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Abstract. Accurate quantification of white matter hyperintensities (WMH) 
from MRI is a valuable tool for studies on ageing and neurodegeneration. Reli-
able automatic extraction of WMH biomarkers is challenging, primarily due to 
their heterogeneous spatial occurrence, their small size and their diffuse nature. 
In this paper, we present an automatic and accurate method to segment these le-
sions that is based on the use of neural networks and an overcomplete strategy. 
The proposed method was compared to other related methods showing competi-
tive and reliable results in two different neurodegenerative datasets.  

1 Introduction 

White matter hyperintensities (WMH) are regions of increased MR signal in T2-
Weighted (T2W) and FLuid Attenuated Inversion Recovery (FLAIR) images that are 
distinct from cavitations. The role of WMH have been extensively studied in normal 
ageing, cerebrovascular disease and dementia. The presence, topography and volume 
of WMH is used as biomarkers for stroke, small vessel cerebrovascular disease 
(CVD), dementia [1] and in multiple sclerosis (MS) [2]. In order to utilize WMH as a 
biomarker of cerebrovascular health, they need to be segmented and quantified in 
terms of volume and localization. 

Manual segmentation of WMH is a demanding process requiring trained observers 
and several hours per image for manual delineation by an expert. Moreover, manual 
segmentation is prone to inter and intra-observer variability. With many large clinical 
studies being conducted into ageing, cerebrovascular disease and dementia, the need 
for robust, repeatable and automated techniques for the segmentation of WMH is 
essential. Over the years, several methods have been proposed for the automated 
segmentation of WMH in cerebrovascular disease and in multiple sclerosis.  

Broadly, these methods can be classified into supervised and unsupervised. Super-
vised methods require a training dataset where manual labels for the WMH are avail-
able. Unsupervised methods rely on features and/or domain knowledge together with 
clustering type approaches. Among them, the lesion growth algorithm (LGA) availa-
ble in the lesion segmentation toolbox (LST) is widely used [3]. LGA requires both 



T1W and FLAIR images to first compute a map of possible lesions and then to use 
these candidates as seeds to segment entire lesions. Also included in the LST toolbox, 
there is a newer method called lesion prediction algorithm (LPA) that only requires 
FLAIR images as input. Besides, the LTS toolbox, Weiss et al. [4] proposed a dic-
tionary learning-based approach that segments lesions as outliers from a projection of 
the dataset onto a normative dictionary. Other popular unsupervised approaches use 
either clustering approaches such as fuzzy c-means [5] or heuristics on histograms of 
the T2W or FLAIR images [6]. While unsupervised methods should be preferred 
since not requiring a training set, in practice the free parameters need to be trained on 
each dataset to get optimum results. 

Supervised methods for WMH segmentation typically involve machine learning 
methods at a voxel level with pre and post processing steps to improve the sensitivity 
and specificity of the results. Such machine learning approaches have included for 
example random forests [7], artificial neural networks [8] or multiatlas patch-based 
label fusion methods [9]. All these methods are trained on mono and multi-spectral 
normalized neighborhood voxel intensities within a standardized anatomical coordi-
nates. Although the proposed feature involved neighborhood information (e.g., patch), 
these methods performed classification step at the voxel level. Therefore, by perform-
ing voxel-wise classification these methods ignore the inherent spatial correlation in 
lesions what results in lower segmentation performance. 

To overcome the lack of local consistency of methods performing voxel-wise 
classification, we propose an automatic pipeline for FLAIR hyperintense lesion seg-
mentation that performs patch-wise lesions segmentation in an over-complete manner. 
This pipeline benefits from some preprocessing steps aimed at improving the image 
quality and to locate it in a standardized geometrical and intensity space. Finally an 
over-complete Neural network classifier is used to segment the lesions. The proposed 
method is compared to related state-of-the-art methods and shows competitive results. 

2  Material and Methods 

The aim of the proposed method is to automatically segment the hyperintense le-
sions visible on MR FLAIR brain images. The proposed method first preprocesses the 
images to improve their quality and to locate them into a standarized geometric and 
intensity space to take benefit of the redundant information among the images. Then 
preprocessed images and the corresponding label maps are used to train a neural net-
work classifier.  
 

Preprocessing 
 

Denoising: The Spatially Adaptive Non-local Means Filter was applied to reduce the 
noise in the images. This filter was chosen because it is able to automatically deal 
with both stationary and spatially varying noise levels [10]. MNI affine registration: 
All the images have to be translated into a common coordinate space so the anatomy 
within the case to be segmented and the library cases is consistent. To this end, the 



images were linearly registered (affine transform) to the Montreal Neurological Insti-
tute (MNI) space using the MNI152 template. This was performed using the Ad-
vanced Normalization Tools (ANTs) [11]. Inhomogeneity correction and Brain ex-
traction: SPM12 was used to remove the inhomogeneity of the images and to provide 
a rough segmentation of the brain tissues [12]. A binary brain mask was estimated by 
summing grey matter, white matter probability maps and thresholding at 0.5. The 
resulting binary mask was further refined by applying an opening morphological 
operation (using a 5x5x5 voxel kernel).  Intensity normalization: The estimated brain 
mask was used to select only brain voxels. The resulting volume was intensity stand-
ardized by dividing all brain voxels by the median intensity of the brain region.   

