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Abstract

The cyclic mechanical behavior, the wear and fatigue resistances and damage
developments of working surface of tool steels are dependent on microstructural
features. A multi-scale approach combining experimental testing, numerical treat-
ments and simulations is developed to model the surface behavior of X38CrMoV5-1
martensitic tool steels. The multi-scale modeling is coupled with finite element
calculations. The elasto-viscoplastic constitutive equations used are based on crys-
tal plasticity model of Méric-Cailletaud and are implemented on the finite element
code ABAQUS under a small strain assumption. Trough an appropriate laboratory
testing, the microstructure features comparable to the surface of industrial tools or
pin/disc in tribology experiments are reproduced by considering plate specimens.
Monotonic tensile testing is coupled with in-situ Digital Image Correlation tech-
nique (DIC) to determine the surface strain fields. The measured local nonlinear
mechanical strain fields are analyzed. The strain localization is related to stereolog-
ical artifacts. The numerical treatments allow reproducing, qualitatively, the strain
localization patterns at the surface observed during tensile testing. The influence
of the various stereological parameters such as the morphology of martensitic laths,
the crystallographic orientations, the internal hardening state of the surface profiles
and their evolutions on the local strain fields are addressed. By such approach, it
is possible to get a better insight of some elementary mechanisms acting on tools
and/or pin/disc surfaces regarding both tensile and cyclic behavior.

Keywords: A.microstructures, B.crystal plasticity, B.cyclic loading, C.mechanical
testing, surface behavior

1. Introduction1

During forming operations such as forging, rolling, stamping ..., and more specif-2

ically at high temperatures, the tool surfaces experience thermal and mechanical3
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cyclic loadings under transient conditions. Fatigue and wear are the two main dam-4

age mechanisms of tool surfaces. Depending on tool geometry and local thermo-5

mechanical loading, fatigue or wear may become the leading damage mechanism.6

At the stress raiser regions (e.g. tool radii, holes, ...) uni-axial cracking is generally7

dominant while the local loading is at least bi-axial state on plane surface and the8

interconnected cracks pattern called heat checking, is mostly observed in these re-9

gions. The tool surface is subjected to local plastic yielding especially at singularity10

locations (e.g. corners and stress raisers). These damage mechanisms can also act11

simultaneously and in coupling with environment such as oxidation or corrosion (in12

die casting). The prediction of the tool life is of primary concern for tool design-13

ing and damage monitoring. The interruptions in production because of premature14

tools damaging are very time consuming in term of reparation and are highly cost15

effective. Therefore, the lifetime prediction is a major issue for optimizing the tool16

design. These approaches require relevant thermo-mechanical constitutive models.17

However, such models are generally addressed using a RVE (Representative Volume18

Element) features and consider the material as isotropic in behavior. Neverthe-19

less, almost all tool surfaces present very early microstructure texturing at different20

scales : macroscopic, mesoscopic and microscopic. Such microstructural evidences21

show that constitutive laws must take into account the anisotropic behavior near22

the working surfaces. It should be emphasized that such changes in extreme surface23

of tools are very common features that cover many surfaces of bodies in relative24

movements and presenting certain shear ductility. In fact, in contact surface, a few25

grains bear the whole load. As the elasto-plastic behavior of a grain is physically26

dominated by the nature of the crystal lattice and its actual orientation regard-27

ing the local main loading axis, it is senseless to consider an isotropic constitutive28

law. By definition the surfaces are singular for chemical reactions, mechanical be-29

haviors and damage developments. Therefore, a special attention must be paid to30

the anisotropic nature of the surface when it experiences shearing. Thus, crystal31

plasticity models with multi-scale approaches have to be addressed. They can im-32

prove the description of the local behavior at tool surface vicinity (≈ 100 µm), while33

classical macroscopic approaches are worthless for such matter. They include a lo-34

cal behavior model able to take into account both representative external loading35

and the slip system interactions of the martensitic BCC (Body-Centered Cubic) mi-36

crostructure [1] as is the case for hot work tool steels. Some elementary physical37

mechanisms are introduced in these approaches for describing the cyclic plasticity38

[2–4] through a non linear kinematic variable [5, 6]. These models can be improved39

by taking into account the influence of the total dislocation densities with strain40

for each slip system [7] and by introducing an isotropic hardening variable [8, 9].41

Different yield surfaces can be associated to the physical phenomena like the screw42

and edge dislocation effects [10, 11]. However, the parameters identification of such43

models is not trivial. Phenomenological approaches are based on thermodynamics44

of the irreversible process. The constitutive equations are very similar to the formu-45

lations addressed in the physical approaches. Again, the shear strain rate is related46

to the resolved shear stress [12]. Many investigations consider an isotropic harden-47

ing variable to describe different slip systems interaction by introducing latent and48

self hardening mechanisms [13–16]. The kinematic hardening can be included by49
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using the Armstrong-Frederick or Chaboche equations [17]. The model parameters50

can then be identified using either a mean field or a full field approach. Berveiller51

and Zaoui [18] propose a scale tansition rule to describe the monotonic behavior52

of spherical particules. Later, Pilvin and Cailletaud propose an extension of the53

Berveiller-Zaoui model, the β-model [19], that accounts for cyclic loadings. The54

mean field approaches are relevant for identifying the material parameters at a local55

scale. However, they strongly depend on the linearisation methods used at the local56

and global scales. For this purpose, full fields approaches are more accurate and57

better describe the behavior of a given RVE. They explicitly take into account the58

internal structure of the material (morphology, crystallography, nature ...) [3, 4] and59

provide a spatial localization of mechanical fields [20–26]. Obviously, the resulting60

calculations are more reliable than those induced by a mean field model though61

being more expensive. One of the method employed in scale transition rule is FE62

(Finite Element) method. It consists in solving a macroscopic boundary problem in63

coupling with RVE which considers the actual microstructure features of the mate-64

rial. In such approaches, the constitutive equations are solved at each integration65

point of the FE mesh. The strain fields obtained at a local scale can be compared to66

local experimental measurements by Digital Image Correlation techniques [27–31].67

In this frame, the FE analysis can be used to assess the reliability of the mean field68

simulations [32].69

In the present investigation, the Meric and Cailletaud model [33–35] is used for70

predicting the surface behavior of hot forming tools (e.g. forging) and pin-on-disc71

tests [36, 37]. It should be emphasized that the surface of hot forming tools ex-72

periences actually transient thermo-mechanical wear and fatigue solicitations. The73

crystal plasticity models are adequate to take into account the crystallography fea-74

tures such as plastic anisotropy [38] and temperature dependence of physical and75

mechanical properties in particular for BBC and tetragonal lattice structures like76

martensitic material reported here [39]. Due to experimental difficulties for high77

temperature strain field measurements, the model capability was first assessed at78

room temperature. Nevertheless, the model is expressed for being easily applied79

both at isothermal and transient thermomechanical conditions. The mean field ap-80

proach is performed for parameter identification sake. The scale transition rules,81

Berveiller-Zaoui and β models are considered. The results are compared with those82

obtained by a full field approach. This latter uses a FE calculation at the scale83

of the RVE. In this case, the actual microstructure of tool steel is explicitly taken84

into account. The constitutive equations are implemented on ABAQUS software.85

The martensitic microstructure is modeled by using Voronoï tesselation and Neper86

software [40]. A parametric analysis is undertaken to assess the effect of several87

factors, namely: surface hardening, surface anisotropy, crystallographic orientation,88

grain/lath morphology, on the local and global induced mechanical fields. All these89

criteria can influence the surface properties and the material [4]. In some cases, a90

geometrically realistic microstructure can have more important effects on the hetero-91

geneous deformation processes than a fine tuning of the constitutive model param-92

eters [41]. A recent investigation have shown that a multiscale framework with an93

explicit representation of tempered martensitic microstructure accurately describes94

the typical softening effects due to precipitate and lath coarsening [42]. In this study,95
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the local behavior model allows to take into account the laths shape and the slip96

systems interactions of the BCC martensitic microstructure. Two kinds of experi-97

ments are conducted. First, tests are performed on flat specimens to generate the98

typical surface observed on industrial tools. These specimens experience monotonic99

tensile loading. The surface roughening and its influence on the strain heterogeneity100

and grain localization is investigated since these interactions can have a significant101

effect on the mechanical behavior [43]. Multiscale modeling is a relevant approach102

to catch such kind of phenomena [44]. In this frame, DIC technique allows high103

resolution strain mapping [45] and therefore are relevant to compare the local mea-104

sured strain fields with the results provided by the FE simulation. The interplay105

between simulation results and experiment provided by full field measurements at106

a local scale is not trivial to perform especially when complex microstructures are107

considered [46]. Last, the multi-scale modeling is extended to describe the cyclic108

behavior and the results are analyzed regarding the previous factors investigated109

under monotonic conditions.110

2. Experimental procedures111

2.1. Material112

The material investigated is a 5% chromium double tempered martensitic steel113

(X38CrMoV5-1, AISI H11). Its chemical composition is reported in table 1.114

Table 1: Chemical composition wt.%

C Cr Mn V Ni Mo Si Fe
0.4 5.05 0.49 0.47 0.2 1.25 0.92 Bal.

