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Fiber connectivity and bifurcation

diagrams of almost

toric integrable systems

Álvaro Pelayo, Tudor S. Ratiu and San Vũ Ngo.c

We describe the bifurcation diagrams of almost toric integrable
Hamiltonian systems on a four dimensional symplectic manifold
M , not necessarily compact. We prove that, under a weak assump-
tion, the connectivity of the fibers of the induced singular Lagran-
gian fibration M → R2 can be detected from the bifurcation dia-
gram alone. In this case, it is possible to give a detailed description
of the image of the fibration.

1. Introduction

A broad question in symplectic geometry and Hamiltonian mechanics is the
classical inverse problem: what properties of the system can be detected
on the image of the classical system (often called the classical spectrum by
physicists)?

A rather extreme case, where the most complete answer can be given,
is the case of toric manifolds, using the results of Atiyah [2], Guillemin-
Sternberg [13], and Delzant [8]. They showed that the image of a Hamilto-
nian torus action is a convex polytope and that this polytope completely
characterizes the system up to a symplectic isomorphism.

As it is now clearly understood, the convexity property is tightly linked
to the connectivity of the fibers of the momentum map. Of course, it is
clear that being able to detect connectivity is the crucial starting point for
any type of classical inverse problem. However, in non-toric integrable cases,
there is no general result to check this connectivity. This issue will be the
main theme of our article.
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On the other hand, in the 1980s and 1990s, the Fomenko school devel-
oped a Morse theory for regular energy surfaces of integrable systems. They
have set up a technique to encode the topological properties of the systems
in a combinatorial graph, in relation with the bifurcation diagram, which is,
in some sense, the “skeleton” of the classical spectrum.

Our paper aims at bringing together these viewpoints to treat integrable
systems that are not necessarily toric, while keeping in mind the power of
the symplectic techniques based on the momentum map. Under some weak
transversality hypothesis, we shall prove that the fibers of a two degrees of
freedom integrable system with non-degenerate non-hyperbolic singularities
are connected. This will enable us to describe the structure of the image of
the system which, in general, is very far from a polytope, but has some local
convexity properties in terms of its induced affine structure.

The systems in which we are interested in this paper are two-degrees
of freedom integrable systems with non-degenerate and non-hyperbolic sin-
gularities. They are called almost toric systems [26]. They generalize the
momentum maps of toric manifolds and retain some of their rigidity while,
at the same time, incorporate a very interesting type of singularity, namely
of focus-focus type. Almost toric systems include the semitoric integrable
systems (semitoric systems come endowed with a Hamiltonian S1-action
with proper momentum map and have been recently completely classified
in [18, 19]). The set of symplectic manifolds on which almost toric systems
can exist form a subset of almost toric manifolds which were introduced
by Symington [23]. Compact almost toric manifolds were classified, up to
diffeomorphisms, in [15, Table 1] by Leung and Symington.

In [26], the connectivity of the level sets of the system was proven for
semitoric systems. In this article, we investigate connectivity without any
S1-action. Our main assumption is that the map from the four dimensional
symplectic manifold to the plane is proper. However, there are results that do
not require properness of this map (Theorems 3.6, 5.2 and Proposition 5.8),
and which fit in the larger program of building a classification theory for
integrable systems under minimal assumptions (see [21]).

In a future article, we intend to explore the consequences of these results
to construct new symplectic invariants from the image of integrable systems
that are not necessarily semitoric.



i
i

“4-401” — 2015/3/28 — 17:11 — page 345 — #3 i
i

i
i

i
i

Fiber connectivity of almost toric systems 345

2. Statement of the results

In this paper, manifolds are assumed to be C∞ and second countable. Let
us recall here some standard definitions. A map f : X → Y between topo-
logical spaces is proper if the preimage of every compact set is compact.
Let X, Y be smooth manifolds and A ⊂ X. A map f : A→ Y is said to be
smooth if every point in A admits an open neighborhood on which f can be
smoothly extended. The map f is called a diffeomorphism onto its image if f
is injective, smooth, and its inverse f−1 : f(A)→ A is a smooth map, in the
sense that that for every point y ∈ f(A) there exist an open subset Uy ⊆ Y
containing y, and a smooth map F : Uy → X such that F (y′) = f−1(y′) for
every y′ ∈ f(A) ∩ Uy. If X and Y are smooth manifolds, the bifurcation set
Σf of a smooth map f : X → Y consists of the points of X where f is not
locally trivial (see Definition 4.1). It is known that the set of critical values
of f is included in the bifurcation set and that if f is proper this inclusion
is an equality (see [1, Proposition 4.5.1] and the comments following it).

Recall that an integrable system F : M → R2 is called non-degenerate
if its singularities are non-degenerate (see Definition 3.1). Throughout this
section, F is assumed to be proper. If F is non-degenerate, then ΣF is the
image of a piecewise smooth immersion of a 1-dimensional manifold and of
isolated points (Proposition 5.3). We say that a vector in R2 is tangent to ΣF

whenever it is directed along a left limit or a right limit of the differential of
the immersion. We say that the curve γ has a vertical tangency at a point c if
there is a vertical tangent vector at c. Our first main result is the following.

Theorem 1 (Fiber connectivity in the compact case). Suppose that
(M,ω) is a compact connected symplectic four-manifold. Let F : M → R2 be
a non-degenerate integrable system without hyperbolic singularities. Denote
by ΣF the bifurcation set of F . Assume that there exists a diffeomorphism
g : F (M)→ R2 onto its image such that g(ΣF ) does not have vertical tan-
gencies (see Figure 1). Then F has connected fibers.

Note that the absence of vertical tangency can be expressed in terms of
the map (J,H) := g ◦ F by requiring that all critical points of J must be
also critical points for H.

Remark 2.1. Although in this paper we put the emphasis on the inte-
grable system F rather than on the manifold M , it should be noticed that
the Leung-Symington classification [15, Table 1] implies that a compact con-
nected symplectic 4-manifold (M,ω) that carries an almost toric integrable
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system must be diffeomorphic to S2 × S2, CP 2, S2 × T 2, S2×̃T 2 (the non-
trivial sphere bundle over the torus), or connected sums of any of the last
three with a number of CP 2 (the bar over CP 2 means that the sign on the
standard symplectic form defined by the Fubini-Study form is changed). For
more comments see the subsection “Leaf Space” below.

The assumption on vertical tangencies imposes an additional restriction
on this list, that can only be satisfied by manifolds diffeomorphic to S2 ×
S2 or the sum manifolds CP 2#kCP 2. Is it interesting to notice that this
restriction can be directly detected on the bifurcation set.

A

B

g(A)g(B)
g

Figure 1: Suppose that the bifurcation set ΣF of F consists precisely of the
boundary points in the left figure (which depicts F (M)). The diffeomorphism
g transforms F (M) to the region on the right hand side of the figure, in order
to remove the original vertical tangencies on ΣF .

Remark 2.2. If F : M → R2 in Theorem 2 is the momentum map of a
Hamiltonian 2-torus action then ΣF = ∂(F (M)). This is no longer true for
general integrable systems; the simplest example of such a situation is the
spherical pendulum, which has a point in the bifurcation set in the interior
of F (M).

It is remarkable that such a simple condition ensures connectivity. How-
ever, this is just a sufficient condition which can be weakened (see also
Theorem 3 below). Nonetheless, the examples we know that feature non-
connected fibers, all violate this hypothesis. For instance, in Example 4.10
we construct an almost toric system with disconnected fibers, where ΣF is
the boundary of an annulus (Figure 2).

If M is not compact, the same assumption can be used under the weak
additional hypothesis that the image of the momentum map can be enclosed
in a proper cone.
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0 1 2

Figure 2: Image F (M) of integrable system with disconnected fibers, on the
compact manifold S2 × S1 × S1.

F (M)

α

β

Cα,β

Figure 3: The image F (M) lies in the convex cone Cα,β and has no vertical
tangencies. See condition 1 in Theorem 2.

More precisely, we denote by Cα,β the cone in Figure 3, i.e., the inter-
section of the half-planes defined by y > (tanα)x and y 6 (tanβ)x in the
plane R2. This cone said to be proper, if α > 0, β > 0, α+ β < π. Theorem 2
can be extended to non-compact manifolds as follows.

Theorem 2 (Fiber connectivity in the non-compact case). Suppose
that (M,ω) is a connected symplectic four-manifold. Let F : M → R2 be a
non-degenerate integrable system without hyperbolic singularities such that
F is a proper map. Denote by ΣF the bifurcation set of F . Assume that there
exists a diffeomorphism g : F (M)→ R2 onto its image such that:
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(i) the image g(F (M)) is included in a proper convex cone Cα, β (see Fig-
ure 3);

(ii) the image g(ΣF ) does not have vertical tangencies (see Figure 1).

Then F has connected fibers.

Note that Theorem 2 clearly implies Theorem 1.
Non-compact examples are of particular interest to physicists because

most mechanical systems have non-compact phase spaces, e.g., they are
cotangent bundles. Two physically interesting examples of almost toric sys-
tem with precisely one focus-focus singularity are the Jaynes-Cummings
model, also called coupled spin-oscillator, and the spherical pendulum. Even
though the spherical pendulum is an algebraic example, checking fiber con-
nectivity with algebraic tools is far from trivial — see [7]. This example has
an S1 symmetry, but, nevertheless, we cannot apply the semitoric theory
because the S1-momentum map is not proper. Further, in this article, we
introduce a weaker transversality condition that allows us to deal with some
cases of vertical tangencies. Using this condition and Theorem 2, we will
prove the following.

