, f) such that
E (t) < 2M.

Estimates showing the uniqueness of the solution follows from standard energy methods and
the detailed analysis shown in [12].

4 Proof of Theorem [I Local well-posedness

Based on the smoothing argument in [24], 25] and following [12], for 0 < k,e < 1 small
enough, we define

QF(0) = {(z1,22) €S xR, —1+ f(x1) < 22 < TeTuTch(21,0)}.
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Now, following Section 2] we can construct an H*5—class diffeomorphism
U (0): DT = Qf(0), v~ : DT = Q.

We consider the so called ek—problem:

(vi )’ + + + . +
CpE + (AL ) (@ + Ve - €2) i =0 in D+ x[0,T7],
(AL F(WE) =0 in D* x[0,1],
(hl‘i,ﬁ)t(t) = (Un,e)iJZe(A:,e)zz on I'x [OaT] )
hye = Jeho on T x {0},
ar.=0 on I'x[0,7T],
[qx, E]] =0 on T'pem % [0,77,
IIquuk (AH,E)Q?JH e( K 6 = ||:6] 22 on Fperm X [0, T]
ey = on Dyt x [0,77],
(t) = A%,E(O) in D* x (0,77,
(t) = (.’1’1,.’1’2) + j/ijnhn,e(xl,t)GQ on I'x [O,T] ,
(t) = (2111,.’1}2) + f(xl)eQ on I‘perm X [07T] .

Note that the e-regularization affects only the initial interface hg, while the x regulariza-
tion appears also in the PDE system.

The construction of smooth approximate solutions can be achieved with a fixed point
scheme. The detailed construction of solutions to this problem is given in [12]. See also
[40] for a very different approach to the construction of solutions using the integral kernel
method.

Once we are equipped with a smooth approximate solution hy ((x1,t), we have to obtain
uniform estimates in € and k. These uniform estimates in € and s will allow us to pass to
the limit. However, we need to take the limits in the appropriate order; to be able to take
the limit as K — 0 we need to have a smooth initial data (H*, s > 2.5 is enough), so, we
need € > (. However, the term requiring ¢ > 0 is not present when « = 0. Thus, we have
to take first the limit as x — 0 and then the limit as € — 0 (see [I2] for more details). We
define

t
Epc(t) = max [Tehee(s)3 +/ [0r,e ()13 2 + [T Tl e (5)]5 5ds
0<8<t 0 ’

and follow the estimates in in Section [3] We obtain the s-uniform bound

Epo(t) <2Mo VO <t <T..

Passing to the limit in x we obtain an approximate solution h¢(z1,t). Now we define

t
Bu(t) = guas e () + [ (o) + Irels) s
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and follow the estimates in in Section Bl Recalling that the e-regularization only affects the
initial interface hg, we obtain the e-uniform bound

E(t)<2MoV0<t<T.
Passing to the limit in € we obtain a local strong solution to the one-phase Muskat problem

with discontinuous permeability (L4).

5 The Muskat problem in the semi-ALE formulation

We again use (2.1)) and ([2.2]), respectively, for our reference domains and boundaries. We
let N = ey denote the unit normal vector on I', I'perm and I'hor. Due to Theorem [I] there
exists a local solution (h,u,p) to the Muskat problem (4.

We define 61)F as the solution to

AsyT =0 in D" x0,7T], (5.1a)

syt =h on I'x[0,7], (5.1b)

T =f  on Tpem x [0,7], (5.1c)

Adyp~ =0 in D~ x10,71], (5.2a)

T =f on Tperm % [0,77, (5.2b)

Y~ =0  on Tpe x [0,7], (5.2c)

and

(w1, m9) = (w1,22) + (0,607)  in D* x [0, 77, (5.3)

For all s € R, elliptic estimates show that

19 = ellss1/2,6 = 1094175+ < c(lhls +fls) <1, (5.4)

due to the smallness of the initial data hg and the function f. Thus, for s = 2, due to the

Sobolev embedding and inverse function theorems, ¥* is a H%*°—class diffeomorphism. We
define J* = det(Ve*) and A* = (V)L In particular,

JE =143,
P R I } 1 [ 1+ 60, 0 ] .
—W*)% (WH 1+ 0+ 5 -ty 1

We define our ALE variables v = wo1), g = po 1) as in section 2l The new variables v, g
solve the system (2.1I). We define our new semi-ALE variables

w' = JAévj, Q =q+ x2.
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In particular, using Piola’s identity and the equality J A;N i = \/§nj valid on T'pot, I'perm
and I', we have that ' o
wzai = JA_Zjvjui = 07

and
- 2 — ] - =
w, = JAjvj = Gv; = vy on Dpyt.