The heat treatments results in an initial hardness of 47 HRC with a tempered115

martensitic lath microstructure. In fact, the microstructure consists of ferrite and116

cementite in form of lath (Fig. 1). The lath morphology is quite heterogeneous117

with an average thickness less than 2 µm. The laths are arranged by packets within118

the Prior Austenitic Grains (PAG) whose mean size is around 30 µm. EBSD (Elec-119

tron BackScatter Diffraction) analysis have revealed that global crystallographic120

orientations of the grain is isotropic which confer to the steel an isotropic behavior.121

However, following early motion between tool and formed material (alt. between pin122

and disc), the grains are stretched along the sliding direction. By EBSD, the crystal-123

lographic orientation relationships of the martensitic laths (Body-Centered Cubic)124

and the PAG (Face-Centered Cubic) lattices are identified. Several approaches can125

be found to assess these orientation relationships [47, 48]. In the present study,126

the PAG wherein the martensitic lath blocks are stacked, is analyzed by using the127

crystallographic orientations. It is observed that the morphology of the martensitic128

laths are arranged in a quasi-parallel manner (see Fig. 2). The microstructure ex-129

hibits a high density of dislocations, which gives a good strength to the steel at room130

temperature. Many investigations have clearly shown that the steel is highly prone131

to cyclic softening [49–51]. In addition, The Low Cycle fatigue (LCF) experiments132

have shown a significant softening for the first hundred cycles following a linear con-133

tinuous softening until the rupture.134

135
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Figure 1: SEM observations of X38CrMoV5-1 steel: martensite lath microstructure (a) with prior
austenitic grain (b).

(001) (101)

(111)Y

X

Z (b)(a)

Figure 2: Inverse pole figure according X axis, white dots correspond to the orientation of each
martensitic lath (a); Spatial distribution of the orientations (b).

2.2. Surface grain texturing136

The forging tool surface which can be defined as a layer between 10−2 mm and137

10−6 mm constitutes a preferred zone for plasticity and damage mechanisms. This138

can be explained by various phenomena like wear, shear strain and thermomechani-139

cal fatigue in coupling with oxydation when tools are working at high temperature.140

In order to investigate the influence of surface and subsurface properties on the141

mechanical behavior of X38CrMoV5-1 steel, a servo-hydraulic tensile test machine,142

with a nominal force of 20kN which was previously adapted to fretting fatigue tests,143

is used [52]. It is combined with a secondary axis with a nominal force of 25 kN144

allowing to apply a transverse compressive loading to the sample by the use of cylin-145

drical pins. A back and forth axial displacement u controlled test is combined with146

a transverse loading/unloading force F as illustrated in Fig. 3. Hence, a surface147

with microstructural properties similar to those observed at the die surface during148

forging is obtained.149

150

Such subsurface/surface mechanical and microstructural characteristics are achieved151

by applying high levels of loading. A limited number of cycles is enough to promote152
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Figure 3: Experimental conditions of the surface generation process. Remark: the specimen is only
hold by the movable actuator at one of its edges while the other is totally free to move.

inelastic flow. The tests use rectangular samples (270 mm long and 20 mm wide)153

with 1 mm thickness. Fig. 4 illustrates the SEM observation of the surface. In154

this case, 22 cycles of loading (forth axial displacement u from A to B) / unload-155

ing (back axial displacement u from B to A) are performed as shown in Fig. 3,156

with a maximal force of F = 9.8 kN . EBSD analysis of a selected area, with a157

frame of 370 × 270 µm2 shows a significant gradient of the morphological texture,158

in-depth from the surface. In such zones, it is very difficult to identify a consistent159

set of Kikuchi lines for properly indexing the highly elongated grains. Both SEM160

and EBSD investigations have revealed a mechanically affected zone of about 65 µm.161

162

Figure 4: Surface analysis by SEM Observations and EBSD measurements
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2.3. In situ analysis of the local behavior163

The specimen are machined from the previous sheet by Electrical Discharge Ma-164

chining (EDM) such that the affected zone is kept on the gauge length as illustrated165

in Fig. 5. The tensile tests are conducted on a Instron servo-electric testing machine166

with a nominal force of 30 kN . The local strain measurement is done by using a167

Keyence optical microscope with a magnification factor of 1000. It is placed on a168

x− y − z moving table for a very high accurate positioning of the microscope lens.169

An Area of Interest (AoI) of about 500 × 500 µm2 is selected for in-situ measure-170

ments during tensile loading. Digital images of 1600 × 1200 pixels are captured.171

The martensitic microstructure is used as a natural speckle pattern. Moreover, the172

global strain is measured by a classical MTS extensometer with a gauge length of173

12.5 mm. It is placed beside the AoI (see Fig. 5). It should be emphasized that174

both sides of the specimen after EDM and the highly deformed surface (see Fig. 5)175

are slightly polished to reduce the eventual surface cracks. Care is taken to avoid176

and eliminate totally the textured surface.177

178

Figure 5: In-situ analysis of the deformation maps under monotonic loading by using Digital Image
Correlation (DIC) technique

2.4. RVE definition179

These measurements are used to assess the size of the RVE adapted to the180

X38CrMoV5-1 microstructure [53]. A preliminary tensile test is performed on a181

sample having a surface without any prior texturing. A tensile ductility of 8.5%182

is obtained with the global extensometer measurement. Several AoI are defined:183

400× 400 µm2 (Z1), 300× 300 µm2 (Z2), 200× 200 µm2 (Z3), 150× 150 µm2 (Z4)184

and 100× 100 µm2 (Z5). A mean spatial strain field of these AoI is calculated and185

compared with the global strain measured by the extensometer. Based on the mean186

strain calculated for each AoI, it is concluded that the Zone 5 underestimates the187

global strain measured by extensometer. On the contrary, Zones 3 and 4 can be188

considered as a RVE since the mean strain obtained is similar to the global strain189

(see Fig. 6). The relative local ductility given by the equation δ =
(

Aglobal
Z − AAoI

Z

)

190

is reported in Table 2 where AAoI
Z is the ductility calculated in each AoI and Aglobal

Z191

is the global ductility.192
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Figure 6: Estimation of the RVE size by using DIC technique and by comparison with the strain
provided by the extensometer

Table 2: Gaps between the deformation to failure given by the extensomter and for each considered
AoI

AoI Z1 Z2 Z3 Z4 Z5

δ [%] + 3 + 3 + 3 - 9.41 - 20.09

2.5. Tensile tests conducted on textured surface193

As an example, in Fig. 7, three strain fields are shown at various macroscopic194

strain levels (0.5%; 1%; 3%). The major strain field evolution is analyzed for each195

image. For a global 0.5 % elastic strain, a local major strain of 2.5% is calcuated196

by DIC. Thus, a local plastic behavior occurs even if the macroscopic behavior197

remains elastic. Deformation seems to be initiated at the PAG boundaries and also198

is dependent on their orientations. At a global strain level of 1% and 3%, the strain199

is significant and seems to be localized at ±45◦ with respect to the tensile axis.200