Figure 4: A disk, a disk with a conic point, a disk with two conic points, or
a compact convex polygon.

Theorem 3. Suppose that (M,ω) is a compact connected symplectic four-
manifold. Let F : M → R2 be a non-degenerate integrable system without
hyperbolic singularities. Assume that:

(i) the interior of F (M) contains a finite number of critical values;

(ii) there exists a diffeomorphism g such that g(F (M)) is either a disk,
a disk with a conic point, a disk with two conic points, or a compact
convex polygon (see Figure 4).

Then the fibers of F are connected.

Here, a neighborhood of a conic point is, by definition, locally diffeomor-
phic to some proper cone Cα,β.
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Image of the integrable system. From the point of view of classical
(and even quantum) mechanics, the points in the image of the integrable
system represent the “observable” part of the system: it is the set of possible
values of energy, linear or angular momenta, etc. Therefore, is it important
in mathematical physics not only to develop tools that help understanding
the inner structure of the system from these observable quantities, as we
have done in the previous theorems, but also to search for a theoretical
description of what the image of the integrable system may look like; see,
for instance, the interesting recent works by Babelon et al. [3] and Dullin
[9]. This is the incentive for the next results below (Theorems 4 and 5).

Atiyah proved fiber connectivity of the momentum map of a torus action
[2] simultaneously with the so called Convexity Theorem of Atiyah, Guillemin,
and Sternberg [2, 13]; it is one of the main results in symplectic geometry
and was an eye opening tool for many further developments. The convexity
theorem describes the image of the momentum map of a Hamiltonian torus
action: it is the convex hull of the images of the fixed point sets of the torus
action.

A Hamiltonian torus action is a particular case of an almost-toric system.
However, for a general almost-toric system with proper map, the image of
the system is no longer a polygon and there is no reason of being convex
in the traditional R2 sense. However, the image admits a singular affine
structure (whose regular part is given by local action-angle variables), and
it follows from the local normal forms of non-degenerate singularities that
the image is locally convex in terms of this affine structure. In fact, the affine
structure is the “projection” F onto F (M) of the intrinsic affine structure on
the leaf space of the singular Lagrangian foliation (cf. Equation (1) below).
The difficult point is to understand the global structure of the image of F .
In order to achieve this goal, we are naturally led to study the case where
the fibers are connected, ie. F is injective.

Before stating the result we recall that the epigraph epi(f) ⊆ Rn+1 of
a map f : A ⊆ Rn → R ∪ {±∞} consists of the points lying on or above
its graph, i.e., the set epi(f) := {(x, y) ∈ A× R | y > f(x)}. Similarly, the
hypograph hyp(f) ⊆ Rn+1 of a map f : A ⊆ Rn → R ∪ {±∞} consists of
the points lying on or below its graph, i.e., the set hyp(f) := {(x, y) ∈
A× R | y 6 f(x)}.

Theorem 4 (Image of Lagrangian fibration in the compact case).
Suppose that (M,ω) is a compact connected symplectic four-manifold. Let
F : M → R2 be a non-degenerate integrable system without hyperbolic sin-
gularities. Denote by ΣF the bifurcation set of F . Assume that there exists



i
i

“4-401” — 2015/3/28 — 17:11 — page 350 — #8 i
i

i
i

i
i
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a diffeomorphism g : F (M)→ R2 onto its image such that g(ΣF ) does not
have vertical tangencies (see Figure 1). Then:

(1) the image F (M) is contractible and the bifurcation set can be described
as ΣF = ∂(F (M)) t F, where F is a finite set of rank 0 singularities
which is contained in the interior of F (M);

(2) let (J, H) := g ◦ F and let J(M) = [a, b]. Then the functions H+, H− :
[a, b]→ R defined by H+(x) := maxJ−1(x)H and H−(x) := minJ−1(x)H
are continuous and F (M) can be described as F (M) = g−1(epi(H−) ∩
hyp(H+)).

Figure 5 shows a possible image F (M), as described in Theorem 4. In
the case of non-compact manifolds we have the following result.

M
F (M)

g(F (M))

graph(H−)

graph(H+)

F g

x

Figure 5: Description of the image of an integrable system. The image is
first transformed to remove vertical tangencies; then it can be described as
a region bounded by two graphs.

Theorem 5 (Image of Lagrangian fibration in the non-compact
case). Suppose that (M,ω) is a connected symplectic four-manifold. Let
F : M → R2 be a non-degenerate integrable system without hyperbolic singu-
larities such that F is a proper map. Denote by ΣF the bifurcation set of F .
Assume that there exists a diffeomorphism g : F (M)→ R2 onto its image
such that:

(i) the image g(F (M)) is included in a proper convex cone Cα, β (see Fig-
ure 3);

(ii) the image g(ΣF ) does not have vertical tangencies (see Figure 1).

Equip R := R ∪ {±∞} with the standard topology. Then:
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(1) the image F (M) is contractible and the bifurcation set can be described
as ΣF = ∂(F (M)) t F, where F is a countable set of rank zero singu-
larities which is contained in the interior of F (M);

(2) let (J, H) := g ◦ F . Then the functions H+, H− : J(M)→ R defined
on the interval J(M) by H+(x) := maxJ−1(x)H and H−(x) :=
minJ−1(x)H are continuous and F (M) can be described as F (M) =
g−1(epi(H−) ∩ hyp(H+)).

Note that Theorem 5 clearly implies Theorem 4. The rest of this paper
is devoted to proving Theorem 2, Theorem 3, and Theorem 5.

The leaf space. An integrable system F on a 2n-dimensional symplectic
manifold M defines a (singular) Lagrangian foliation on M , whose leaves are
the connected components of the level sets F−1(c), c ∈ Rn. In the almost
toric case, when F is proper, the set of leaves (commonly referred to as
the leaf space) may be naturally endowed with the structure of a smooth
stratified manifold, where the top stratum has dimension n, and each stra-
tum inherits an integral affine structure. (The stratification we need is the
“Whitney B cone stratified differential space”, see [22] and [17].) Thus the
map F factors through the projection map $ : M → B onto B as in the
following commutative diagram:

(1) M
$ //

F

!!

B
F
��

Rn.

The fact that F has non–degenerate singularities implies that F must be a
local diffeomorphism [28], in the sense of smooth stratified manifolds ([17]).
From this perspective, the question of connectivity of fibers of F reduces to
the injectivity of F . For instance, the condition (a) in Theorem 4 can be
rephrased as:

(a) The topological boundary ∂B is mapped by F into ∂F (M).

However, as we mentioned above, from the mechanics view point, the leaf
space is not accessible by observation and is not an easy object to deal with
in practice, which explains why we insist on expressing our results in terms
of the map F itself.

When n = 2, the leaf space B is a smooth manifold with boundary, cor-
ners, and “nodes”: smooth boundaries correspond to transversally elliptic
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singularities, corners to elliptic-elliptic singularities, and nodes are focus-
focus singularities. The data (M,$,B) is called an almost toric manifold.
When the manifold M is compact, Leung and Symington [15, Table 1] have
completely classified almost toric symplectic 4-manifolds up to diffeomor-
phisms (not symplectomorphisms). Examples of singular fibered manifolds
that are almost toric include K3 surfaces, semitoric manifolds (classified in
[18, 19]), and toric manifolds (classified in [8]).

The proofs in our article are mainly developed for non-compact symplec-
tic manifolds with an eye towards systems which appear in mathematical
physics and whose treatment could benefit from theoretical tools; in fact,
a strong incentive was to include the famous example of the spherical pen-
dulum, as well as the Jaynes-Cummings model (coupling of a spin and a
harmonic oscillator). For this reason we do not rely in this paper on the
Leung-Symington results. Our method is more elementary because we don’t
need a complete classification.

In order to clarify the problem and to emphasize that the main difficulty
is hidden in the map F in diagram (1), we make a last remark. If $ : M → B
is an almost-toric fibration, then one can always choose a smooth map F
such that the integrable system F := F ◦$ has connected fibers. In some
sense, it means that the lack of connectivity is due to a “wrong choice of
first integrals”. In other words, if the initial integrals where, say, energy and
angular momentum, then there is a locally diffeomorphic combination of
energy and angular momentum that will have connected fibers. This fact
follows from the Leung-Symington classification [15, Table 1] of possible
bases B. Indeed, if M is compact, then the integrable system must have
some elliptic singularities, and thus the only possible bases are disks with
corners and the annulus. In all cases, there is a natural immersion of these
into R2.

3. Basic properties of almost-toric systems

In this section we prove some basic results that we need in of Section 4 and
Section 5. Let (M,ω) be a connected symplectic 4-manifold.

Toric type maps. A smooth map F : M → R2 is toric if there exists
an effective (i.e., the intersection of all isotropy groups of the action is the
identity element), integrable Hamiltonian T2-action on M whose momentum
map is F . It was proven in [14] that if F is a proper momentum map for a
Hamiltonian T2-action, then the fibers of F are connected and the image of
F is a rational convex polygon.
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Almost-toric systems. We shall be interested in maps F : M → R2 that
are not toric yet retain enough useful topological properties. In the analysis
carried out in the paper we shall need the concept of non-degeneracy in the
sense of Williamson of a smooth map from a 4-dimensional phase space to
the plane.

