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This paper discusses the Hamiltonian aspects of the
quantum theory of constrained Hamiltonian systems;
in particular, we extend results of [9, 6] to such sys�
tems. In this paper, we usually refer to these systems as
Hamilton–Dirac systems, because it was Dirac who
first defined them (under the name of generalized
Hamiltonian systems). Such systems arise in the appli�
cation of the Legendre transform to unconstrained
Lagrangian systems with singular Lagrange function
(for which the Legendre transform is noninvertible). It
should be emphasized that constrained Hamiltonian
systems bear no relation to Lagrangian systems with
holonomic constraints; however, them can be
regarded as objects dual to Lagrangian systems with
nonholonomic constraints. Namely, the Legendre
transform turns Lagrangian systems with nonholo�
nomic constraints into unconstrained Hamiltonian
systems with singular Hamilton function (for which
the Legendre transform is noninvertible).

We introduce two types of Hamiltonian structures
on quantum versions of Hamilton–Dirac systems.
One of them determines a usual (but infinite�dimen�
sional) Hamiltonian system, and the other determines
an infinite�dimensional Hamilton–Dirac system. The
Hamiltonian equation generated by the first structure
coincides with the Schrödinger�type equation consid�
ered in [1]; the second structure leads to a system of
Hamilton(–Dirac) equations coinciding with the sys�
tem of Schrödinger�type equations considered in [5].
The corresponding Liouville and Liouville–Dirac
equations (see below) determine the evolution of the
probability distributions describing the states of the
quantum versions of Hamilton–Dirac systems.

Hamiltonian structures on the quantum versions of
Hamilton–Dirac systems make it also possible to
define, in a natural way, the secondary quantization of
Hamilton–Dirac systems (as the quantization of such
Hamiltonian structures; see [9]). Such an approach
can also be applied to Hamilton–Dirac systems with
interaction.

We also mention that, for (finite�dimensional)
Hamilton–Dirac systems, an analogue of the Wigner
function can be defined; its evolution is described by
the system of “Moyal–Dirac equations,” which is
simultaneously a generalization of the Liouville–
Dirac system describing the evolution of a nonquan�
tized Hamilton–Dirac system and the Moyal equa�
tion describing the evolution of the quantum version of
the classical unconstrained Hamiltonian system (see
[5, p. 41 of the Russian translation; 7, Section 8.5; 8,
Section 10.5] concerning the Dirac brackets). In the
case of infinite�dimensional Hamilton–Dirac sys�
tems, instead of the Wigner function, the “Wigner
measure” should be used.

This paper considers the algebraic aspects of the
theory, and analytical assumptions are omitted.

1. NOTATION AND TERMINOLOGY

All locally convex topological vector spaces (LCSs)
under consideration are assumed to be Hausdorff and
either real or complex.1 Given LCSs E1 and E2,
by �n(E1, E2) we denote the space of all continuous
n�linear mappings of E1 to E2 endowed, unless other�
wise specified, with the topology of uniform conver�
gence on compact sets; �(E1, E2) := �1(E1, E2). The
topological dual of an LCS E is denoted by E '; it is
assumed that the topology on E ' is compatible with the
duality between E ' and E. For T ∈ �(E1, E2), by T* ∈

�( , ) we denote its dual; if E1 and E2 are LCSs
and V ⊆ E1 is an open set, then a mapping f: V → E2 is
said to be smooth if it is everywhere infinitely Gâteaux

1 The definitions can largely be found in [1, 2].
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differentiable (see, e.g., [3]) and, for any compact set
K ⊂ V, the mapping V × K × … K � (x, h1, h2, …, hn) �
f(n)(x)(h1, h2, …, hn) ∈ E2 is continuous; here, f(n)(x) ∈
�n(E1; E2) denotes the nth Gâteaux derivative. We
denote the set of all smooth mappings from an LCS E
to an LCS G by C∞(E, G).