Previous investigations performed on X38CrMoV5-1 tool steel [54] have shown an201

important plastic flow at the interface between the textured surface/subsurface and202

the bulk. This plasticity is localized at the boundaries of PAG and is responsible203

for micro voids initiation. This phenomenon causes the failure by decohesion at204

PAG and lath boundaries. It can explain the damage initiation at the subsurface of205

the material. The local strain field with the band at ±45◦ may be related to this206

mechanism.207
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Figure 7: Major stain measurements provided by DIC technique at different macroscopic deforma-
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3. Multi-scale behavior modeling208

In the present investigation, the multi-scale approach is based on the behavior209

model proposed by Meric and Cailletaud [34, 35], this approach satisfies the require-210

ments of the thermodynamics of irreversible processes [6, 23]. In this theoretical211

framework, the state laws or thermodynamic potentials can be written at different212

scales. The local behavior equations are formulated at the microscopic scale consid-213

ering the slip systems. The macroscopic RVE, previously defined, corresponds to a214

volume of 150×150×50 µm3. Inbetween these two scales, a mesoscopic scale corre-215

sponding to a martensitic lath is assumed. The martensitic lath blocks in a PAG are216

defined as an intermediate scale between the microscopic and the macroscopic scales.217

This micro-meso-macro approaches leads to define a multi-scale modeling and are218

governed by scale transition rules presented hereafter. Many works in the multi scale219

approaches using crystal plasticity modeling employ a finite strain (large strain) for-220

mulation [55, 56]. Nevertheless, bodies in relative movements (forging tool or pin on221

disc testing ...) are subjected to cumulative plastic straining with small cyclic strain222

ranges achieving definitively to high strain levels. Therefore, in the present study,223

a modeling framework based on small strains assumption is addressed. However, a224

finite strain approach is carried out and reported in [37].225

3.1. Constitutive Equations226

The Helmholtz potential energy density per unit mass usually defined at the227

macroscopic scale can also be considered as a potential given as the sum of free228

energies at the mesoscopic scale.229

̺Ψ = ̺Ψe

(〈

εeεeεe
∼

〉

V

)

+ ̺Ψin(qi) =
N
∑

i=1

(

̺Ψi
e(εeεeεe

∼

) + ̺Ψi
in(ρs, αs)

)

(1)

where ̺ is the material density, N is the lath number in V,
〈

εeεeεe
∼

〉

V

the average230

elastic strain tensor in V and qi the internal variables including the isotropic ρs and231

kinematic αs hardening variables resolved on each slip system s.232

As mentioned earlier, small deformation conditions and an additive strain parti-233

tion εεε
∼

= εeεeεe
∼

+ εinεinεin
∼

are assumed. Moreover, a linear isotropic behaviour is considered.234

Therefore, the elasticity tensor is described by two parameters that are macroscopic235

Young modulus E and Poisson ratio ν.236

In Eq. 1, the non linear Helmholtz free energy Ψi
in, for a given lath i, is associated237

to the non linear part of the behavior at the mesoscopic scale by considering the238

hardening variables formulated at a microscopic scale.239

̺Ψi
in(ρ

s, αs) =
1

2
C

Ns
∑

s=1

αs2 +
1

2
bQ

Ns
∑

s=1

Ns
∑

r=1

hsrρsρr (2)

C and Q are material parameters related to kinematic and isotropic hardening
respectively. b is the isotropic hardening rate parameter and Ns is the number of
slip systems potentially activated. For BCC crystal, the number of slip systems is
given by slip planes {1 1 0}, {1 1 2}, {1 2 3} and slip directions 〈1 1 1〉. It confers
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to the polycrystal 48 activable slip systems. In the present study, the deformation
mechanisms related to easy glide and pencil glide mechanisms are considered to
be predominant, e.g: {1 1 0} 〈1 1 1〉 and {1 1 2} 〈1 1 1〉 [57]. Therefore, the number
of active slip systems is reduced and only 24×24 interaction matrix hhh

∼

including

8 coefficients hi symmetrically allocated [8, 58, 59] is required (Eq. A.1 into the
appendix section). The previous slip system families are given by the Schmid-Boas
notations in Eq. A.1. The link between Miller indexes and Schmid-Boas system
is provided in Tab. A.8 shown into the same appendix section. The macroscopic

Cauchy stress ΣΣΣ
∼

=
〈

σσσ
∼

〉

V

is the average stress tensor in V (Eq. 3), it is obtained by

derivation of the Helmotz free energy (see Eq. 1 and Eq. 2).

ΣΣΣ
∼

=
〈

σσσ
∼

〉

V

= ̺

∂Ψe

(

〈

εeεeεe
∼

〉

V

)

∂
〈

εeεeεe
∼

〉

V

= ΛΛΛ
≈

:
〈

εeεeεe
∼

〉

V

(3)

The associated variables related to the isotropic and kinematic hardening at the
microscopic scale are described in Eq.4 and 5.

rs = ̺
∂Ψi

in(ρ
s, αs)

∂ρs
= bQ

Ns
∑

r=1

hsrρr (4)

χs = ̺
∂Ψi

in(ρ
s, αs)

∂αs
= Cαs (5)

Similarly, the evolution equations are obtained at the macroscopic scale by defin-240

ing a viscoplastic potential Ω at the mesoscopic scale. This global potential being241

the sum of the partial potentials Ωs obtained at the microscopic scale (Eq. 6).242

Ω =
Ns
∑

s=1

Ωs =
Ns
∑

s=1

K

n+ 1

〈

f s

K

〉n+1

(6)

where K and n are parameters related to the material viscosity and f s is the yield243

function of the slip system s given by Eq. 7.244

f s = |τ s − χs| − rs − τ s0 (7)

where τ s and τ s0 are respectively the resolved shear stress and the critical resolved245

shear stress.246

This approach can be classified in the frame of non associated models [6] since247

it is defined by two functions, the function f (Eq. 7) for the elasticity domain and248

the flow potential given by F (Eq. 8).249

F s = f s + bρsrs + dαsχs (8)

where d is a material parameter related to the kinematic variable.250
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From Eq. 6 and 8, the evolution equations of internal variables (Eq. 9-11) are251

obtained as:252

γ̇s = λ̇s∂F
s

∂τ s
=

〈

f s

K

〉n

sign

(

τ s − χs

)

= υ̇ssign

(

τ s − χs

)

(9)

ρ̇s = −λ̇s∂F
s

∂rs
=

(

1− b ρs
)

υ̇s (10)

α̇s = −λ̇s∂F
s

∂χs
=

(

sign

(

τ s − χs

)

− d αs

)

υ̇s (11)

where λ̇s is a viscoplastic multiplier which is derivated from the viscoplastic potential
Ωs at the microscopic scale (Eq. 12)

λ̇s =
∂Ωs

∂f s
= υ̇s (12)

The Schmid law (Eq. 13) and the yield function (Eq. 7) define the mesoscopic253

non linear strain rate (Eq. 14).254

τ s = σσσ
∼

: sym(ls ⊗ ns) (13)

ε̇εε
∼

in =
∂Ω

∂σσσ
∼

=

Ns
∑

s=1

∂Ωs

∂σσσ
∼

=

Ns
∑

s=1

λ̇s ∂f
s

∂σσσ
∼

=

Ns
∑

s=1

γ̇ssym(ns ⊗ ls) (14)

where ns is the slip plane normal vector and ls the slip direction in this plane.255

The state laws (Eq. 4 and 5) and the evolution equations (Eq. 9-13) express the256

intrinsic dissipation Θ as:257

Θ = σσσ
∼

:ε̇εε
∼

in −

Ns
∑

s=1

χsα̇s −

Ns
∑

s=1

rsρ̇s

=

Ns
∑

s=1

(

τ sγ̇s − χs

(

sign
(

τ s − χs
)

− dαs

)

υ̇s − rs
(

1− bρs
)

υ̇s

)

=
Ns
∑

s=1

(

f s + τ s0 +
d

C

(

χs
)2

+ brsρs
)

(15)