Definition 3.1. Suppose that (M,ω) is a connected symplectic four-
manifold. Let F = (f1, f2) be an integrable system on (M,ω) and m ∈M
a critical point of F . If dmF = 0, then m is called non-degenerate if the
Hessians Hess fj(m) span a Cartan subalgebra of the symplectic Lie alge-
bra of quadratic forms on the tangent space (TmM,ωm). If rank (dmF ) = 1
one can assume that dmf1 6= 0. Let ι : S →M be an embedded local 2-
dimensional symplectic submanifold through m such that TmS ⊂ ker(dmf1)
and TmS is transversal to the Hamiltonian vector field Hf1 defined by the
function f1. The critical point m of F is called transversally non-degenerate
if Hess(ι∗f2)(m) is a non-degenerate symmetric bilinear form on TmS.

Remark 3.2. One can check that Definition 3.1 does not depend on the
choice of S. The existence of S is guaranteed by the classical Hamilto-
nian Flow Box theorem (see, e.g., [1, Theorem 5.2.19]; this result is also
called the Darboux-Carathéodory theorem [20, Theorem 4.1]). It guaran-
tees that the condition dmf1(m) 6= 0 ensures the existence of a symplectic
chart (x1, x2, ξ1, ξ2) on M centered at m, i.e., xi(m) = 0, ξi(m) = 0, such
that Hf1 = ∂/∂x1 and ξ1 = f1 − f1(m). Therefore, since ker (dmf1) =
span{∂/∂x1, ∂/∂x2, ∂/∂ξ2}, S can be taken to be the local embedded sym-
plectic submanifold defined by the coordinates (x2, ξ2).

Definition 3.1 concerns symplectic four-manifolds, which is the case rel-
evant to the present paper. For the notion of non-degeneracy of a critical
point in arbitrary dimension see [24], [25, Section 3]. Non-degenerate critical
points can be characterized (see [10, 11, 27]) using the Williamson normal
form [29]. The analytic version of the following theorem by Eliasson is due
to Vey [24].

Theorem 3.3 (H. Eliasson 1990). The non-degenerate critical points of
a completely integrable system F : M → Rn are linearizable, i.e., if m ∈M
is a non-degenerate critical point of the completely integrable system F =
(f1, . . . , fn) : M → Rn, then there exist local symplectic coordinates (x1, . . . ,
xn, ξ1, . . . , ξn) about m, in which m is represented as (0, . . . , 0), such that
{fi, qj} = 0, for all indices i, j, where we have the following possibilities for
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Hf1
m

m

regular �ber

ellipti
 point

fo
us-fo
us �ber transversally ellipti


�ber

m

mHf2

Hf1

Hf2

Hf2 = 0

Hf1 Hf1 = Hf2 = 0

Figure 6: The figures show some possible singularities of a integrable system
and their corresponding fibers. In the left most figure, m is a regular point
(rank 2); in the second figure, m is a focus-focus point (rank 0); in the third
one, m is a transversally elliptic singularity (rank 1); in the right most figure,
m is an elliptic-elliptic point (rank 0).

the components q1, . . . , qn, each of which is defined on a small neighborhood
of (0, . . . , 0) in Rn:

(i) Elliptic component: qj = (x2
j + ξ2

j )/2, where j may take any value 1 ≤
j ≤ n.

(ii) Hyperbolic component: qj = xjξj, where j may take any value 1 ≤ j
≤ n.

(iii) Focus-focus component: qj−1 = xj−1 ξj − xj ξj−1 and qj = xj−1 ξj−1 +
xj ξj where j may take any value 2 ≤ j ≤ n− 1 (note that this compo-
nent appears as “pairs”).

(iv) Non-singular component: qj = ξj, where j may take any value 1 ≤ j
≤ n.

Moreover if m does not have any hyperbolic component, then the system of
commuting equations {fi, qj} = 0, for all indices i, j, may be replaced by the
single equation

(F − F (m)) ◦ ϕ = g ◦ (q1, . . . , qn),

where ϕ = (x1, . . . , xn, ξ1, . . . , ξn)−1 and g is a diffeomorphism from a small
neighborhood of the origin in Rn into another such neighborhood, such that
g(0, . . . , 0) = (0, . . . , 0).

If the dimension of M is 4 and F has no hyperbolic singularities — which
is the case we treat in this paper — we have the following possibilities for
the map (q1, q2), depending on the rank of the critical point:
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(1) if m is a critical point of F of rank zero, then qj is one of
(i) q1 = (x2

1 + ξ2
1)/2 and q2 = (x2

2 + ξ2
2)/2.

(ii) q1 = x1ξ2 − x2ξ1 and q2 = x1ξ1 + x2ξ2;
on the other hand,

(2) if m is a critical point of F of rank one, then
(iii) q1 = (x2

1 + ξ2
1)/2 and q2 = ξ2.

In this case, a non-degenerate critical point is respectively called elliptic-
elliptic, focus-focus, or transversally-elliptic if both components q1, q2 are of
elliptic type, q1, q2 together correspond to a focus-focus component, or one
component is of elliptic type and the other component is ξ1 or ξ2, respec-
tively.

Similar definitions hold for transversally-hyperbolic, hyperbolic-elliptic
and hyperbolic-hyperbolic non-degenerate critical points.

Definition 3.4. Suppose that (M,ω) is a connected symplectic four-
manifold. An integrable system F : M → R2 is called almost-toric if all the
singularities are non-degenerate without hyperbolic components.

Remark 3.5. Suppose that (M,ω) is a connected symplectic four-manifold.
Let F : M → R2 be an integrable system. If F is a toric integrable system,
then F is almost-toric, with only elliptic singularities. This follows from the
fact that a torus action is linearizable near a fixed point; see, for instance [8].

A version of the following result is proven in [26] for almost-toric systems
for which the map F is proper. Here we replace the condition of F being
proper by the condition that F (M) is a closed subset of R2; this introduces
additional subtleties. Our proof here is independent of the argument in [26].

Theorem 3.6. Suppose that (M,ω) is a connected symplectic four-manifold.
Assume that F : M → R2 is an almost-toric integrable system with B :=
F (M) closed. Then the set of focus-focus critical values is countable, i.e.,
we may write it as {ci | i ∈ I}, where I ⊂ N. Consider the following state-
ments:

(i) the fibers of F are connected;

(ii) the set Br of regular values of F is connected;

(iii) for any value c of F , for any sufficiently small disc D centered at c,
Br ∩D is connected;
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(iv) the set of regular values is Br = B̊ \ {ci | i ∈ I}. Moreover, the topo-
logical boundary ∂B of B consists precisely of the values F (m), where
m is a critical point of elliptic-elliptic or transversally elliptic type.

Then statement (i) implies statement (ii), statement (iii) implies statement
(iv), and statement (iv) implies statement (ii).

If, in addition, F is proper, then statement (i) implies statement (iv).

It is interesting to note that the statement is optimal in that no other
implication is true (except (iii)⇒(ii) which is a consequence of the stated
implications). This gives an idea of the various pathologies that can occur
for an almost-toric system.

Proof of Theorem 3.6. From the local normal form 3.3, focus-focus critical
points are isolated, and hence the set of focus-focus critical points is count-
able (remember that all our manifolds are second countable). Moreover, the
image of a focus-focus point is necessarily in the interior of B.

Let us show that

(2) Br ⊂ B̊ \ {ci | i ∈ I}.

This is equivalent to showing that any value in ∂B is a critical value of
F . Since B is closed, ∂B ⊂ B, so for every c ∈ ∂B we have that F−1(c) is
nonempty. By the Darboux-Carathéodory theorem, the image of a regular
point must be in the interior of B, therefore F−1(c) cannot contain any
regular point: the boundary can contain only singular values.

Since a point in ∂B cannot be the image of a focus-focus singularity, it
has to be the image of a transversally elliptic or an elliptic-elliptic singularity.

We now prove the implications stated in the theorem.
(i)⇒ (ii): Since F is almost-toric with connected fibers, the singular fibers
are either points (elliptic-elliptic), one-dimensional submanifolds (codimen-
sion 1 elliptic), or a stratified manifold of maximal dimension 2 (focus-
focus).The only critical values that can appear in one-dimensional families
are transversally elliptic and elliptic-elliptic critical values (see Figure 7); the
elliptic-elliptic critical values are isolated from each other but they appear
inside of a family where every other critical value is transversally elliptic.
The focus-focus singularities are isolated. Therefore, the union of all criti-
cal fibers is a locally finite union of stratified manifolds of codimension at
least 2; hence this union has codimension at least 2. Thus the complement
is connected and therefore its image by F is also connected.
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Figure 7: The local classification of the range of F in an open disk.

(iii)⇒ (iv): There is no embedded line segment of critical values in the
interior of B (which would come from codimension 1 elliptic singularities)
because this is in contradiction with the hypothesis of local connectedness
(iii). Therefore B̊ \ {ci | i ∈ I} ⊂ Br. Hence by (2),

B̊ \ {ci | i ∈ I} = Br,

as desired, and all the elliptic critical values must lie in ∂B.
(iv)⇒ (ii): As we saw above, F−1(∂B) contains only critical points, of ellip-
tic type. Because of the local normal form, the set of rank 1 elliptic critical
points in M form a 2-dimensional symplectic submanifold. Its topological
closure in M is obtained by adding the discrete set of rank 0 elliptic points.
Therefore, M \ F−1(∂B) is connected. This set is equal to F−1(B̊), which
in turn implies that B̊ is connected. By hypothesis (iv), this ensures that
Br is connected.

