CERES: A new cerebellum lobule segmentation method

Abstract : The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-­‐based multi-­‐atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-­‐weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-­‐of-­‐the-­‐art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes).
Type de document :
Article dans une revue
NeuroImage, Elsevier, 2016, <10.1016/j.neuroimage.2016.11.003>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01398748
Contributeur : Pierrick Coupé <>
Soumis le : jeudi 17 novembre 2016 - 16:36:10
Dernière modification le : mardi 22 novembre 2016 - 01:04:46
Document(s) archivé(s) le : jeudi 16 mars 2017 - 17:32:23

Fichier

CERES_manuscript_final_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Jose Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, et al.. CERES: A new cerebellum lobule segmentation method. NeuroImage, Elsevier, 2016, <10.1016/j.neuroimage.2016.11.003>. <hal-01398748>

Partager

Métriques

Consultations de
la notice

264

Téléchargements du document

99