Table 3 summarizes the equations set.258

3.2. Strategies for identification of the model parameters259

As observed in the above, DIC measurements reveal heterogeneous strain fields260

distribution in tensile tests. Therefore, a straightforward identification of the ma-261

terial paramters associated to the chosen model is impossible. Indeed a full field262

approach requires the generation of the virtual microstructure associated with the263
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Table 3: Constitutive equations of the model of Meric and Cailletaud

Strain decomposition εεε
∼

= εεε
∼

e + εεε
∼

in

Schmid law τs = σσσ
∼

: sym(ls ⊗ ns)

Microscopic flow rule υ̇s =

〈

|τ s − χs| − rs − τ s0
K

〉n

γ̇s = υ̇s sign(τ s − χs)

Mesoscopic flow rule ε̇εε
∼

in =
∑Ns

s=1
γ̇ssym(ns ⊗ ls)

Kinematic hardening χs = Cαs α̇s = γ̇s − dαsυ̇s

Isotropic Hardening rs = bQ
∑Ns

r=1
hsrρr ρ̇s = (1− bρs)υ̇s

Intrinsic dissipation Θ = σσσ
∼

:ε̇εε
∼

in −
∑Ns

s=1
χsα̇s −

∑Ns

s=1
rsρ̇s

knowledge of various slip systems and crystallographic orientations. In addition,264

the mechanical tests should be combined with high resolution EBSD measurements.265

Consequently, the optimisation method becomes very time consuming which lead266

to consider a mean field approach. As mentionned previously, the Berveiller-Zaoui267

model [18] and β-model of Pilvin and Cailletaud [10, 19] are combined for the pa-268

rameters identification purpose. This latter is relevant for modelling the behavior269

of softening materials as it is observed during the cyclic behavior of hot work tool270

steels [60]. For Berveiller-Zaoui model, the localization rule of the stress tensor is271

given by Eq. 16.272

σσσ
∼

ϕ = ΣΣΣ
∼

+ 2µα
(

1− β
)

:

(

EEE
∼

p − εεε
∼

ϕ, p
)

with:
1

α
= 1 +

3

2
µ
Ep

eq

Σeq

and: β =
2(4− 5ν)

15(1− ν)

(16)

where σσσ
∼

ϕ and ΣΣΣ
∼

are respectively the stresses at the mesoscopic/lath and macro-273

scopic scales, ν is the Poisson ratio, µ the shear modulus and α stands for a non274

linear accommodation parameter whose formulation is a function of the von Mises275

equivalent inelastic strain Ep
eq and stress Σeq at the macroscopic scale.276

In β-model (Eq. 17), the transition is given as a difference between a global BBB
∼

277

and local βββ
∼

ϕ variables in order to describe the non linear accommodation whereas278

the Berveiller-Zaoui model considers a difference between a global EEE
∼

p and local εεε
∼

ϕ, p
279

inelastic strains.280

σσσ
∼

ϕ = ΣΣΣ
∼

+ 2µ
(

1− β
)

:
(

BBB
∼

− βββ
∼

ϕ
)

with: BBB
∼

=
〈

βββ
∼

ϕ
〉

=
∑

ϕ

fϕβββ
∼

ϕ
(17)

Moreover, βββ
∼

ϕ presents a non linear evolution with respest to inelastic strain. This281

evolution law (Eq. 18) can be written under a Armstrong-Frederick form [5, 6]. Thus,282

this transition rule can be extended to complex loading paths like cyclic behavior.283
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β̇ββ
∼

ϕ
= ε̇εε

∼

p,ϕ −Dβββ
∼

ϕ ε̇p,ϕeq (18)

where ε̇p,ϕeq is the equivalent inelastic strain rate at the mesoscopic scale. The284

β-model is reliable for both monotonic and cyclic loadings but requires the identifi-285

cation of an additional coefficient D.286

The parameters identification is based on experimental tensile and cyclic strain-287

controlled tests at room temperature. A servo-hydraulic testing machine and Testar288

2S controller are used. The push-pull tests with a strain rate of 10−2s−1 exhibit a289

cyclic softening from the first cycle to the failure which is a well known behavior290

of martensitic hot work tool steels [50, 61, 62]. Several strain ranges are examined291

under two strain ratios Rε = {−1, 0} (Table 4).292

Table 4: Tensile and cyclic test conditions, ε̇ = 10−2s−1

Test number tensile 1 cyclic 1 cyclic 2 cyclic 3 cyclic 4
Strain range 0− 10% ±0.8% ±0.9% ±1.1% 0− 1.5%

The identification process of the model parameters contains several steps. First,293

by assuming an isotropic behavior, the elasticity tensor ΛΛΛ
≈

is identified using the294

Young modulus E and the Poisson ratio ν. As at room temperature, the material295

is not sensitive to strain rate, the viscous parameters K and n are set to provide296

a rate-independent model response which can be considered as a limiting case of297

classical viscoplasticity. The kinematic and isotropic hardening coefficients and the298

transition rule parameter are identified from experimental tests. For this purpose,299

the following sequential stages (simulation and optimisation) are undertaken using300

the Zset solution software [63]:301

• transition rule parameter, kinematic hardening and critical resolved shear302

stress are identified using the tensile curve,303

• then the values of the kinematic hardening coefficients are refined using the304

stabilized cycles of the different cyclic tests (see table 4),305

• isotropic hardening parameters are identified by fitting the both tensile and306

cyclic experiments,307

• the interaction matrix coefficients are identified using the tensile test. In this308

case, the following constraints (see Eq. 19) are assumed according to the work309

of Hoc and Forest for BCC crystals [59]:310

h8 ≤ h2 ≤ h3 ≤ h5 ≤ h4 ≤ h1 ≤ h6 ≤ h7 (19)

The interactions between slip systems {1 1 0} 〈1 1 1〉 and {1 1 2} 〈1 1 1〉 are311

classified in different types. They can belong to the same system (h1 and312

h8), to colinear system (h2, h3 and h6) or to non-colinear system (h5, h4 and313

h7). Interactions between same or colinear slip systems of the family {1 1 0}314
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Table 5: Material parameters

Elasticity [GPa, GPa, ∅] Viscosity [unitless, MPa.s−n] Kinematic hardening [GPa, ∅]

Young Modulus E Shear modulus µ Poisson ratio ν n K C d

208 80 0.3 15 4 495 1700

Isotropic hardening [MPa, MPa, ∅] Transition rule [∅] Interaction matrix coefficients [∅]

τs
0

Q b D h1 h2 h3 h4 h5 h6 h7 h8

372 −10 1.05 15 1.1 0.7 0.9 1.0 0.9 1.2 1.3 0.7

〈1 1 1〉 are assumed smaller than interactions between colinear slip systems315

not belonging to the same family, this latter being smaller than interactions316

between non colinear slip systems itself smaller than interactions between non317

colinear system of the family {1 1 0} 〈1 1 1〉. Lastly, interactions between slip318

systems of the family {1 1 2} 〈1 1 1〉 are assumed greater than interactions319

between slip system of the family {1 1 0} 〈1 1 1〉.320

• Model validation by simulation of the tensile test using the transition rule of321

Berveiller-Zaoui.322

The results of the identification process are illustrated in Table 5. The compari-323

son between the results provided by the Meric-Cailletaud model using the β-model324

transition rule and our experiments are given for cyclic and tensile loading paths325

(Fig. 8).326
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Figure 8: Comparison between computed strain-stress curve provided and experiment for the
stabilized cycle (a-c); test cyclic1 (a); test cyclic2 (b); test cyclic3 (c); and for test tensile1 using
Berveiller-Zaoui and β models (d)
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4. Numerical simulations328

4.1. Finite Element implementation of the constitutive equations329

A lot of investigations deals with the FE implementation of a multiscale ap-330

proach [4, 64–69]. In the present work, the rate tangent modulus method [15, 16]331

is used to implement the multiscale constitutive equations. The method consists in332

a direct resolution scheme and is based on a predictor/corrector algorithm of Simo333

and Hughes [70] where the Cauchy stress σσσ
∼

is written at the mesoscopic scale.334

σσσ
∼

= ΛΛΛ
≈

:

(

εεε
∼

− εεε
∼

in
)

(20)

From Eq. 20 and using Eq. 14, Eq. 21 is obtained.