 
Supervised classification: 
  
Once the images have been located in a common geometric and intensity space we 

train a neural network to automatically segment the lesions. This is done in two steps: 
1) Region Of Interest (ROI) selection and 2) Network training.  

 
ROI selection: After brain extraction, we can just focus on brain voxels to locate the 
lesions. However, the brain region has millions of voxels and only small amount of 
them belong to lesions. As lesions in FLAIR images are hyperintense a simple thresh-
olding allows preselecting a ROI containing mainly voxels belonging to lesions. We 
used a global threshold of 1.25 as it was found to be optimal in our experiments. 
 
Neural Network training: After ROI selection, the selected ROI contains a mixture of 
normal tissue and lesion voxels. To segment only lesion voxels a neural network was 
trained using a library of preprocessed FLAIR images and the corresponding labeled 
images only patches belonging to their corresponding ROIs were used as training set).  

 
• Features: The features used to train the network are a 3D patch around the voxel 

to be classified, the x, y and z voxel coordinates in MNI space and a value repre-
senting the apriori lesion probability obtained from a map computed averaging 
all training label maps in the MNI space (convolved with a Gaussian kernel (5 
mm)). We used squared patch intensities to enhance the contrast between the le-
sions and the surrounding white matter. In our experiments we used a patch size 
of 3x3x3 voxel that leads to a total number of 31 features. 

• Network topology: A classic multilayer perceptron was used. Two different set-
tings were tested, voxel-wise and patch-wise. In the first case the network that we 
used had 31x27x1 neurons (one hidden layer). In the second case, we used a 
31x54x27 network (labeling the whole patch rather just the central voxel). In this 
case an overcomplete approach was used so each voxel has contributions from 
several adjacent patches. This was done to enforce the final label regularity.   

 
As a final step, the resulting lesion mask is mapped back to the native space by apply-
ing the corresponding inverse affine transform. Given a new case to be segmented, we 
first preprocess it following the previously described steps. Then, we apply the trained 



neural network over the ROI selection. Finally, the obtained the lesion mask is regis-
tered back to the image native space. The total processing time of the full pipeline 
takes around 3 minutes. We called the proposed method HIST (for Hyperintense 
Segmentation Tool. 

3 Experiments and results 

All experiments were performed using MATLAB 2015a and its neural network 
toolbox on a standard PC (intel i7 6700 and 16 GB RAM) running Windows 10. For 
our experiments we used two different datasets consisting in T1 and FLAIR cases 
with their corresponding manual lesion segmentations. 

Data description 

AIBL dataset: In this work, we used a set of 128 subjects (including a wide range of 
white matter lesion severity, aged 38.6-92.1, male/female: 60/68) selected from the 
Australian Imaging Biomarkers and Lifestyle (AIBL) study (www.aibl.csiro.au) [13]. 
FLAIR scans were acquired for all the subjects on a 3T Siemens Magnetom TrioTim 
scanner using the following parameters: TR/TE: 6000/421 ms, flip angle: 120⁰, TI: 
2100 ms, slice thickness: 0.90 mm, image matrix: 256×240, in-plane spacing: 0.98 
mm. The ground truth for training and evaluating the proposed method was generated 
by manual delineation of the hyperintense lesions from all the FLAIR images by PR 
using MRIcro. Lesion boundaries were delineated on axial slices after bias correction 
and anisotropic diffusion smoothing.  

MICCAI dataset: To further validate our proposed method, we used a publically 
available clinical dataset provided by the MS lesion segmentation challenge at MIC-
CAI 2008 [14]. As done in [3] we focused on the 20 available training cases. The data 
comes originally from the Children’s Hospital Boston (CHB) and the University of 
North Carolina (UNC). Although there are available T1 and FLAIR images in this 
dataset we used just the FLAIR. 

AIBL dataset results  
 

The AIBL dataset (N=128) was split in two subsets, one for training (N=68) and 
one for testing (N=60). Several neural network configurations were trained using the 
training subset and later applied to the testing subset. To measure the quality of the 
proposed method we used the Dice coefficient, sensitivity, specificity and volume 
correlation coefficient.  

First, we measured the results using only the selected ROI as final segmentation to 
figure out how many outliers were included in the initial ROI. The average dice coef-



ficient for our simple ROI selection procedure was 0.5960±0.1597, a sensitivity of 
0.7237, a specificity of 0.9995 and volume correlation of 0.9828. As can be noticed 
just a simple thresholding gives a relatively high dice coefficient although at the ex-
pense of having a large number of false positives.   

Second we optimized the voxel-wise neural network (selecting randomly 20000 
samples out of the full almost 1.000.000 samples training set). In this case, the aver-
age dice coefficient was 0.6447±0.1477, a sensitivity of 0.9188, a specificity of 
0.9995 and volume correlation of 0.9921. As seen, the neural network was able to 
leverage the results by removing many false positives (but also added some false 
negatives).   