Assume for the rest of the proof that F is proper.
(i)⇒ (iv): Assume that (iv) does not hold. In view of (2), there exists an
elliptic singularity (of rank 0 or 1) c in the interior of B. Let Λ be the
corresponding fiber. Since it is connected, it must entirely consist of elliptic
points (this comes from the normal form Theorem 3.3). The normal form
also implies that c must be contained in an embedded line segment of elliptic
singularities, and the points in a open neighborhood Ω of Λ are sent by F
in only one side of this segment. Since c is in the interior of B, there is a
sequence ck ∈ B on the other side of the line segment that converges to c as
k →∞. Hence there is a sequence mk ∈M \ Ω such that F (mk) = ck. Since
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F is proper, one can assume that mk converges to a point m (necessarily in
M \ Ω). By continuity of F , m belongs to the fiber over c, and thus to Ω,
which is a contradiction with the hypothesis (i). �

4. The fibers of an almost-toric system

In this section we study the structure of the fibers of an almost-toric system.
We shall need below the definition and basic properties of the bifurcation

set of a smooth map.

Definition 4.1. Let M and N be smooth manifolds. A smooth map f :
M → N is said to be locally trivial at n0 ∈ f(M), if there is an open neigh-
borhood U ⊂ N of n0 such that f−1(n) is a smooth submanifold of M for
each n ∈ U and there is a smooth map h : f−1(U)→ f−1(n0) such that
f × h : f−1(U)→ U × f−1(n0) is a diffeomorphism. The bifurcation set Σf

consists of all the points of N where f is not locally trivial.

Note, in particular, that h|f−1(n) : f−1(n)→ f−1(n0) is a diffeomorphism
for every n ∈ U . Also, the set of points where f is locally trivial is open in N .

Remark 4.2. Recall that Σf is a closed subset of N . It is well known
that the set of critical values of f is included in the bifurcation set (see [1,
Proposition 4.5.1]). In general, the bifurcation set strictly includes the set
of critical values. This is the case for the momentum-energy map for the
two-body problem [1, §9.8]. However (see [1, Page 340]), if f : M → N is
a smooth proper map, then the bifurcation set of f is equal to the set of
critical values of f .

Recall that a smooth map f : M → R is Morse if all its critical points
are non-degenerate. The smooth map f is Morse-Bott if the critical set of f
is a disjoint union of connected submanifolds Ci of M , on which the Hessian
of f is non-degenerate in the transverse direction, i.e.,

ker(Hessm f) = TmCi, for all i, for all m ∈ Ci.

The index of m is the number of negative eigenvalues of (Hess f)(m).
The goal of this section is to prove a result, Theorem 4.7 below, which

we believe is of independent interest, and that will ultimately imply the
connectedness of the fibers of an integrable system. Here we do not rely
on Fomenko’s Morse theory [5, 12], because we do not want to select a
nonsingular energy surface. Instead, the model is [16, Lemma 5.51]; however,
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the proof given there does not extend to the non-compact case, as far as we
can tell. We thank Helmut Hofer and Thomas Baird for sharing their insights
on Morse theory with us that helped us in the proof of the following result.

Lemma 4.3. Let f : M → R be a Morse-Bott function on a connected man-
ifold M . Assume f is proper and bounded from below and has no critical
manifold of index 1. Then the set of critical points of index 0 is connected.

Proof. We endow M with a Riemannian metric. The negative gradient flow
of f is complete. Indeed, along the the flow the function f cannot increase
and, by hypothesis, f is bounded from below. Therefore, the values of f
remain bounded along the flow. By properness of f , the flow remains in a
compact subset of M and hence it is complete.

Let us show, using standard Morse-Bott theory, that the integral curve
of −∇f starting at any point m ∈M tends to a critical manifold of f .
The compact set in {x ∈M | f(x) 6 f(m)}, must contain a finite number
of critical manifolds. If the integral curve avoids a neighborhood of these
critical manifolds, by compactness, it has a limit point, and by continuity
the vector field at the limit point must vanish; we get a contradiction, thus
proving the claim.

Therefore, we have the disjoint union M =
⊔n
k=0W

s(Ck), where Ck is
the set of critical points of index k, and W s(Ck) is its stable manifold:

W s(Ck) := {m ∈M | d(ϕt−∇f (m), Ck)→ 0 as t→ +∞},

where d is any distance compatible with the topology of M (for example,
the one induced by the given Riemannian metric on M) and t 7→ ϕt−∇f is
the flow of the vector field −∇f . Since f has no critical manifold of index
1, we have

C0 = W s(C0) = M \
n⊔
k=2

W s(Ck).

The local structure of Morse-Bott singularities given by the Morse-Bott
lemma [4, 6]) implies that W s(Ck) is a submanifold of codimension k in M .
Hence

⊔n
k=2W

s(Ck) cannot disconnect M . �

Remark 4.4. Since all local minima of f are in C0, we see that C0 must
be the set of global minima of f ; thus C0 must be equal to the level set
f−1(f(C0)).
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Proposition 4.5. Let M be a connected smooth manifold and f : M → R a
proper Morse-Bott function whose indices and co-indices are always different
from 1. Then the level sets of f are connected.

Proof. Let c be a regular value of f (such a value exists by Sard’s theorem).
Then g := (f − c)2 is a Morse-Bott function. On the set {x ∈M | f(x) > c},
the critical points of g coincide with the critical points of f and they have
the same index. On the set {x ∈M | f(x) < c}, the critical points of g also
coincide with the critical points of f and they have the same coindex. The
level set {x ∈M | f(x) = c} is clearly a set of critical points of index 0 of g.
Of course, g is bounded from below. Thus, by Lemma 4.3, the set of critical
points of index 0 of g is connected (it may be empty) and hence equal to
g−1(0). Therefore f−1(c) is connected. This shows that all regular level sets
of f are connected. (As usual, a regular level set — or regular fiber — is
a level set that contains only regular points, i.e., the preimage of a regular
value.)

Finally let ci be a critical value of f (if any). Since f is proper and has
isolated critical manifolds, the set of critical values is discrete. Let ε0 > 0
be such that the interval [ci − ε0, ci + ε0] does not contain any other critical
value. Consider the manifold N := M × S2, and, for any ε ∈ (0, ε0), let

hε := f − ci + εz : N → R,

where z is the vertical component on the sphere S2 ⊂ R3. Notice that z :
S2 → R is a Morse function with indices 0 and 2. Thus hε is a Morse-Bott
function on N with indices and coindices of the same parity as those of f .
Thus, no index nor coindex of h can be equal to 1. By the first part of the
proof, the regular level sets of hε must be connected. The definition of ε0
implies that 0 is a regular value of hε. Thus

Fε := πM (h−1
ε (0)) = {m ∈M | |f(m)− ci| 6 ε}

is connected. Since f is proper, Fε is compact. Because a non-increasing
intersection of compact connected sets is connected, we see that f−1(ci) =
∩0<ε6ε0Fε is connected. �

There is no a priori reason why the fibers F−1(x, y) = J−1(x) ∩H−1(y)
of F should be connected even if J and H have connected fibers (let alone
if just one of J or H has connected fibers). However, the following result
shows that this conclusion holds. To prove it, we need a preparatory lemma
which is interesting on its own.
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Lemma 4.6. Let f : M → Rn be a smooth map from a smooth connected
manifold X to Rn. Ler Br be the set of regular values of f . Suppose that f
has the following properties.

(1) f is a proper map.

(2) For every sufficiently small neighborhood D of any critical value of f ,
Br ∩D is connected.

(3) The regular fibers of f are connected.

(4) The set Crit(f) of critical points of f has empty interior.

Then the fibers of f are connected.

Proof. We use the following “fiber continuity” fact: if Ω is a neighborhood
of a fiber f−1(c) of a continuous proper map f , then the fibers f−1(q) with q
close to c also lie inside Ω. Indeed, if this statement were not true, then there
would exist a sequence qn → c and a sequence of points xn ∈ f−1(qn), xn /∈
Ω, such that there is a subsequence xnk

→ x /∈ Ω. However, by continuity
x ∈ f−1(c) which is a contradiction.

Assume a fiber f−1(p) of f is not connected. Then there are disjoint
open sets U and V in M such that f−1(p) lies in U ∪ V but is not contained
in either U or V .

By fiber continuity, there exists a small open disk D about p such that
f−1(D) ⊂ U ∪ V .

Since the regular fibers are connected, we can define a map ψ : D ∩Br →
{0; 1} which for c ∈ D ∩Br is equal to 1 if f−1(c) ⊂ U , and is equal to 0
if f−1(c) ⊂ V . Fiber continuity says that the sets ψ−1(0) and ψ−1(1) are
open, thus proving that ψ is continuous. By (2), the image of ψ must be
connected, and therefore ψ is constant. We can hence assume, without loss
of generality, that all regular fibers above D are contained in U .

Now consider the restriction f̃ of f on the open set V ∩ f−1(D). Because
of the above argument, it cannot take any value in Br ∩D. Thus this map
takes values in the set of critical values of f , which has measure zero by
Sard’s theorem. This requires that on V ∩ f−1(D), the rank of df is strictly
less than n, which contradicts (4), and hence proves the lemma: f−1(p) has
to be connected. �

Now we are ready to prove one of our main theorems.