σ̇σσ
∼

= ΛΛΛ
≈

:

(

ε̇εε
∼

−
Ns
∑

s=1

γ̇ssym(ls ⊗ ns)
)

(21)

The incremental shear strain ∆γs on a prescribed system s at time t is defined by
Eq. 22, where ∆t is the time increment.

∆γs = γs
t+∆t − γs

t (22)

Interpolation versus time can be expressed as Eq. 23.

∆γs =
(

(1− θ)γ̇s
t + θγ̇s

t+∆t

)

∆t (23)

By Taylor expansion of γ̇s
t+∆t, Eq. 24 then Eq. 25 can be achieved. In each slip335

system s, the shear strain rate γ̇s is considered as the integration variable.336

γ̇s
t+∆t = γ̇s

t +
∂γ̇s

∂τ s

∣

∣

∣

∣

t

∆τ s +
∂γ̇s

∂rs

∣

∣

∣

∣

t

∆rs +
∂γ̇s

∂χs

∣

∣

∣

∣

t

∆χs (24)

∆γs

∆t
= γ̇s

t + θ
∂γ̇s

∂τ s

∣

∣

∣

∣

t

∆τ s + θ
∂γ̇s

∂rs

∣

∣

∣

∣

t

∆rs + θ
∂γ̇s

∂χs

∣

∣

∣

∣

t

∆χs (25)

where ∆τ s, ∆rs et ∆χs are respectively the resolved shear stress, isotropic hard-337

ening and kinematic hardening increment acting on slip system s. These increments338

can be determined by using the constitutive equations (see Eq. 26, 27 and 28).339

∆τ s =
(

ΛΛΛ
≈

: sym(ls ⊗ ns)
)

:

(

∆εεε
∼

−

Ns
∑

r=1

∆γrsym(lr ⊗ nr)
)

(26)

∆rs = bQ

Ns
∑

r=1

hsr(1− bρr)∆γrsign(τ r − χr) (27)

∆χs = C∆γs − Cdαs∆γssign(τ s − χs) (28)

Eq. 29 is obtained by introducing the previous equations into Eq. 25:340
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∆γs

∆t
= γ̇s

t + θ
∂γ̇s

∂τ s

∣

∣

∣

∣

t

(

ΛΛΛ
≈

: sym(ls ⊗ ns)
)

:

(

∆εεε
∼

−

Ns
∑

r=1

∆γrsym(lr ⊗ nr)
)

+ θ
∂γ̇s

∂rs

∣

∣

∣

∣

t

(

bQ
Ns
∑

r=1

hsr(1− bρrt )∆γrsign(τ r − χr)
)

+ θ
∂γ̇s

∂χs

∣

∣

∣

∣

t

(

C∆γs − Cdαs
t∆γssign(τ s − χs)

)

(29)

Therefore, Eq. 29 can be expressed as a linear system (see Eq. 30) where the341

components of unknown vector ∆γ∆γ∆γ correspond to the shear strain increment for all342

slip systems.343

AAA
∼

.∆γ∆γ∆γ = bbb (30)

with:

AAA
∼

= Asr = δsr +∆tθ
∂γ̇s

∂τ s

∣

∣

∣

∣

t

(

ΛΛΛ
≈

: sym(ls ⊗ ns)
)

:

(

sym(lr ⊗ nr)
)

−∆tθ
∂γ̇s

∂rs

∣

∣

∣

∣

t

bQhsr(1− bρr)sign(τ s − χs)

−∆tθ
∂γ̇s

∂χs

∣

∣

∣

∣

t

(

δsrC − δsrCdαssign(τ s − χs)
)

∆γ = ∆γr; bbb = bs = ∆tγ̇s +∆tθ
∂γ̇s

∂τ s

∣

∣

∣

∣

t

(

ΛΛΛ
≈

: sym(ls ⊗ ns)
)

: ∆εεε
∼

(31)

δsr is the Kronecker symbol and the derivative terms ∂γ̇s

∂τs

∣

∣

t
, ∂γ̇s

∂rs

∣

∣

t
and ∂γ̇s

∂χs

∣

∣

∣

t
can be344

expressed using the constitutive laws of the Meric and Cailletaud model (see Eq.32).345

∂γ̇s

∂τ s

∣

∣

∣

∣

t

=
n

Kn
(|τ s − χs| − rs − τ s0 )

n−1

∂γ̇s

∂rs

∣

∣

∣

∣

t

= −
n

Kn
(|τ s − χs| − rs − τ s0 )

n−1sign(τ s − χs)

∂γ̇s

∂χs

∣

∣

∣

∣

t

= −
n

Kn
(|τ s − χs| − rs − τ s0 )

n−1

(32)

By solving the linear system given by Eq. 30, ∆γs is calculated and the shear346

strain rate γ̇s = ∆γs

∆t
is assessed. As the rate tangent modulus method allows for347

a direct solving, the calculated shear strain increment may be not reliable when348

the time increment increases. Therefore this method is combined with a Newton349

Raphson resolution using the value provided by rate tangent modulus method as350

initial guess of the iterative algorithm. In the present investigation, an backward351

Euler or fully implicit method (θ = 1) is assumed (Eq. 33) [71].352
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∆γs −∆tγ̇s
t+∆t = 0 (33)

The numerical integration of the above constitutive equations is implemented on353

ABAQUS/Standard. As implicit solving of the equilibrium equations is used, the354

Jacobian matrix J =
∂∆σσσ

∼

∂∆εεε
∼

associated to the nonlinear system is assessed from Eq.355

21 (see Eq. 34).356

J =
∂∆σσσ

∼

∂∆εεε
∼

=
∂
[

ΛΛΛ
≈

:

(

∆εεε
∼

−
∑Ns

s=1
∆γssym (ls ⊗ ns)

)]

∂∆εεε
∼

(34)

= ΛΛΛ
≈

−ΛΛΛ
≈

:

[

Ns
∑

s=1

∂∆γs

∂∆εεε
∼

⊗ sym (ls ⊗ ns)

]

(35)

Hence, the term ∆γs

∆ε
∼

can be easily formulated by Eq. 30.357

∂∆γr

∂∆εεε
∼

= AAA
∼

−1.

[

∆tθ
∂γ̇s

∂τ s

∣

∣

∣

∣

t

ΛΛΛ
∼

: sym (ls ⊗ ns)

]

(36)

and by introducing Eq. 36 into Eq. 34, the final expression of J is given by Eq. 37.358

J = ΛΛΛ
≈

−
Ns
∑

r=1

Ns
∑

s=1

Ars,−1∆tθ
∂γ̇r

∂τ r

∣

∣

∣

∣

t

[

ΛΛΛ
≈

: sym (lr ⊗ nr)
]

⊗
[

ΛΛΛ
≈

: sym (ls ⊗ ns)
]

(37)

4.2. Validation of the Finite Element implementation359

The numerical implementation scheme is validated by comparison with the re-360

sults provided by Zset solution [35, 63]. The θ-method used in Zset solution (Eq.361

38), deduced from Eq. 33 is solved by a Newton-Raphson method.362

K

∣

∣

∣

∣

∆γs

∆t

∣

∣

∣

∣

1

n

−
(

∣

∣(τ s,t+θ∆t − χs,t+θ∆t
∣

∣− rs,t+θ∆t − τ s0

)

= 0 (38)

The validation procedure is performed on a single crystal stainless steel where363

the data are collected from [28]. It should be mentioned that the slip interaction364

matrix is formulated for a BCC structure (hi = 1; ∀i = 1, ..., 8). A 10 mm diameter365

and 20 mm length cylinder is considered. It is embedded on one side and undergone366

a tensile loading up to 4%. 8-node linear brick elements are used for the meshing,367

more than 400 elements are generated with a full integration. The comparison be-368

tween both approaches exhibits a good agreement (Fig. 9).369

370
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(a) UMAT (b) ZMAT

(c) UMAT (d) ZMAT

Figure 9: Comparison of the stress field (a-b) in the loading direction and the shear stress (c-d) of
the Schmid-Boas slip system G1 (see Tab. A.8) obtained by the integration method developed in
this work (a-c) and those provided by Zset Solution [63] (b-d)