An almost Poisson LCS is a pair (E, �), where E is
an LCS and �: E → �(E ', E) is a smooth mapping
such that �(x)*(E ') ⊆ E and �(x)* = –�(x) for all x ∈ E.
If f, g: E → � (or E → �, depending on whether E is a
complex or real vector space) are smooth mappings,
then the almost Poisson ��bracket {f, g} is defined as {f,
g}(x) := f '(x)(�(x)g '(x)). The ��bracket {·, ·} is bilinear
and skew�symmetric, and it satisfies the Leibniz rule
with respect to each argument. For this bracket, the
Jacobi identity holds if and only if
h1[(�'(x)�(x)h2)(h3)] + h2[(�'(x)�(x)h3)(h1)] +
h3[(�'(x)�(x)h1)(h2)] = 0 for any x ∈ E and h1, h2, h3 ∈ E '.
In this case, the ��bracket is a Poisson bracket, and
(E, �) is called a Poisson LCS. If the mapping �(x) is
invertible for each x ∈ E, then the preceding relation
holds if and only if the differential 2�form x � [(v1,
v2) � (�(x)–1

v1)v2] on E is closed. In this case, (E, �)
is called a symplectic LCS.

It turns out that statements can be shortened by
using Poisson brackets for functions taking values in
multidimensional vector spaces. These brackets can be
defined as follows.

Suppose that (E, �) is a symplectic LCS, {·, ·} is the
Poisson bracket defined above, G1 and G2 are LCSs,
and F1 and F2 are subspaces in C∞(E, �); given a ∈ G1,
b ∈ G2, f ∈ F1, and g ∈ F2, we set (a ⊗ f)(x) := f(x)a ∈ G1
and (b ⊗ g)(x) := g(x)b ∈ G2, so that (a ⊗ f, b ⊗ g) ∈
C∞(E, G1) × C∞(E, G2). The Poisson bracket {a ⊗ f, b ⊗ g}
is the mapping from E to G1 ⊗ G2 defined by {a ⊗ f, b ⊗
g}(x) := {f, g}(x)(a ⊗ b), where {f, g} is the Poisson
bracket of the scalar functions. If G3 is yet another
LCS, then, for f ∈ C∞(E, G1), g ∈ C∞(E, G2), and
h ∈ C∞(E, G3), the Jacobi identity holds; this means
that, for all x ∈ E, we have {f, {g, h}}(x) + {g, {h, f}}(x) +
{h, {f, g}}(x) = 0 in G1 ⊗ G2 ⊗ G3 (we use the “associa�
tivity” of tensor product). The product f · g is defined
by (f · g)(x) := f(x) ⊗ g(x), so that f · g ∈ C∞(E, G1 ⊗ G2).
Moreover, the Leibniz rule {f, g · h} = {f, g} · h + g ·
{f, h} ∈ C∞(E, G1 ⊗ G2 ⊗ G3) holds (here, we use the
“associativity” and “commutativity” of tensor prod�
uct). Therefore, it is natural to refer to the function
{f, g} as the Poisson bracket of the vector�valued func�
tions f and g.

2. THE HAMILTON–DIRAC
AND LIOUVILLE–DIRAC EQUATIONS

Definition 1. A Hamilton–Dirac system is a set
(E, �, �, ψ), where (E, �) is a symplectic LCS, called
the phase space of the Hamilton–Dirac system, � is a
real� or complex�valued function on E, called the
Hamilton function of the system, and ψ is a smooth

mapping of the space E to an auxiliary LCS Zψ (both
the mapping ψ and the set �ψ := {x ∈ E | ψ(x) = 0} are
called constraints). It is also assumed that if ψ(x) = 0,
then {ψ, ψ}(x) = 0 and {�, ψ}(x) = 0 and that zero is
a regular value of ψ.

Remark 1. This definition is a formalization of
Dirac’s definition of generalized Hamiltonian systems
with constraints of the first class. These constraints
may be primary or secondary, but this difference does
not matter in the further considerations.

In what follows, we assume that �(x) does not
depend on x, so that �(x) = � ∈ �(E ', E) for all x ∈ E,
where �* = –�. Since �'(x) = 0 for each x ∈ E, it fol�
lows that the ��bracket is a Poisson bracket. There�
fore, (E, �) is a Poisson LCS and C∞(E, �) is a Poisson
algebra.