Theorem 4.7. Suppose that (M,ω) is a connected symplectic four-manifold.
Let F = (J, H) : M → R2 be an almost-toric integrable system such that F is
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a proper map. Suppose that J has connected fibers, or that H has connected
fibers. Then the fibers of F are connected.

Proof. Without loss of generality, we may assume that J has connected
fibers.

Step 1. We shall prove first that for every regular value (x, y) of F , the
fiber F−1(x, y) is connected. To do this, we divide the proof into two cases.

Case 1A. Assume x is a regular value of J . Then the fiber J−1(x) is a smooth
manifold. Let us show first that the non-degeneracy of the critical points
of F and the definition of almost-toric systems implies that the function
Hx := H|J−1(x) : J−1(x)→ R is Morse-Bott. Let Br be the set of regular
values of F .

Let m0 be a critical point of Hx. Then there exists λ ∈ R such that
dH(m0) = λdJ(m0). Thus m0 is a critical point of F ; it must be of rank
1 since dJ never vanishes on J−1(x). Since F is an almost-toric system,
the only possible rank 1 singularities are transversally elliptic singularities,
i.e., singularities with one elliptic component and one non-singular compo-
nent in Theorem 3.3; see Figure 7. Thus, by Theorem 3.3, there exist local
canonical coordinates (x1, x2, ξ1, ξ2) such that F = g(x2

1 + ξ2
1 , ξ2) for some

local diffeomorphism g of R2 about the origin and fixing the origin; thus the
derivative

Dg(0, 0) =:

(
a b
c d

)
∈ GL(2,R).

Note dJ(m0) 6= 0 implies that d 6= 0. Therefore, by the implicit function
theorem, the submanifold J−1(x) is locally parametrized by the variables
(x1, x2, ξ1) and, within it, the critical set of Hx is given by the equation
x1 = ξ1 = 0; this is a submanifold of dimension 1. The Taylor expansion of
Hx is easily computed to be

(3) Hx = a(x2
1 + ξ2

1)− bc

d
(x2

1 + ξ2
1) +

b

d
x+O(x1, ξ1, x2)3.

Thus, the coefficient of (x2
1 + ξ2

1) is (a− bc
d ) which is non-zero and hence

the Hessian of Hx is transversally non-degenerate. This proves that Hx is
Morse-Bott, as claimed.

Second, we prove, in this case, that the fibers of F are connected. At
m0, the transversal Hessian of Hx has either no or two negative eigenvalues,
depending on the sign of (a− bc

d ). This implies that each critical manifold
has index 0 or index 2. If this coefficient is negative, the sum of the two
corresponding eigenspaces is the full 2-dimensional (x1, ξ1)-space.
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Note that Hx : J−1(x)→ R is a proper map: indeed, if K ⊂ R is com-
pact, then H−1

x (K) = F−1({x} ×K) is compact because F is proper. Thus
Hx : J−1(x)→ R is a smooth Morse-Bott function on the connected mani-
fold J−1(x) and both Hx and −Hx have only critical points of index 0 or
2. We are in the hypothesis of Proposition 4.5 and so we can conclude that
the fibers of Hx : J−1(x)→ R are connected.

Now, since (Hx)−1(y) = F−1(x, y), it follows that F−1(x, y) is connected
for all (x, y) ∈ F (M) ⊂ R2 whenever x is a regular value of J .

Case 1B. Assume that x is not a regular value of J . Note that there exists
a point (a, b) in every connected component Cr of Br such that a is a
regular value for J ; otherwise dJ would vanish on F−1(Cr), which violates
the definition of Br. The restriction F |F−1(Cr) : F−1(Cr)→ Cr is a locally
trivial fibration since, by assumption, F is proper and thus the bifurcation
set is equal to the critical set. Thus all fibers of F |F−1(Cr) are diffeomorphic.
It follows that F−1(x, y) is connected for all (x, y) ∈ Cr.

This shows that all inverse images of regular values of F are connected.

Step 2. We need to show that F−1(x, y) is connected if (x, y) is not a regular
value of F . We claim that there is no critical value of F in the interior of
the image F (M), except for the critical values that are images of focus-focus
critical points of F . Indeed, if there was such a critical value (x0, y0), then
there must exist a small segment line ` of critical values (by the local normal
form described in Theorem 3.3 and Figure 7). Now we distinguish two cases.

Case 2A. First assume that ` is not a vertical segment (i.e., ` is not contained
in a line of the form x = constant) and let ˆ̀ := F−1(`). Then J(ˆ̀) contains a
small interval around x, so by Sard’s theorem, it must contain a regular value
x0 for the map J . Then J−1(x0) is a smooth manifold which is connected,
by hypothesis. By the argument earlier in the proof (see Step 1, Case A),
both H and −H restricted to J−1(x0) are proper Morse-Bott functions with
indices 0 and 2. So, if there is a local maximum or local minimum, it must
be unique. However, the existence of this line of rank 1 elliptic singularities
implies that there is a local maximum/minimum of Hx0

(see Formula (3)).
Since the corresponding critical value lies in the interior of the image of
Hx0

, it cannot be a global extremum; we arrived at a contradiction. Thus
the small line segment ` must be vertical.

Case 2B. Second, suppose that ` is a vertical segment (i.e., ` is contained
contained in a line of the form x = constant) and let ˆ̀ := F−1(`). We can
assume, without loss of generality, that the connected component of ` in the
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bifurcation set is vertical in the interior of F (M); indeed, if not, apply Case
2A a above.

From Figure 7 we see that ˆ̀ must contain at least one critical point
A of transversally elliptic type together with another point B either regu-
lar or of transversally elliptic type. By the normal form of non-degenerate
singularities, J−1(x0) must be locally path connected. Since it is connected
by assumption, it must be path connected. So we have a path γ : [0, 1] 7→
J−1(x0) such that γ(0) = A and γ(1) = B. Near A we have canonical coor-
dinates (x1, x2, ξ1, ξ2) ∈ R4 and a local diffeomorphism g defined in a neigh-
borhood of the origin of R2 and preserving it, such that

F = g(x2
1 + ξ2

1 , ξ2)

and A = (0, 0, 0, 0). Write g = (g1, g2). The critical set is defined by the
equations x1 = ξ1 = 0 and, by assumption, is mapped by F to a vertical
line. Hence g1(0, ξ2) is constant, so

∂2g1(0, ξ2) = 0.

Since g is a local diffeomorphism, dg1 6= 0, so we must have ∂1g1 6= 0. Thus,
by the implicit function theorem, any path starting at A and satisfying
g1(x2

1 + ξ2
1 , ξ2) = constant must also satisfy x2

1 + ξ2
1 = 0. Therefore, γ has to

stay in the critical set x1 = ξ1 = 0.
Assume first that γ([0, 1]) does not touch the boundary of F (M). Then

this argument shows that the set of t ∈ [0, 1] such that γ(t) belongs to the
critical set of F is open. It is also closed by continuity of dF . Hence it is
equal to the whole interval [0, 1]. Thus B must be in the critical set; this
rules out the possibility for B to be regular. Thus B must be a rank-1 elliptic
singularity. Notice that the sign of ∂1g1 indicates on which side of ` (left or
right) lie the values of F near A.

Thus, even if g1 itself is not globally defined along the path γ, this sign
is locally constant and thus globally defined along γ. Therefore, all points
near ˆ̀ are mapped by F to the same side of `, which says that ` belongs to
the boundary of F (M); this is a contradiction.

Finally, assume that γ([0, 1]) touches the boundary of F (M). From the
normal form theorem, this can only happen when the fiber over the contact
point contains an elliptic-elliptic point C. Thus there are local canonical
coordinates (x1, x2, ξ1, ξ2) ∈ R4 and a local diffeomorphism g defined in a
neighborhood of the origin of R2 and preserving it, such that

F = g(x2
1 + ξ2

1 , x
2
2 + ξ2

2)
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near C = (0, 0, 0, 0). We note that the same argument as above applies: sim-
ply replace the ξ2 component by x2

2 + ξ2
2 . Thus we get another contradiction.

Therefore there are no critical values c in the interior of the image F (M)
other than focus-focus values (i.e., images of focus-focus points).

Step 3. We claim that for any critical value c of F and for any sufficiently
small disk D centered at c, Br ∩D is connected.

First we remark that Step 2 implies that item (iv) in Theorem 3.6 holds,
and hence item (ii) must hold : the set of regular values of F is connected.

If c is a focus-focus value, it must be contained in the interior of F (M).
Therefore, it follows from Step 2 that it is isolated: there exists a neighbor-
hood of c in which c is the only critical value, which proves the claim in this
case.

We assume in the rest of the proof that c = (xc, yc) is an elliptic (of
rank 0 or 1) critical value of F . Since we have just proved in Step 2 that
there are no critical values in the interior of F (M) other than focus-focus
values, we conclude that c ∈ ∂(F (M)). Moreover, the fiber cannot contain
a regular Liouville torus. Then, again by Theorem 3.3, the only possibilities
for a neighborhood of c in F (M) are superpositions of elliptic local normal
forms of rank 0 or 1 (given by Theorem 3.3) in such a way that c ∈ ∂(F (M)).
If only one local model appears, then the claim is immediate.