4.3. Finite Element pre-processing371

Voronoï cell tesselations are used to generate the virtual microstructure of X38CrMoV5-372

1 martensitic steel. The computational methodology consists in performing ordinary373

Voronoï tesselations [72, 73] in a spatial domain (REV) of 150×150×50 µm3. Tesse-374

lations generation is given by Neper software [40, 74]. 173 polycrystalline aggregates375

representing the potentials sites of the martensitic packets (First order Tesselation)376

are generated (Fig. 10a). Then, from this first order tesselation, starting from these377

sites, randomly oriented segments are generated where additional nucleation points378

are placed from which a second Voronoï tesselation is performed (second order Tes-379

selation, Fig. 10b). 6 parallel laths are considered in each block except for one where380

only 2 laths are considered, achieving a total N = 1034 (172× 6 + 2) Voronoï cells.381

The Crystallographic orientations of the laths are not explicitly considered in the382

virtual microstructure. In fact, the laths are grouped in a parallel manner in each383

block and are randomly oriented from one to another block. PAGs are constituted384

of 4 packets of laths except for one PAG including only 2 laths achieving 44 PAG.385

386

Due to the relative motion between the surfaces of the tool and the part, a non387

isotropic microstructure (elongated PAG and laths) is generated close to the surface388

of the tool. For this purpose, the Voronoï cell centers related to the upper half389

of RVE are translated to represent elongated virtual microstructure (Fig.11a-11b).390

Furthermore, micro-hardness measurements reveal a hardening close to the free sur-391

face. This hardening is considered into the FE simulation by increasing the critical392
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Prior Austenitic Grain

Packet of laths

(a)

Packet of laths

Prior Austenitic Grain

Martensitic lath

(b)

Figure 10: Virtual microstructure generation by Voronoï tesselations: first order tesselation (a);
second order tesselation (b)

resolved shear stress in-depth from the surface (Fig. 11c).393

394

(a) (b) (c)

Figure 11: Isotropic lath morphology (a); Non isotropic morphology (b); Surface Hardening by
introducing an increase of the resolved shear stress τs0 (c)

Moreover, the martensitic phase transformation requires particular crystallo-395

graphic relationship between the laths (BCC) and the matrix (Face-centered Cubic:396

FCC). In this study, the Kurdjumov-Sachs (KS) relationships are assumed since the397

X38CrMoV5-1 microstructure is similar to a low carbon steel [75, 76]. Considering398

the γ/α crystallographic planes relationship {111}γ||{110}α′ and crystallographic399

orientation relationships < 110 >γ || < 111 >α
′ , 24 variants are identified (see table400

A.9 in appendix). These variants are assigned to each PAG containing 4 packets401

where each packet contains 6 laths sharing the same habit. The 24 variants are402

randomly distributed (Fig. 12b). In such manner, global martensitic laths orienta-403

tions distribution is isotropic (Fig. 12c). For the layers close to the surface of the404

REV, the crystallographic texture given by KS relationships can be replaced by an405

experimental texture provided by EBSD measurements for a better consideration of406

the experimental evidence. The last effect to be considered deals with the surface407

roughness of the REV. Based on experimental results, the ultimate layer of RVE is408

differently meshed by a node coordinate displacement.409

410
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(a) KS orientation relationship
(b) Orientation of the austenitic
structure

(c) Orientation of the martensitic
structure

Figure 12: (100) pole figures (a) KS orientations relationship, (b) PAG, (c) martensitic lath

4.4. Meshing and boundary conditions411

The FE meshing of Voronoï cells is not trivial. The meshing technique proposed412

by Quey [40] and implemented on Neper software is adopted. It includes an accurate413

discretization for taking into account the martensitic laths. This procedure needs414

some modifications in the morphology of the generated virtual microstructure. The415

edges of the Voronoï polyhedra with a short length (l ≤ lc, see Eq. 39) were416

eliminated. Therefore, some faces and vertexes of the Voronoï cells vanishes and the417

virtual microstructure is rebuilt by interpolation techniques as illustrated in Fig. 13.418

lc = 0.5rcV
1

3

k ; rc = 1.15 (39)

where Vk is the volume of the Voronoï cell k and rc a fixed parameter related to419

the mean size of the finite elements.420

421

Figure 13: Improvement of the Voronoï cell shape for better mesh criteria

Then, a free meshing technique using quadratic tetrahedral elements with a full422

integration (namely C3D10 in ABAQUS software) is performed. 84177 elements are423

generated corresponding to an average value of 82 elements per cell which is relevant424
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for a multi-scale analysis [40]. The meshing analysis shows that the aspect ratio for425

only less than 0.59% of the finite elements is inadequate. The distribution of the426

elements per lath (e.g. Voronoï cell) is illustrated in Fig. 14a. The meshing and427

the boundary conditions prescribed on the RVE are shown in Fig. 14b. Two types428

of loading are considered, a tensile loading with a maximal strain of ε = 8% and a429

cyclic loading with Rε =
εmin

εmax

= 0.1.430

431
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Figure 14: Distribution of the number of elements per lath (a); Meshing of the RVE and prescribed
boundary conditions (b)

A FE parallel calculation is undertaken in ABAQUS software where the FETI432

(Finite Element Tearing and Interconnecting) method is used [77]. It allows the433

partition of the spatial domain into a set of disconnected sub-domains, each being434

assigned to an individual processor. In the present study, 8 processors with a clock435

rate of 2.8 GHz and a Random Access Memory of 30 GB per node are considered436

for each Finite Element calculation.437

5. Results and discussions438

5.1. Present and future issues of the approach439

The knowledge of the actual mechanical loadings and the subsurface behavior of440

bodies in relative movement (sliding) requires the development of appropriate consti-441

tutive laws. In most cases, isotropic and macroscopic behavior is assumed. However,442

detailed investigations and microscopic observations on damage mechanisms reveal443

that the number of grains experiencing and bearing the shear strains at the extreme444

surfaces is limited [43, 54]. Therefore it becomes mandatory to distinguish the me-445

chanical behavior at the subsurface from the bulk. The grain boundaries emerging446

at surface, the interaction between surface and active dislocations in these grains,447

rupturing of well-orientated secondary phases (carbides, non spherical precipitates),448

rolling of spherical second phases or debris and specific crystallographic orientation449

of each grain cause various damage mechanisms. These mechanisms can simultane-450

ously be activated and even coupled, accelerating the processes and accumulation451

of damages. Under incremental shear straining the subsurface plastic yielding can452
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occur. The magnitude of the plastic yielding decreases inwards from the surface.453

One can observe that in addition to texturing of the martensitic laths and subse-454

quent PAGs beneath the surface of pins, micro-cavities (with different sizes) are also455

formed under excessive and cumulative shear straining (See Fig. 8 in [54]). At triple456

grains junction, the orientation of each laths packet and different crystallographic457

orientation of grains lead to micro-tearing and to the formation of micro-cavities458

as a consequence of the shear strain accumulations and an important stress/strain459

tri-axiality state. The micro-tearing located beneath the working surface can gen-460

erate wear debris. Under such complex conditions the macroscopic and isotropic461

constitutive laws might fail to well describe the subsurface behavior. Defining a462

damage process zone beneath the working surface of pins used in tribology investi-463

gations, Boher et al have proposed a wear model based on cumulative shear straining464

[78]. The fundamental of this model is inspired from Manson-Coffin law for LCF465

life prediction. The authors suppose that debris are emitted once the cumulative466

shear strain increment reaches the shear ductility. In this model, the plastic shear467

strain increment is evaluated by a macroscopic finite element simulation of a pin on468

a rotating disc. At this scale of investigation, the microstructure features drastically469

influence the behavior of the subsurface and cannot be neglected. Our approach470

can definitively improve the assessment of the cumulative shear strain increment471

required in the wear model [78].472

The model results are reported hereafter under tensile and cyclic loading condi-473

tions for emphasizing the local behavior of individual lath, lath packets and PAGs.474