Definition 2. The Hamilton–Dirac equation for a
Hamilton–Dirac system (E, �, �, ψ) is the equation
f '(t) = �((�E(t))'(f(t))) with respect to a function f:
� → {x ∈ E | ψ(x) = 0}, where �E(t) := � + tλ(t)ψ
(the function �E(·) is called the generalized Hamilto�
nian in [5]); the notation (�E(t))' is used for the deriv�
ative of the function �E(t): E → R, and it is assumed
that λ is an arbitrary function of t taking values in the
space .

Definition 3. The Liouville–Dirac system of equa�
tions is the system of equations F(t) = {�E, F(t)},
{ψ, F(t)} = 0 for a function F(·) of a real variable t tak�
ing values in the set of smooth functions on E; a solu�
tion of the Liouville–Dirac system is a function F(·)
satisfying the equations of this system on the set m.

Proposition 1. The Hamilton–Dirac equation is
equivalent to the system of equations

g'(t) = �((�E(t))'(g(t))), ψ(g(t)) = 0. 
Remark 2. The relationship between the last system

of equations and the Liouville–Dirac system is similar
to that between an ordinary differential equation and
the equation for its first integrals.

3. QUANTIZATION
OF HAMILTON–DIRAC SYSTEMS

In this section, we define Schrödinger quantization
of Hamilton–Dirac systems and describe a relation�
ship between the quantum system thus obtained and
Hamiltonian structures. First, we define pseudodiffer�
ential operators on the function spaces generated by
the constraint �ψ. We assume that E is the orthogonal
sum E = Q ⊕ P of copies of �n and prQ: E → Q is the
canonical projection. Let S ⊂ E be a submanifold
whose projection prQ(S) is a submanifold without
boundary in Q, and let �S be the vector space of Borel
functions on S defined as follows: ψ ∈ �S if and only
if there exists a function fψ ∈ L2(prQ(S)) such that
ψ(q, p) = fψ(q) for all (q, p) ∈ S. We also assume that
�S is endowed with the Hilbert norm defined by ||ψ|| :=

Zψ
'



    

. Given a continuous function h on E and

τ ∈ [0, 1], by ⊂ �S we denote the vector space of
all functions �S for which the function S � (q1, p1) �

h((1 – τ)q + τq1, p1) ψ(q1, p1) ∈ � is integrable
over S at almost all q ∈ prQ(S) and the function (q, p) �

((1 – τ)q + τq1, p1) ψ(q1, p1)dq1dp1 belongs to

the space �S.

A pseudodifferential operator  on  with τ�sym�

bol h is defined as follows: its domain is D( ) = ,

and for (q, p) ∈ S, we set ( ψ)(q, p) := ((1 – τ)q +

τq1, p1) (q1, p1)dq1dp1.

The mappings h �  can be called τ�quantiza�

tions; if τ = , then the corresponding τ�quantization

is called a Weyl quantization, and we write : = .
This operator is symmetric, and in applications to
quantum mechanics, its self�adjoint extensions are
considered.

Remark 3. To the numerical Hamilton function h
on the classical phase space (this function depends on
q ∈ Q and p ∈ P) the quantization operation assigns an
operator being “the same” function of the noncom�
muting operators  and . Certainly, the function of
noncommuting operators is determined nonuniquely,
and the use of pseudodifferential operators is only one

of the methods for constructing it. If τ = 0, then  acts

first; if τ = 1, then  acts first; in both cases,  may

be nonsymmetric. One can say that, on , the oper�

ators  and  act simultaneously, and this causes the

operator  to be symmetric.

The pair (E, ) consisting of a Hilbert space E and

a self�adjoint operator : E → E is called a quantum
system. Let (E, �, �, ψ) be a Hamilton–Dirac system
in which E = Q × P, where Q and P are copies of �n, �:
(p, q) � (q, –p), and dimZψ = k, 2k < n. Suppose that
γ is another function on E taking values in an LCS and
satisfying the following conditions (we can say that Zγ

determines a gauge):

(i) Im (q, p) = �k and Im (q, p) = �k for all q

and p; the symbol  denotes the second partial deriv�

ative of ψ, and  denotes the first partial derivative
of γ;
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(ii) Rank{γ, ψ}(x) = k for all x ∈ E; here, for each
x ∈ E, {γ, ψ}(x) denotes the Poisson bracket of vector�
valued functions defined above.