We also have that o , ,
w! N7 = JA{Cka] = \/gnivg,

so, due to the incompressibility of the fluid,
[[ijj]] =0on I‘perm

Thus, these new variables solve

(wi)j eV I E 17t + . +
5—i+J (AF) (AT QT +09T) =0 in D* x (0,77, (5.52)
divw® =0 in D* x[0,77, (5.5b)
ht = wy on I'x[0,7], (5.5¢)
h = hg on T x{0}, (5.5d)
Qt = on T x[0,7], (5.5€)
[Q] =0 on  Tperm % [0,77], (5.5f)
[(Q + 69p) .1, AR TAINI] = — [%]ijjon Toerm % [0, 7] (5.58)
wy, =0 on Dyt x [0,7]. (5.5h)

Equivalently,
+ +=\T + +

T VQE a0t = (Id _ w> Tom DExT), (5.6a)
divw® =0 in D* x[0,7], (5.6b)
ht = wy on I'x[0,7], (5.6¢)
h = hg on T x{0}, (5.6d)
Qt =0 on T x[0,T], (5.6e)
[Q] =0 on Iperm % [0,77, (5.6f)
[(Q + 6v), AFTAINT] = — [%]wjzvj on Ty % [0,7] (5.6
wy, =0 on Dyt x [0,77]. (5.6h)

Using the particular form of Vy* = V(z1, x5 + 6¢F), we have that

<Id — W) w_i _ < 51/}:t72 _(6¢i71 )2 _51/}:t71 (1 + 51/}:t72) ) wi (5 7)
J* BE T\ oyt (T4 09F ) =0yt (14 0vt,) ) BEJE

and we see that the right hand side of (5.6h) contains all the non-linear terms.
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6 Proof of Theorem [2: Global well-posedness when f =0
We define the energy &(t) and energy dissipation Z(t) as follows
£() = "R, () = " (1) 1. (6.1)
As h(-,t) has zero mean, the Poincaré inequality shows that
|hln = |RV]o, n € Z7.
By hypothesis, the initial data hg satisfies the smallness condition
lhol2 < €, (6.2)

for ¥ a small enough constant.
Note that due to Theorem [l there exists a time T such that

E(t) < 26(0) < 26% <« 1.

Let us sketch the proof of the theorem. Our goal is to prove that, for initial data
satisfying the smallness condition (6.2]), the system remains in the Rayleigh-Taylor stable
regime and verifies the following estimates

t
sup (1)} < [hole <%, [ [uls)[3uds < Cri%,
<t 0

where C7 is a time independent constant. Then, a standard continuation argument for
ODE in Banach spaces implies that the local solution provided by Theorem [ is, in fact, a
global-in-time solution.

This goal is achieved in several steps. First we prove that, for ¥ small enough, the
system remains in the Rayleigh-Taylor stable case and verifies the estimate

d
6+ < IVEP(E) YO<t<T. (6.3)
This inequality implies the decay of & for small enough initial data; however, to obtain the
rate of decay, we need to relate the energy & with the energy dissipation . To do that we
establish the estimate

W05 < C (wllo,|hl175 + [[w”[lo+) -

This estimate relies on Darcy’s law. Using the smallness condition (6.2) and the Hodge
decomposition elliptic estimate (see Lemma [7]), we prove that tangential derivatives of the
velocity are enough to control the full H? norm of the velocity field:

hollae < C[lwlse + ooz

Finally, using the smallness of 4", we can relate the energy & with the energy dissipation 2
as follows
& < |hos < Cllw"|lox = C2.
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Thus, using the smallness of €, the previous energy estimate (6.3) is equivalent to

d
&+ =& <0.
v +dt <

for a certain v > 0. Note that due to the definition of &, we have that (6.4) implies

B/ (0)lo < gloe™ "2
We also obtain that

/0 lw(s)|2 2 ds < C(&£(0), 5%).