Let us show that a neighborhood U of c cannot contain several different
images of local models. Indeed, consider the possible configurations for two
different local images C1 and C2: either both C1 and C2 are elliptic-elliptic
images, or both are transversally elliptic images, or C1 is an elliptic-elliptic
image and C2 is a transversally elliptic image. Step 2 implies that the crit-
ical values of F in C1 and C2 can only intersect at a point, provided the
neighborhood U is taken to be small enough. Let us consider a vertical
line ` through C1 which corresponds to a regular value of J . Any cross-
ing of ` with a non-vertical boundary of F (M) must correspond to a local
extremum of H|F−1(`) and, by Step 2, this local extremum has to be a global
one. Since only one global maximum and one global minimum are possible,
the only allowed configurations for C1 and C2 are such that the vertical line
`c through c separates the regular values of C1 from the regular values of C2

(see Figure 8).
Since the critical leaves have codimension at least two inM , the setMr ⊂

M of regular points is path connected, so we can find a path ν : [0, 1]→
intF (M) connecting a point in Br ∩ C1 to a point in Br ∩ C2 by finding a
path in Mr and taking its image under F (see Figure 8). By continuity, the
path ν needs to cross `c, and the intersection point (x0 = xc, y0) must lie
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U

ℓc

C1

C2

c = (xc, yc)

(x0, y0)

Figure 8: Point overlapping of images near singularities. Such a situation
cannot occur if the fibers of J are connected.

outside U . Therefore, there exists an open ball B0 ⊂ Br centered at (x0, y0).
Suppose, for instance, that y0 > yc. Then for (x, y) ∈ U , y cannot be a
maximal value of H|J−1(x), which means that for each of C1 and C2, only
local minima for H|J−1(x) are allowed. This cannot be achieved by any of
the local models, thus finishing the proof of our claim.

The statement of the theorem now follows from Lemma 4.6. �

Remark 4.8. It is not true that an almost-toric integrable system with
connected regular fibers has also connected singular fibers. See Example 4.9
below.

The following are examples of almost-toric systems in which the fibers
of F are not connected. In the next section we will combine Theorem 4.7
with an upcoming result on contact theory for singularities (which we will
prove too) in order to obtain Theorem 2 of Section 1.

Example 4.9. This example appeared in [25, Chapter 5, Figure 29]. It is
an example of an almost toric system F := (J, H) : M → R2 on a compact
manifold for which J and H have some disconnected fibers (the number of
connected components of the fibers also changes). Because this example is
constructed from the standard toric system S2 × S2 by precomposing with
a local diffeomorphism, the singularities are non-degenerate. In this case,
the fundamental group π1(F (M)) has one generator, so F (M) is not simply
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S2 × S2 S2 × S2S2 × S2

Figure 9: An almost-toric system with some disconnected fibers, constructed
from the standard toric system on S2 × S2 by precomposing with a local
diffeomorphism.

connected, and hence not contractible. See Figure 9. An extreme case of this
example can be obtained by letting only two corners overlap (Figure 10).
We get then an almost-toric system where all regular fibers are connected,
but one singular fiber is not connected.

Figure 10: Image of an integrable system constructed from S2 × S2 by a
one-point identification, and which has one disconnected fiber. All the other
fibers are connected.

Example 4.10. The leaf space of Example 4.9 is a square. According to
Zung [31, Proposition 3.3], “if C is a topological 2-stratum of the base O
of an integrable system on a compact 4-dimensional symplectic manifold
X (maybe with boundary) with only non-degenerate singularities, and the
image of the boundary of X under the projection to O does not intersect
with the closure of C (if X is compact and with no boundary then this
condition is satisfied automatically), then C is homeomorphic to either an
annulus, a Möbius band, a Klein bottle, a torus, a disk, a projective space,
or a sphere (in case of sphere or projective space, C must contain focus-focus
points)”. We learned from Zung that he had previously written a proof of
this statement in [30]. The system presented in Figure 2 is an example of
the case where the leaf space is an annulus. The construction is as follows.
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Consider the manifold M = S2 × S1 × S1. Choose the following coor-
dinates on S2: h ∈ [1, 2] and a ∈ S1 = R/2πZ. Choose coordinates b, c ∈
R/2πZ on S1 × S1 and let dh ∧ da+ ndb ∧ dc be the symplectic form on
M , where n is a positive integer. The map

F (h, a, b, c) = (h cos(nb), h sin(nb)),

defines an integrable system with non-degenerate singularities. The fiber
over any regular value of F is n copies of S1 × S1 (see Example 4.10). Thus
we have an elementary construction of an almost-toric system on a com-
pact manifold which has only transversally elliptic singularities, and has
a non-simply connected leaf space, a connected set of regular values, and
non-connected fibers. The image F (M) itself is an annulus, and the bifur-
cation set ΣF is its boundary; hence vertical tangencies cannot be avoided
by deformation, in agreement with Theorem 1.

We thank Thomas Baird for this example.

5. The image of an almost-toric system

In this section we study the structure of the image of an almost-toric system.

Figure 11: The image B := F (M) of an almost-toric system F = (J,H) :
M → R2. The set of regular values of F is denoted by Br. The marked dots
c1, c2 inside of B represent singular values, corresponding to the focus-focus
fibers. The set Br is equal to B minus ∂B ∪ {c1, c2}.

5.1. Images bounded by lower/upper semicontinuous graphs

We start with the following observation.
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Lemma 5.1. Let M be a connected smooth manifold and let f : M → R
be a Morse-Bott function with connected fibers. Then the set C0 of index
zero critical points of f is connected. Moreover, if λ0 := inf f > −∞, the
following hold:

(1) If λ0 > −∞ then C0 = f−1(λ0).

(2) If λ0 = −∞ then C0 = ∅.

Proof. The fiber over a point is locally path connected. If the point is critical
this follows from the Morse-Bott Lemma and if the point is regular, this
follows from the submersion theorem.

Let m be a critical point of index 0 of f , i.e., m ∈ C0, and let λ :=
f(m), Λ := f−1(λ). Let γ : [0, 1]→ Λ. Since Λ is connected and locally path
connected, it is path connected. Let γ : [0, 1]→ Λ be a continuous path
starting at m. By the Morse-Bott Lemma, im(γ) ⊂ C0. Therefore, since Λ
is path connected, Λ ⊆ C0. Each connected component of C0 is contained in
some fiber of f and hence Λ is the connected component of C0 that contains
m. We shall prove that C0 has one connected component.

Assume that there is a point m′ such that f(m′) < λ and let δ : [0, 1]→
M be a continuous path from m to m′. Let

t0 := inf{t > 0 | f(δ(t)) < λ}.

Then f(δ(t0)) = λ and, by definition, for every α > 0, there exists tα ∈
[t0, t0 + α] such that f(δ(tα)) < λ.

Let m0 := δ(t0). Let U be a neighborhood of δ(t0) in which we have the
Morse-Bott coordinates given by the Morse-Bott Lemma centered at δ(t0).
For α small enough, δ([t0, t1]) ⊂ U and therefore for t ∈ [t0, t1] we have that

f(δ(t)) =

k∑
i=1

y2
i (δ(t)) + λ > λ,

which is a contradiction. �

Note that the following result is strictly Morse-theoretic; it does not
involve integrable systems. A version of this result was proven in [26, Theo-
rem 3.4] in the case of integrable systems F = (J, H) for which J : M → R
is both a proper map (hence F : M → R2 is proper) and a momentum map
for a Hamiltonian S1-action. The version we prove here applies to smooth
maps, which are not necessarily integrable systems.
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Theorem 5.2. Let M be a connected smooth four-manifold. Let F = (J,
H) : M → R2 be a smooth map. Equip R := R ∪ {±∞} with the standard
topology. Suppose that the component J is a non-constant Morse-Bott func-
tion with connected fibers. Let H+, H− : J(M)→ R be the functions defined
by H+(x) := supJ−1(x)H and H−(x) := infJ−1(x)H. The functions H+,

−H− are lower semicontinuous. Moreover, if F (M) is closed in R2 then
H+, −H− are upper semicontinuous (and hence continuous), and F (M)
may be described as

F (M) = epi(H−) ∩ hyp(H+).(4)

In particular, F (M) is contractible.

Proof. First we consider the case where F (M) is not necessarily closed
(Part 1). In Part 2 we prove the stronger result when F (M) is closed.

Part 1. We do not assume that F (M) is closed and prove that H+ is lower
semicontinuous; the proof that −H− is lower semicontinuous is analogous.
Since, by assumption, J is non-constant, the interior set int(J(M)) of J(M)
is non-empty. The set int(J(M)) is an open interval (a, b) since M is con-
nected and J is continuous. Lower semicontinuity of H+ is proved first in
the interior of J(M) (case A) and then at the possible boundary (case B).

Case A. Let x0 ∈ int(J(M)) and y0 := H+(x0). Let ε > 0. By the definition
of supremum, there exists ε′ > 0 with ε′ < ε such that if y1 := y0 − ε′ then
F−1(x0, y1) 6= ∅ (see Figure 12). Here we have assumed that y0 < +∞; if
y0 = +∞, we just need to replace y1 by an arbitrary large constant. Let
m ∈ F−1(x0, y1). Then J(m) = x0. Endow M with a Riemannian metric
and, with respect to this metric, consider the gradient vector field ∇J of J .
Let t0 > 0 such that the flow ϕt(m) of ∇J starting at ϕ0(m) = m exists for
all t ∈ (−t0, t0). Now we distinguish two cases.