Finally, we set S(γ) := {x ∈E | ψ(x) = 0, γ(x) = 0}; we
again assume that S(γ) is a smooth manifold.

Definition 4 (cf. [1]). The quantum system (�S(γ),

) is called the Schrödinger γ�quantization of the
Hamilton–Dirac system (E, �, �, γ).

Remark 4. Sufficient conditions for the existence of

the Schrödinger group  are given in [1].

Theorem 1. For any functions γ1 and γ2 satisfying the
above assumptions, there exists a unitary operator :

→ such that  = .

Since �S(γ) is a complex Hilbert space, it follows
that the imaginary part or inner product with the
minus sign determines a symplectic structure on �S(γ)
(see, e.g., [4, 6, 7, 9]), which then generates the corre�
sponding Hamiltonian equations and Liouville equa�
tions with respect to probability measures on �S(γ).
The following theorem describes the role of the choice
of the function γ.

Theorem 2. Let  and  be solutions of the Liou�

ville equations with respect to time�dependent probabili�
ties on  and , respectively. Suppose that

there exists a unitary transformation :  →

 for which ( )∗ (0) = (0) (V∗μ denotes

the image of a measure μ under the transformation V).

Then ( )∗ (t) = (t) for all t.

4. SECONDARY QUANTIZATION
OF HAMILTON–DIRAC SYSTEMS

The secondary quantization of Hamilton–Dirac
systems (without interaction) can be defined by anal�
ogy with the case of classical Hamiltonian systems
(without interaction) as the quantization of the

Hamiltonian system (�S(γ), �S(γ), ), where �S(γ)

and  are, respectively, the symplectic structure
and the Hamilton function defined as in [9].

However, the secondary quantization of Hamil�
ton–Dirac systems with interaction has some special
features. As in the classical case, a family of n identical
finite�dimensional (the finite�dimensionality assump�
tion is inessential) Hamilton–Dirac systems (E, �, �, ψ)
with E = Q × P is considered, and it is assumed that the
interaction is described by a real�valued function h
defined on the Cartesian product of n copies of E. It is
also assumed that, for any n – 1 fixed elements x1,
x2, …, xk – 1, xk + 1, … …, xn ∈ E, 

{h(x1, x2, …, xk – 1, ·, xk + 1, …, xn), ψ} = 0. 
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After that, we proceed as in the classical case stud�
ied in [9].

The quantization of Hamilton–Dirac systems
described above differs from the quantization sug�
gested by Dirac himself. We briefly describe Dirac’s
approach below. Let (E, �, �, ψ) be a Hamilton–
Dirac system (as above, we assume that E = Q ⊕ P,
where Q and P are copies of �n). We endow the space
ED := L2(Q, �) with a Hamiltonian structure for which
the Hamiltonian equation is the Schrödinger equation

with Hamiltonian  (so that the corresponding

Hamilton function is defined by �D(g) := – (g), g),

where g ∈ ED). We also assume that  is reflexive and,

for each k ∈ , the function Ψk is defined by ED � g

� (( )W g, g). Then there exists a function ΨW:

ED → Zψ such that, for any g ∈ ED and k ∈ , we have

k(ΨW(g)) = Ψk(g). Moreover, the quadruple (ED, �D,
�D, ΨW) is an (infinite�dimensional) Hamilton–
Dirac system.

Theorem 3. The Hamilton–Dirac system of equa�
tions for the system (ED, �D, �D, ΨW) is equivalent to the
following system of equations from [5]:

for each k ∈ .

Remark 5. It would be interesting to give a detailed
proof of the equivalence (in an appropriate sense) of
the last system of equations and the Schrödinger equa�
tion for the quantum system specified in Definition 4.
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