Many numerical results are extracted from the FE analysis for evaluating the stress475

and strain components at different scales such as:476

• von Mises stress and inelastic strains,477

• number of active slip systems,478

• accumulated intrinsic dissipation Θ, i.e. the integral in time of Eq. 15.479

Some of these results are compared with experimental tensile tests using DIC480

analysis.481

5.2. Tensile loading482

Several assumptions concerning the orientations relationships (KS or experimen-483

tal), the shape of the martensitic laths (anisotropic aspect), the shape of the surface484

(flat or rough) are examined (table 6).485

486

Table 6: Tensile test conditions used for numerical simulations

Test condition Crystallographic Orientations Surface hardening shape of the surface
1 KS non flat
2 KS yes flat
3 experimental yes flat
4 experimental yes rough
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Fig. 15 illustrates the results (i.e. maps of the von Mises stress (a); the number487

of active slip systems (b); the intrinsic dissipation (c)) for a total deformation of488

8% and test condition 1. The von Mises stress shows significant stress concentra-489

tions close to the martensitic laths or PAG boundaries which are mainly influenced490

by the crystallographic orientations. The number of active slip systems does not491

show specific stress localization. The intrinsic dissipation reveals the zones where492

the inelastic strain is high. Unlike the macroscopic modeling of the behavior where493

the free surface of the specimen remains unchanged, one can notice that multi-scale494

crystal plasticity well predicts the free surface roughening.495

496

(a) (b) (c)

Figure 15: Equivalent von Mises stress component (a), number of active slip systems (b) and
intrinsic dissipation (c) for the test conditions 1

Test conditions 2, 3 and 4 (table 6) are examined in order to be more realis-497

tic. Fig. 16a illustrates that the macroscopic strain-stress responses at the scale498

of the RVE are very close whatever test conditions. However, important variation499

in the local von Mises stress are found after 8% straining. The von Mises stress500

maps reveal that the stress concentrations are greatly influenced by the initial ori-501

entation relationships (Fig. 16b-16c). This effect is predominant whithin the upper502

half of the RVE where the crystallographic orientation relationships are identified503

by EBSD. Nevertheless, it should be mentioned that the lower half of the RVE is504

also affected by stress concentration while KS orientation relationships are identical505

for all simulated test conditions. When the rough surface is modeled (test condition506

4), the stress fields drastically change at the free surface while no such variation is507

observed for the other test conditions (2 and 3).508

509

The stress-strain curves are numerically simulated for test condition 4 at differ-510

ent scales (scale of the RVE (a); of the PAG (b); of the lath packets (d) ; of the511

laths (d), Fig. 17) . First, one can notice that the stress-strain response obtained512

at the RVE scale is quite similar to the tensile experimental curve and also to the513

simulated stress-strain curve using the mean field scale transition rule (Fig. 8d).514

It means that the parameters identified using the β model and the FE method are515

consistent. The strain field heterogeneity increases when the scale decreases. In-516

deed, at the martensitic lath scale, a maximal strain level of 0.9 can be reached.517

The maximal stress can be 250% higher than the global macroscopic stresses (mea-518

sured or simulated). The number of the active slip systems strongly depends on the519

crystallographic orientation of a given lath and its morphology, this is why, when520
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Figure 16: Macroscopic Strain-Stress response for test conditions 2 , 3 and 4 (a); von Mises stress
field for the test conditions 2 (b); 3 (c) and 4 (d)

the simulated stresses for two laths may be very close, their local strains could be521

very different. The comparison between the strain fields calculated by FE and mea-522

sured by DIC is not trivial. It requires a high-performance digital image correlation523

technique allowing a mapping of the strain fields at a microscopic scale [46]. In fact,524

there is shortcoming to apply 2D strain field measurements on microstructure with525

3D distribution of phases and precipitates. Also, the number of data collected (e.g.526

strain field) from DIC measurements (2D) and RVE simulations (3D) are very dif-527

ferent. Therefore, the number of data is collected for each major strain level. Then528

the maximum value for the data collected, is extracted. At the end, a ratio of each529

data collected over this maximum value is calculated. Through the normalization530

method, experimental and simulated results can be compared as a function of major531

strain levels (Fig. 18, for the test conditions 4 and a macroscopic major strain of 3%).532

533
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Figure 17: Strain-Stress curves under a tensile loading at different scales: (a) macroscopic, i.e. RVE
behavior (well reproducing the experimental variation of the stress versus the strain in a tensile
condition) ; (b) different PAG; (c) different lath packets; and (d) different martensitic laths (showing
a huge scattering) using test conditions 4 (experimental crystallographic orientation provided by
EBSD at the upper half of the RVE, considering a surface hardening through a decrease of the
resolved shear stress and taking into account a roughness of the RVE surface). One can notice that
the scattering in (b) and (c) are reduced in comparison with (d) due to the scale of the evaluations
and tending towards the macroscopic curve (a).

5.3. Cyclic loading534

9 cyclic tests (see Fig. 14b) are conducted on the RVE for different conditions535

(table 7). Similarly to the tensile tests, different assumptions can be made. A flat536

surface is considered. In one case, a microstructure is randomly generated by using537

the Kurdjumov and Sachs (KS) relationships with (test condition 6) or without (test538

condition 5) considering hardening of the surface on the upper half of the RVE as539

illustrated in Fig. 11c. In the second case, the measured crystallographic relation-540

ships by EBSD is used to generate this microstructure (test condition 7).541

542

Table 7: Test conditions investigated in the numerical simulations for the cyclic tests

Test condition Crystallographic Orientations Surface hardening shape of the surface
5 KS non flat
6 KS yes flat
7 experimental yes flat

Fig. 19a compares the average value of the stress-strain loops obtained by FE543

simulation at the RVE scale for the test conditions 5 to 7 and the cycles 1 and 9.544

This average value is in fact given by the extracted computed stress-strain values545
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Figure 18: Distribution of the laths over the strain levels for an average strain level of 3%

at the level of laths, packets of laths and PAG. The trend for the test conditions 6546

and 7 are close eventhough the considered textures are different (KS relations and547

experimental by EBSD) whereas a significant change is observed in the stress level of548

test condition 5 for which no surface hardening is considered. Fig. 19b-19c gives the549

local von Mises stress at the maximal strain level of the cycle 9 for each test condi-550

tion. For the test conditions 5 and 6, the surface hardening introduced at the upper551

half of the RVE influences the stress distribution at the lower half even if the same552

crystallographic relations are considered. Moreover, a similar surface hardening is553

considered but with different crystallographic relations (test conditions 6 and 7), it554

is observed that the stress distribution is quite different inside the RVE while the555

RVE strain-stress response are similar (Fig. 19a). Fig. 20 shows the strain-stress556

responses for test condition 7 at different scales and for cycles 1 and 9. At the RVE557

scale, a plastic shakedown is observed between cycle 1 and 9 (Fig. 20 a-d). At the558

PAG scale, the plastic shakedown is not yet completed (Fig. 20 b-e). In fact, at the559

laths scale, the plastic ratcheting is very active, thus influencing the behavior at the560

PAG level. Fig. 20 c-f show clearly the enlarging of the stress-strain hysteresis loop.561

562

6. Conclusions563

The surface modeling of tool steels are investigated at room temperature by564

experimental testing and numerical simulation. The elasto-viscoplastic equations565

are formulated at the scale of the slip systems considering an isotropic and kine-566

matic hardening variables to predict both tensile and cyclic loadings. Phenomeno-567

logical constitutive equations of Meric and Cailletaud [34, 35] are adapted for the568
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Figure 19: Macroscopic Strain-Stress response for test conditions 5 , 6 and 7 for the 1st (a) and
the 9th (b) cycle; von Mises stress field for the test conditions 5 (b); 6 (c) and 7 (d) at the maximal
strain of the 9th cycle

