HIST: HyperIntensity Segmentation Tool

Abstract : Accurate quantification of white matter hyperintensities (WMH) from MRI is a valuable tool for studies on ageing and neurodegeneration. Reliable automatic extraction of WMH biomarkers is challenging, primarily due to their heterogeneous spatial occurrence, their small size and their diffuse nature. In this paper, we present an automatic and accurate method to segment these le-sions that is based on the use of neural networks and an overcomplete strategy. The proposed method was compared to other related methods showing competitive and reliable results in two different neurodegenerative datasets.
Type de document :
Communication dans un congrès
Patch-Based Techniques in Medical Imaging, Oct 2016, Athènes, Greece. Lecture Notes in Computer Science, pp.92 - 99, 2016, Patch-Based Techniques in Medical Imaging. 〈10.1007/978-3-319-47118-1_12〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01398773
Contributeur : Pierrick Coupé <>
Soumis le : jeudi 17 novembre 2016 - 16:52:22
Dernière modification le : mardi 22 novembre 2016 - 01:02:05
Document(s) archivé(s) le : jeudi 16 mars 2017 - 16:51:00

Fichier

PatchMI_HIST_seg_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jose Manjón, Pierrick Coupé, Parnesh Raniga, Ying Xia, Jurgen Fripp, et al.. HIST: HyperIntensity Segmentation Tool. Patch-Based Techniques in Medical Imaging, Oct 2016, Athènes, Greece. Lecture Notes in Computer Science, pp.92 - 99, 2016, Patch-Based Techniques in Medical Imaging. 〈10.1007/978-3-319-47118-1_12〉. 〈hal-01398773〉

Partager

Métriques

Consultations de
la notice

98

Téléchargements du document

41