A.1. Assume dJ(m) 6= 0. Since ∇J(m) 6= 0, the set

Λt0 := {J(ϕ(t)) | t ∈ (−t0, t0)}

is a neighborhood of x0.
Let B be the ball of radius ε centered at (x0, y1). Let U := F−1(B),

which contains m. Let t′0 6 t0 be small enough such that ϕt(m) ∈ U
for all |t| < t′0. The set Λt′0 is a neighborhood of x0, so there is α > 0
such that (x0 − α, x0 + α) ⊆ Λt′0 .



i
i

“4-401” — 2015/3/28 — 17:11 — page 371 — #29 i
i

i
i

i
i

Fiber connectivity of almost toric systems 371

��������������������������������������

��������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

H

y0

graph(H+)

graph(H−)

J

y1

x0

(x0, y0)

(x0, y1)

Figure 12: Lower semicontinuity of H+.

Let x ∈ Λt′0 ; there exists |t| < t′0 such that J(ϕt(m)) = x by defini-
tion of Λt′0 . Since F (ϕt(m)) ∈ B we conclude that y := H(ϕt(m)) ∈
(y1 − ε, y1 + ε), so H+(x) > y > y1 − ε for all x with |x− x0| < α.

Thus we get H+(x) > y0 − 2ε for all x with |x− x0| < α, which
proves the lower semicontinuity.

A.2. Assume dJ(m) = 0. By Lemma 5.1, we conclude that m is not of index
0, for otherwise J(m) = x0 would be a global minimum in J(M) which
contradicts the fact that, by assumption, x0 ∈ int(J(M)).

Thus, the Hessian of J has at least one negative eigenvalue and,
therefore, there exists t0 > 0 such that Λt0 is an open neighborhood of
x0 and we may then proceed as in Case A.1.

Hence H+ is lower semicontinuous.

Case B. We prove here lower semicontinuity at a point x0 in the topological
boundary of J(M). We may assume that J(M) = [a, b) and that x0 = a. By
Lemma 5.1, J−1(a) = C0, where C0 denotes the set of critical points of J of
index 0. If m ∈ J−1(a) and U is a small neighborhood of m, it follows from
the Morse-Bott lemma that J(U) is a neighborhood of a in J(M). Hence we
may proceed as in Case A to conclude that H+ is lower semicontinuous.

Part 2. Assuming that F (M) is closed we shall prove now that H+ is upper
semicontinuous.

Suppose that H+ is not upper semicontinuous at some point x0 ∈ J(M)
(so we must have H+(x0) <∞). Then there exists ε0 > 0 and a sequence
{xn} ⊂ J(M) converging to x0 such that H+(xn) > H+(x0) + ε0. First
assume that H−(x0) is finite. Since H− is upper semicontinuous, by Part 1
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of the proof, for x close to x0 we have

H−(x) 6 H−(x0) +
ε0
2
.

Thus we have

(5) H−(xn) 6 H−(x0) +
ε0
2
6 H+(x0) +

ε0
2
< H+(x0) + ε0 6 H

+(xn).

Let y0 ∈ (H+(x0) + ε0
2 , H

+(x0) + ε0). Because of (5), and since H(J−1(xn))
is an interval whose closure is [H−(xn), H+(xn)] (remember that J has
connected fibers and H is continuous), we must have y0 ∈ H(J−1(xn)).
Therefore (xn, y0) ∈ F (M). Since F (M) is closed, the limit of this sequence
belongs to F (M); thus (x0, y0) ∈ F (M). Hence y0 6 H+(x0), a contradic-
tion.

If H−(x0) = −∞, we just replace in the proof H−(x0) + ε0
2 by some

constant A such that A 6 H+(x0) + ε0
2 .

Hence H+ is upper semicontinuous. Therefore H+ is continuous. The
same argument applies to H−.

In order to prove (4), notice that for any x ∈ J(M), we have the equality

{x} ×H(J−1(x)) = F (M) ∩ {(x, y) | y ∈ R}.(6)

Therefore, if F (M) is closed, {x} ×H(J−1(x)) must be closed and hence
equal to {x} × [H−(x), H+(x)]. The equality (4) follows by taking the union
of the identity (6) over all x ∈ J(M).

Finally, we show that F (M) is contractible. Since R ∪ {±∞} is homeo-
morphic to a compact interval, F (M) is homeomorphic to a closed subset
of the strip R× [−1, 1] by means of a homeomorphism g that fixes the first
coordinate x. Thus, applying to (4) this homeomorphism, we get

g(F (M)) = epi(h−) ∩ hyp(h+)

for some continuous functions h+ and h−. Then the map

g(F (M))× [0, 1] 3 ((x, y), t) 7→ (x, t(y − h−(x))) ∈ R2

is a homotopy equivalence with the horizontal axis. Since g is a homeomor-
phism, we conclude that F (M) is contractible. �



i
i

“4-401” — 2015/3/28 — 17:11 — page 373 — #31 i
i

i
i

i
i

Fiber connectivity of almost toric systems 373

5.2. Constructing Morse-Bott functions

We can give a stronger formulation of Theorem 5.2. First, recall that if Σ
is a smoothly immersed 1-dimensional manifold in R2, we say that Σ has
no horizontal tangencies if there exists a smooth curve γ : I ⊂ R→ R2 such
that γ(I) = Σ and γ′2(t) 6= 0 for every t ∈ I. Note that Σ has no horizontal
tangencies if and only if for every c ∈ R the 1-manifold Σ is transverse to
the horizontal line y = c.

We start with the following result, which is of independent interest and
its applicability goes far beyond its use in this paper.

We begin with a description of the structure of the set ΣF := F (Crit(F ))
of critical values of an integrable systems F : M → R2; as usual Crit(F )
denotes the set of critical points of F .

Let c0 ∈ ΣF and B ⊂ R2 a small closed ball centered at c0. For each
point m ∈ F−1(B) we choose a chart about m in which F has normal form
(see Theorem 3.3). There are seven types of normal forms, as depicted in
Figure 7. Since F−1(B) is compact, we can select a finite number of such
chart domains that still cover F−1(B). For each such chart domain Ω, the
set of critical values of F |Ω is diffeomorphic to the set of critical values of
one of the models described in Figure 7, which is either empty, an isolated
point, an open curve, or up to four open curves starting from a common
point. Since

ΣF ∩B = F (Crit(F ) ∩ F−1(B)),

it follows that Σ ∩B is a finite union of such models. This discussion leads
to the following proposition.

Proposition 5.3. Let (M, ω) be a connected symplectic four-manifold. Let
F : M → R2 be a non-degenerate integrable system. Suppose that F is a
proper map. Then ΣF := F (Crit(F )) is the union of a finite number of strat-
ified manifolds with 0 and 1 dimensional strata. More precisely, ΣF is a
union of isolated points and of smooth images of immersions of closed inter-
vals (since F is proper, a 1-dimensional stratum must either go to infinity
or end at a rank-zero critical value of F ).

Definition 5.4. Let c ∈ ΣF . A vector v ∈ R2 is called tangent to ΣF if
there is a smooth immersion ι : R ⊃ [0, 1]→ ΣF with ι(0) = c and ι′(0) = v.

Here ι is smooth on [0, 1], when [0, 1] is viewed as a subset of R. Notice
that a point c can have several linearly independent tangent vectors.
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Definition 5.5. Let γ be a smooth curve in R2.

• If γ intersects ΣF at a point c, we say that the intersection is transversal
if no tangent vector of ΣF at c is tangent to γ. Otherwise we say that
c is a tangency point.

• Assume that γ is tangent to a 1-stratum σ of ΣF at a point c ∈ σ.
Near c, we may assume that γ is given by some equation ϕ(x, y) = 0,
where dϕ(c) 6= 0.

We say that γ has a non-degenerate contact with σ at c if, whenever
δ : (−1, 1)→ σ is a smooth local parametrization of σ near c with
δ(0) = c, then the map t 7→ (ϕ ◦ δ)(t) has a non-degenerate critical
point at t = 0.

• Every tangency point that is not a non-degenerate contact is called
degenerate (this includes the case where γ is tangent to ΣF at a point
c which is the end point of a 1-dimensional stratum σ).

With this terminology, we can now see how a Morse function on R2 can
give rise to a Morse-Bott function on M .

Theorem 5.6 (Construction of Morse-Bott functions). Let (M, ω)
be a connected symplectic four-manifold. Let F := (J, H) : M → R2 be an
integrable system with non-degenerate singularities (of any type, so this
statement applies to hyperbolic singularities too) such that F is proper. Let
ΣF ⊂ R2 be the set of critical values of F , i.e., ΣF := F (Crit(F )).

Let U ⊂ R2 be open. Suppose that f : U → R is a Morse function whose
critical set is disjoint from ΣF and the regular level sets of f intersect ΣF

transversally or with non-degenerate contact.
Then f ◦ F is a Morse-Bott function on F−1(U).

Here by regular level set of f we mean a level set corresponding to a
regular value of f .

Proof. Let L := f ◦ F . Writing

dL = (∂1f)dJ + (∂2f)dH,

we see that if m is a critical point of L then either c = F (m) is a critical point
of f (so ∂1f(c) = ∂2f(c) = 0), or dJ(m) and dH(m) are linearly dependent
(which means rank(TmF ) < 2). By assumption, these two cases are disjoint:
if c = F (m) is a critical point of f , then c 6∈ ΣF which means that m is a
regular point of F .
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Thus Crit(L) ⊂ F−1(Crit(f)) t Crit(F ) is a disjoint union of two closed
sets. Since Hausdorff manifolds are normal, these two closed sets have dis-
joint open neighborhoods. Thus Crit(L) is a submanifold if and only if both
sets are submanifolds, which we prove next.