X38CrMoV5-1 double tempered martensitic steel with randomly oriented laths. The569

thermodynamic framework of the non reversible phenomena is respected at the lev-570

els of the slip systems, laths, packets of laths and PAG.571

572

The following points can be addressed:573

• DIC technique is used to propose a relevant RVE for this steel and also to574

determine the local strain fields.575

• Two mean field approaches [18, 19] are applied for identifying the parameters576

of the constitutive laws. These methods ensure the transition between the slip577

systems and the RVE behavior.578

• A full field approach using FE method takes into account explicitly the mi-579

crostructure features of the steel (martensitic laths, crystallographic orienta-580

tions, grain morphology). Voronoï tesselation is used to generate the virtual581
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Figure 20: Strain-Stress curves under cyclic loading at the scale of the RVE (a,d), the PAG (b,e)
and the martensitic laths (c,f) at the maximal strain of the 1st (a,b,c) and the 9th cycle (d,e,f) for
the test conditions 7

microstructure [40]. This approach is based on a direct resolution scheme582

developed by Peirce [15, 16] and a predictor/corrector alogrithm of Simo [70].583

• The virtual microstructure is generated either based on EBSD measurements584

or Kurdjumov-Sachs crystallographic relationships between the matrix (FCC)585

and the laths (BCC). It is observed that the surface hardening of the layer586

of RVE influences the other half of the RVE behavior for different crystallo-587

graphic orientations. The effect of the surface aspects (plane or rough) is also588

investigated.589

• The reliability of modeling approach is assessed for different loading conditions590

and microstructural aspects. An acceptable agreement between DIC measure-591

ments and the FE simulation is found for the local distribution of the strain592

fields (only under tensile loading condition).593

• Cyclic loading simulations show that a plastic shakedown occurs at RVE level.594

At the PAG scale, the plastic shakedown is not totally achieved. At the laths595

scale, plastic ratcheting is very active. Enlargement of stress-strain loops are596

clearly observed. This enlargement is less at the level of the PAG.597
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Appendix A.1. Interaction Matrix and Schmid-Boas and Miller notation systems606
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A1 B1 C1 G1 H1 I1 D2 E2 C2 J2 K2 L2 D3 B3 F3 M3 N3 O3 A4 E4 F4 P4 Q4 R4

A1 h8 h2 h2 h3 h3 h3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5

B1 h2 h8 h2 h3 h3 h3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5

C1 h2 h2 h8 h3 h3 h3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5

G1 h3 h3 h3 h1 h6 h6 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7

H1 h3 h3 h3 h6 h1 h6 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7

I1 h3 h3 h3 h6 h6 h1 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7

D2 h4 h4 h4 h5 h5 h5 h8 h2 h2 h3 h3 h3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5

E2 h4 h4 h4 h5 h5 h5 h2 h8 h2 h3 h3 h3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5

C2 h4 h4 h4 h5 h5 h5 h2 h2 h8 h3 h3 h3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5

J2 h5 h5 h5 h7 h7 h7 h3 h3 h3 h1 h6 h6 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7

K2 h5 h5 h5 h7 h7 h7 h3 h3 h3 h6 h1 h6 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7

L2 h5 h5 h5 h7 h7 h7 h3 h3 h3 h6 h6 h1 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7

D3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h8 h2 h2 h3 h3 h3 h4 h4 h4 h5 h5 h5

B3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h2 h8 h2 h3 h3 h3 h4 h4 h4 h5 h5 h5

F3 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h2 h2 h8 h3 h3 h3 h4 h4 h4 h5 h5 h5

M3 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h3 h3 h3 h1 h6 h6 h5 h5 h5 h7 h7 h7

N3 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h3 h3 h3 h6 h1 h6 h5 h5 h5 h7 h7 h7

O3 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h3 h3 h3 h6 h6 h1 h5 h5 h5 h7 h7 h7

A4 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h8 h2 h2 h3 h3 h3

E4 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h2 h8 h2 h3 h3 h3

F4 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h4 h4 h4 h5 h5 h5 h2 h2 h8 h3 h3 h3

P4 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h3 h3 h3 h1 h6 h6

Q4 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h3 h3 h3 h6 h1 h6

R4 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h5 h5 h5 h7 h7 h7 h3 h3 h3 h6 h6 h1



























































































(A.1)

Table A.8: Normalized Schmid-Boas and Miller notation systems

Schmid-Boas A1 B1 C1 G1 H1 I1 D2 E2 C2 J2 K2 L2

Slip plane l
¯

s (11̄0)
√
2

(101̄)
√
2

(011̄)
√
2

(112̄)
√
6

(12̄1)
√
6

(2̄11)
√
6

(110)
√
2

(101)
√
2

(011̄)
√
2

(11̄2)
√
6

(121̄)
√
6

(211)
√
6

Slip direction
n
¯

s

[111]
√
3

[111]
√
3

[111]
√
3

[111]
√
3

[111]
√
3

[111]
√
3

[1̄11]
√
3

[1̄11]
√
3

[1̄11]
√
3

[1̄11]
√
3

[1̄11]
√
3

[1̄11]
√
3

Schmid-Boas D3 B3 F3 M3 N3 O3 A4 E4 F4 P4 Q4 R4

Slip plane l
¯

s (110)
√
2

(101̄)
√
2

(011)
√
2

(11̄2̄)
√
6

(112)
√
6

(2̄1̄1)
√
6

(11̄0)
√
2

(101)
√
2

(011)
√
2

(1̄1̄2̄)
√
6

(1̄21)
√
6

(21̄1)
√
6

Slip direction
n
¯

s

[11̄1]
√
3

[11̄1]
√
3

[11̄1]
√
3

[11̄1]
√
3

[11̄1]
√
3

[11̄1]
√
3

[111̄]
√
3

[111̄]
√
3

[111̄]
√
3

[111̄]
√
3

[111̄]
√
3

[111̄]
√
3
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Appendix A.2. Variant orientation of a PAG according to the KS relationship607

In the present investigation, 24 laths and 4 blocks (6 laths per block) are included608

in each PAG. The KS relationship assumes that a block is defined by a parallelism609

relationship between two crystallographic planes given by the α
′

(martensitic lath)610

and γ (austenitic grain) phases. The parallelism relationship for the variant orien-611

tations between two crystallographic directions is recalled in Table A.9.612

Table A.9: Variant orientation of a PAG according to the KS relationship

Block Parallelism Variant Parallelism

1 (1 1 1)γ || (0 1 1)α′ 1 [1̄ 0 1]γ || [1̄ 1̄ 1]α′

2 [1̄ 0 1]γ || [1̄ 1 1̄]α′

3 [0 1̄ 1]γ || [1̄ 1̄ 1]α′

4 [0 1̄ 1]γ || [1̄ 1 1̄]α′

5 [1 1̄ 0]γ || [1̄ 1̄ 1]α′

6 [1 1̄ 0]γ || [1̄ 1 1̄]α′

2 (1 1̄ 1)γ || (0 1 1)α′ 7 [1 0 1̄]γ || [1̄ 1̄ 1]α′

8 [1 0 1̄]γ || [1̄ 1 1̄]α′

9 [1̄ 1̄ 0]γ || [1̄ 1̄ 1]α′

10 [1̄ 1̄ 0]γ || [1̄ 1 1̄]α′

11 [0 1 1]γ || [1̄ 1̄ 1]α′

12 [0 1 1]γ || [1̄ 1 1̄]α′

3 (1̄ 1 1)γ || (0 1 1)α′ 13 [0 1̄ 1]γ || [1̄ 1̄ 1]α′

14 [0 1̄ 1]γ || [1̄ 1 1̄]α′

15 [1̄ 0 1̄]γ || [1̄ 1̄ 1]α′

16 [1̄ 0 1̄]γ || [1̄ 1 1̄]α′

17 [1 1 0]γ || [1̄ 1̄ 1]α′

18 [1 1 0]γ || [1̄ 1 1̄]α′

4 (1 1 1̄)γ || (0 1 1)α′ 19 [1̄ 1 0]γ || [1̄ 1̄ 1]α′

20 [1̄ 1 0]γ || [1̄ 1 1̄]α′

21 [0 1̄ 1̄]γ || [1̄ 1̄ 1]α′

22 [0 1̄ 1̄]γ || [1̄ 1 1̄]α′

23 [1 0 1]γ || [1̄ 1̄ 1]α′

24 [1 0 1]γ || [1̄ 1 1̄]α′
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