6.1 Pressure estimates

Recall that, as d9p~ = 0 on I'yy, we have that A verifies

(A)2(A) =0, J(AT (A2 = (A )= == = ——— on Ty,

J= 1o
Note also that (5.6f) is equivalent to

[B(Q + 6¢),x AFJAINT] = 0 on Tperm x [0, 7],

(6.4)

thus, multiplying (5.6h) by 4%+ and using the divergence free condition (5.6b), the modified

pressure @ solves
BETEAN(ARFQF +0yF)x),y =0 i DFx 0,71,
QT=0 on T x][0,T],
Q] =0 on Iperm % [0,T
[B(Q + 6v), AFTAINT] =0  on  Tperm x [0,T]
BTANNQ™ +6Y )2=0  on The x [0, 7]

Equivalently, using (5.1)) and (5.2), (6.5) can be written as

BAQ = Bdiv [(Id — JAAT)V(Q + 6v)] in D* x[0,7],
Qt =0 on I'x][0,77],
[[Q]] =0 on IWperm X [O,T],
[8Q.2] = [8Q.x (55 — AFTAD)] — [B6¢,x AFJAFJon  Tperm x [0, 7]
BQ =5 (Q e D on Ty x [0.7],
where sk st
Id— JAAT = | ﬁ ? wi,ﬁ(&’z}i,l)? :
51/} 51 T

14093
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and, using (5.Ik) and (5.2b),

ALTAZ =0, A2JA2 = —

T I .
1_‘_51[),2 on 1 perm

Elliptic estimates and trace theorem then show that

9Qlhss < (01 = TAATITQ+ 00l + [5Qu. (6 — 4f 742

6¢_72 >
1

1+ (5¢_,2
< c(nld JAAT e [Vl + 1d — JAAT 15 2 VO 1

1

+ |86y AL 42

T 'ﬁ_(Q_a -1)

+ ||1d — JAAT||LOO||V5¢||1,5¢ + |11d — JAAT|| 154+ || V|| oo

51/}72
\Y e v 0
o] e + | imas
H 51/}72 >
1 + 51/},2 15’:|: ’
Thus, using (5.4]), we have that
IVQll15.+ < Clh[ZP(|AI3). (6.7)
Using (B.5h), we obtain that
w54 < ClAZP(RE). (6.8)

6.2 The Rayleigh-Taylor stability condition
In the previous ALE variables (v, q), the Rayleigh-Taylor stability condition (L) reads
—AFq JAIN' = —A%q5 JAZ >0 on T,

In our semi-ALE modified pressure, we have that the Rayleigh-Taylor stability condition is

equivalent to
~AXQ2—-1)JA2>0 on T,

or, using (5.5h,c),
hi + JAZAZ(1 4 6t 9) + JAZAT W'+ >0 on T.
Thus, the Rayleigh-Taylor stability condition is equivalent to
wy +1>0 on T.

Then, we see that when ||ws|[f~ < 1, the Rayleigh-Taylor stability condition holds. Thus,
using the Sobolev embedding theorem together with (6.8]), we have that

lw3 ooy < Cllwllise < ClREP(AIZ) < 1.
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6.3 The estimates in L?(0,7; H*>>(T"))
Recalling (5.6h,d), we have that

+ +pr + (2 wy o+
wy +BTh = (¢ 2 (h))1+51/}+72 h'wy on T
Thus,
TR = —(1+ (h/)2)w71+ — Wwf onT
1+(5¢+,2 2 ’
and
+ 2h’h”w+ 1+(h’)2w+
Bt = (1 N2 (w1)71 . 1 "o+ 1
5 h ( +(h) )1+5¢+,2 +h(w2 )71+1+5r¢)+’2 +h‘ ’UJ2 (1_'_51/)4_,2)251[)712