Finally, we also optimized the patch-wise neural network. In this case, the average 
dice coefficient was 0.7521±0.1201, a sensitivity of 0.8171, a specificity of 0.9997 
and volume correlation of 0.99. This overcomplete patch-wise version was able to 
further improve the dice results providing also very regular masks.  
 
Comparison with other methods: 
 
We compared HIST method with related state-of-the-art methods to assess its quality. 
We compared the proposed method with the two methods included in the LST 
toolbox (http://www.applied-statistics.de/lst.html). The first was the LGA method that 
uses both T1W and FLAIR images [5] and the second was the LPA that only requires 
a FLAIR image to perform the lesion segmentation. In table 1 the dice coefficient for 
these methods and for different lesion sizes is presented. In table 2 the volume corre-
lation is also presented showing that HIST method has a stronger volume correlation 
(0.99). Finally, Figure 1 shows the boxplot graphs of dice, sensitivity, specificity and 
an example of the segmentation results.   
 
Table 1. Mean dice coefficient. Best results in bold.      . 

Method 
                             Lesion size* 

Small Medium Big All 
LST-LGA 0.4518±0.1531 0.6685±0.0696 0.7668±0.0406 0.6261±0.1596 

LST-LPA 0.4973±0.1688 0.7102±0.0983 0.7886±0.0679 0.6637±0.1669 

HIST 0.6441±0.1449 0.7764±0.0587 0.8423±0.0399 0.7521±0.1201 

 
Table 2. Volume correlation. Best results in bold.      . 

Method                              Lesion size* 
Small Medium Big All 

LST-LGA 0.7712 0.8841 0.9732 0.9836 

LST-LPA 0.8178 0.7690 0.9649 0.9736 

HIST 0.7882 0.8877 0.9849 0.9900 

*Small(<4 ml), medium(4 ml to 18 ml), big(>18 ml) 
 
 



 
Fig. 1. AIBL dataset example results. In the upper row: dice, Sensitivity and specifici-
ty. In the lower row: a visual example of LPA and HIST segmentation results. 
 
MICCAI 2008 dataset results  
 
We compared the results of the proposed approach with a recent method that was 
applied to the same dataset [4]. In this case we used the same metrics used in Weiss 
paper (i.e. True Positive Rate (TPR), Positive Predictive Value (PPV) and Dice coef-
ficient). In table 3 the results of this comparison are presented. As can be noticed, 
HIST method obtained the best results overall for the 3 metrics showing that the fea-
tures learned on AIBL dataset were useful to segment lesions in other datasets.   

4 Discussion 

In this paper we presented a new method for hyperintense lesion segmentation 
based on an overcomplete patch-wise neural network strategy. We have shown that 
the overcomplete approach significantly improved the voxel-wise network by enforc-
ing the regularity of the output masks and also by minimizing the variance of the 
classification error due to the aggregation of many patch contributions. The proposed 
method not only provided the best classification results in the comparative but also 
provided the higher volume correlation (0.99) which indicates that it can be used for 
fully automated lesion load assessment. Finally, HIST method was used on an inde-
pendent dataset giving very competitive results demonstrating the generality of the 
proposed approach.         
 



Table 3. MICCAI 2008 train dataset results. Best results in bold.      . 
Method  Weiss2013   HIST  

Case TPR PPV Dice TPR PPV Dice 
UNC01 0.33 0.29 0.31 0.18 0.28 0.22 
UNC02 0.54 0.51 0.53 0.39 0.66 0.49 
UNC03 0.64 0.27 0.38 0.25 0.32 0.28 
UNC04 0.40 0.51 0.45 0.40 0.69 0.51 
UNC05 0.25 0.10 0.16 0.62 0.31 0.41 
UNC06 0.13 0.55 0.20 0.09 0.20 0.12 
UNC07 0.44 0.23 0.30 0.24 0.72 0.36 
UNC08 0.43 0.13 0.20 0.30 0.16 0.21 
UNC09 0.69 0.06 0.11 0.50 0.37 0.42 
UNC10 0.43 0.23 0.30 0.46 0.46 0.46 
CHB01 0.60 0.58 0.59 0.48 0.68 0.56 
CHB02 0.27 0.45 0.34 0.65 0.20 0.31 
CHB03 0.24 0.56 0.34 0.48 0.33 0.39 
CHB04 0.27 0.66 0.38 0.72 0.49 0.58 
CHB05 0.29 0.33 0.31 0.39 0.50 0.44 
CHB06 0.10 0.36 0.16 0.41 0.37 0.39 
CHB07 0.14 0.48 0.22 0.51 0.50 0.51 
CHB08 0.21 0.73 0.32 0.50 0.47 0.49 
CHB09 0.05 0.22 0.08 0.40 0.14 0.21 

CHB010 0.15 0.12 0.13 0.66 0.16 0.26 
All 0.33 0.37 0.29 0.43 0.40 0.38 

All UNC 0.43 0.29 0.29 0.34 0.42 0.35 
All CHB 0.23 0.45 0.29 0.52 0.39 0.41 
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