Using the smallness of |h|2, (317) and estimate (6.8]), we then estimate
W05 < C (Jwilos + [whlos)

The following Lemma is an immediate consequence of the standard normal trace theorem
(see Temam [42]):

LEMMA 9. Suppose that v’ € L*(Q) with divv € L*(Q). Thenv' - N € H_%(({)Q) and
10" Nl g-172(90) < C (V]| 20 + | divollz2q)) -
Using Lemma [0 for v = w’, we obtain that
wh|-0.5 = [w" - N|-g5 < Cllw" oz

Using Lemma [ for v = (w')’

)
[fl-05 = (@) Nl o5 < C (" o + | dived lo.s) = C (Juw" o + ] curlwfo.+)

Using that curlu = 0, we find that (see Cheng, Granero-Belinchon & Shkoller [12] Section
5.1.7])
leurlw||1 + < Cllwllz, 4|75 + Clhl2s|hlizs + Clhlz|wlff 5 4 (6.9)

Thus, using the Poincaré inequality together with (6.8]) and the smallness of |h|2, we find
that

W05 < C (Jlwll2,+|hl1.75 + [[w”[lo2) - (6.10)
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6.4 Hodge decomposition elliptic estimates
Using Lemma [7 (with 1o = (21, z2)) we have that
[wlj2,+ < C[l!wllo,i + [leurlwl|y,+ + [|dive]]1,+ + !w2!1.5] :
As a consequence of ([6.9), (6.10), the Poincaré inequality and Lemma [0 we find that
el < C[lwllyss + lenrlw]y a4+ [w” - N|—o.5]
< C[||w||1.5¢ + [wllz,£|hl175 + |hloslPlizs + [Plallw]?5 o + ||w"||o¢}
< Clwlluse + wlzslblizs + lafwllsx fwls.e + o o]
As a consequence of the smallness of || and (G.8]), we have that
ol < C[lwllise + " lo] (6.11)
Substituting this last inequality into (6.I0) together with |h|s < 1 and (6.8]), we obtain that
|05 < C ([Jw]lrs<|hlirs + [|w”]lo.+)

< Cllw"llox (6.12)

6.5 The energy estimates

The goal in this section is to prove that, the solution verifies the following bound
9 i 1d
max{fT,5~} 2dt

where Q is a polynomial such that Q(0) = 0. Then, for small enough initial data, we have
that

& < 79(¢),

d
CP+—£E<0
+dt -7

and we conclude the decay of &. To obtain the exponential rate of decay in Theorem 2 we
will invoke (6.12) and Poincaré inequality.
We take two tangential derivatives of (5.6k) and test against w”. We obtain that

|w”|2 " " |:< (VT/))TV¢> w:|// "
d 0 i w; dr = d-—| = dz.
/D+UD B $+/D+UD(Q+ V) iwide /D+UD J B w(6$13)

Integrating by parts and using (5.0), we have that

/ (Q + 0" s w!l'de = / (Q + 0)"w! N'day — / [(Q + 6v)"w! N']dx;
D+UD— I I

perm
—/ (@ + 60)" (w!')N'day
Fbot
- / B! dzy.
N
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Thus due to (5.7), (5.4), (6.8), (6.12]), Holder’s inequality and the Sobolev embedding theo-
rem, ([6.I3)) is equivalent to

9 1d (v ¢)va w "
max{f+, 3~} Tou® s /D+UD KId - J ) E] &

<ovariere| [ (- TEEE) G
< DVEP(E) + | VU2t P(E)|w]| 1 VD

< GVEP(E) + |hlasVEP(EWD
< QVEP(E),

where we have used Young’s inequality. We note that due to Theorem [, we have that
E(t) <2&(0) forall 0 <t <T7,

thus
P(&(t)) < C(ho) forall 0 <t < T,

Taking ¢ small enough, we obtain the inequality

1d
——&
e@—l—Zdt <0,

for certain € = e(hg, #). Thus, using Poincaré inequality and (6.12])

vE + %é" <0,
for certain v = y(ho, 8).
" (t)lo < |hgloe™ 2. (6.14)
We also obtain the bound
/Ot P(s)ds < C(ho, B). (6.15)
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