Study of F−1(Crit(f)). Let m0 ∈M and c0 = F (m0). We assume that c0

is a critical point of f , i.e., df(c0) = 0. By hypothesis, rank dm0
F = 2. Since

the rank is lower semicontinuous, there exists a neighborhood Ω of m0 in
which rank dmF = 2 for all m ∈ Ω. Thus, on Ω, L = f ◦ F is critical at a
point m if and only if F (m) is critical for f . Since f is a Morse function, its
critical points are isolated; therefore we can assume that the critical set of
L in Ω is precisely F−1(c0) ∩ Ω.

Since F−1(c0) is a compact regular fiber (because F is proper), it is
a finite union of Liouville tori (this is the statement of the action-angle
theorem; the finiteness comes from the fact that each connected component
is isolated). In particular, F−1(Crit(f)) is a submanifold and we can analyze
the non-degeneracy component-wise.

Given any m ∈ F−1(c0), the submersion theorem ensures that J and H
can be seen as a set of local coordinates of a transversal section to the fiber
F−1(c0). Thus, using the Taylor expansion of f of order 2, we get the 2-jet
of L− L(m0):

L(m)− L(m0) =
1

2
Hess f(m0)(J(m)− J(m0), H(m)−H(m0))2

+ terms of order 3,

where

Hess f(m0)(J(m)− J(m0), H(m)−H(m0))2(7)

:= (∂2
1f)(m0)(J(m)− J(m0))2

+ 2(∂2
1,2f)(m0)(J(m)− J(m0)))(H(m)−H(m0))

+ (∂2
2f)(m0)(H(m)−H(m0))2.

Again, since (J,H) are taken as local coordinates, we see that the transversal
Hessian of L in the (J,H)-variables is non-degenerate, since Hess f(m0) is
non-degenerate by assumption (f is Morse).

Thus we have shown that F−1(Crit(f)) is a smooth submanifold (a finite
union of Liouville tori), transversally to which the Hessian of L is non-
degenerate.

Study of Crit(L) ∩Crit(F ). Let m0 ∈M be a critical point of F and
c0 = F (m0). By assumption, c0 is a regular value of f . Thus, there exists
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an open neighborhood V of c0 in R2 that contains only regular values of f .
Therefore, the critical set of L in F−1(V ) is included in Crit(F ) ∩ F−1(V ).
In what follows, we choose V with compact closure in R2 and admitting a
neighborhood in the set of regular values of f .

Case 1: rank 1 critical points. There are two types of rank 1 critical points
of F : elliptic and hyperbolic. By the Normal Form Theorem 3.3, there are
symplectic coordinates (x1, x2, ξ1, ξ2) in in a chart about m0 in which F
takes the form

F = g(ξ1, q),

where q is either x2
2 + ξ2

2 (elliptic case) or x2ξ2 (hyperbolic case), and g :
R2 → R2 is a local diffeomorphism of a neighborhood of the origin to a
neighborhood of F (m0), g(0) = F (m0).

We see from this that ΣV := Crit
(
F |F−1(V )

)
is the 1-dimensional sub-

manifold {g(t, 0) | |t| small}.
Now consider the case when the level sets of f in V (which are also

1-dimensional submanifolds of R2) are transversal to this submanifold. We
see that the range of dm0

F is directed along the first basis vector e1 in R2,
which is precisely tangent to ΣV . Hence df cannot vanish on this vector and
hence

0 6= dF (m0)f ◦ dm0
F = dm0

L.

This shows that L has no critical points in F−1(V ).
Now assume that there is a level set of f in V that is tangent to ΣV

with non-degenerate contact at the point g(0, 0). The tangency gives the
equation dF (m0)f · (d(0,0)g(e1)) = 0. Since L = (f ◦ g)(ξ1, q), the equation of
Crit(L) is

(8)
∂(f ◦ g)

∂ξ1
= 0 and

∂(f ◦ g)

∂q
dq = 0.

Since df 6= 0 on V and g is a local diffeomorphism, we have d(f ◦ g) 6= 0 in
a neighborhood of the origin. But the contact equation gives

∂(f ◦ g)

∂ξ1
(0, 0) = 0

so, taking V small enough, we may assume that ∂(f◦g)
∂q does not vanish. Hence

the second condition in (8) is equivalent to dq = 0, which means x2 = ξ2 = 0
(and hence q = 0).
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By definition, the contact is non-degenerate if and only if the function
t 7→ f(g(t, 0)) has a non-degenerate critical point at t = 0. Therefore, by the
implicit function theorem, the first equation

∂(f ◦ g)

∂ξ1
(ξ1, 0) = 0

has a unique solution ξ1 = 0. Thus, the critical set of L is of the form
{(x1, ξ1 = 0, x2 = 0, ξ2 = 0)}, where x1 is arbitrary in a small neighborhood
of the origin; this shows that the critical set of L is a smooth 1-dimensional
submanifold.

It remains to check that the Hessian of L is transversally non-degenerate.
Of course, we take (ξ1, x2, ξ2) as transversal variables and we write the Taylor
expansion of L, for any m ∈ Crit(L):

(9) L = L(m) +O(x1) +
∂(f ◦ g)

∂q
q +

1

2

∂2(f ◦ g)

∂ξ2
1

ξ2
1 +O((ξ1, x2, ξ2)3).

We know that ∂(f◦g)
∂q 6= 0 and, by the non-degeneracy of the contact,

∂2(f ◦ g)

∂ξ2
1

6= 0.

Recalling that q = x2ξ2 or q = x2
2 + ξ2

2 , we see that the (ξ1, x2, ξ2)-Hessian
of L is indeed non-degenerate.

Case 2: rank 0 critical points. There are four types of rank 0 critical points of
F : elliptic-elliptic, focus-focus, hyperbolic-hyperbolic, and elliptic-hyperbolic,
giving rise to four subcases. From the normal form of these singularities (see
Theorem 3.3), we see that all of them are isolated from each other. Thus,
since F is proper, the set of rank 0 critical points of F is finite in F−1(V ).

Again, let m0 be a rank 0 critical point of F and c0 := F (m0).

(a) Elliptic-elliptic subcase.
In the elliptic-elliptic case, the normal form is

F = g(q1, q2),

where qi = (x2
i + ξ2

i )/2. The critical set of F is the union of the planes
{z1 = 0} and {z2 = 0} (we use the notation zj = (xj , ξj)). The corre-
sponding critical values in V is the set

ΣV := {g(x = 0, y > 0)} ∪ {g(x > 0, y = 0)}
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(the g-image of the boundary of the closed positive quadrant).
The transversality assumption on f amounts here to saying that the

level sets of f in a neighborhood of c0 intersect ΣV transversally; in other
words, the level sets of h := f ◦ g intersect the boundary of the positive
quadrant transversally. Up to further shrinking of V , this amounts to
requiring dzh(e1) 6= 0, dzh(e2) 6= 0 for all z ∈ g−1(V ), where (e1, e2) is
the standard R2-basis.

Any critical point m of F different from m0 is a rank 1 elliptic critical
point. Since the level sets of f don’t have any tangency with ΣV , we
know from the rank 1 case above, that m cannot be a critical point of
L. Hence m0 is an isolated critical point for L.

The Hessian of L at m0 is calculated via the normal form: it has the
form aq1 + bq2, with a = d0h(e1) and b = d0h(e2). The Hessian determi-
nant is a2b2. The transversality assumption implies that both a and b
are non-zero which means that the Hessian is non-degenerate.

(b) Focus-focus subcase.
The focus-focus critical point is isolated, so we just need to prove that

the Hessian of L is non-degenerate. But the 2-jet of L is

L(m)− L(m0) = (∂1f)(F (m0)(J(m)− J(m0))

+ (∂2f)(F (m0)(H(m)−H(m0)) + terms of order 3.

Thus, in normal form coordinates (see Theorem 3.3), as in the pre-
vious case, it has the form aq1 + bq2, where this time q1 and q2 are
the focus-focus quadratic forms given in Theorem 3.3(iii). The Hessian
determinant is now (a2 + b2)2, which does not vanish.

(c) Hyperbolic-hyperbolic subcase.
Here the local model for the foliation is q1 = x1ξ1, q2 = x2ξ2. However,

the formulation F = g(q1, q2) may not hold; this is a well-known problem
for hyperbolic fibers. Nevertheless, on each of the 4 connected compo-
nents of of R4 \ ({x1 = 0} ∪ {x2 = 0}), we have a diffeomorphism gi,
i = 1, 2, 3, 4 such that F = gi(q1, q2). These four diffeomorphisms agree
up to a flat map at the origin (which means that their Taylor series at
(0, 0) are all the same).

Thus, the critical set of F in these local coordinates is the union of
the sets {q1 = 0} and {q2 = 0}: this is the union of the four coordinate
hyperplanes in R4. The corresponding set of critical values in V is the
image of the coordinate axes:
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ΣV :=
⋃

i=1,2,3,4

{gi(0, y)} ∪ {gi(x, 0)},

where x and y both vary in a small neighborhood of the origin in R.
For each i we let hi := f ◦ gi. As before, the transversality assumption

says that the values d0hi(e1) and d0hi(e2) (which don’t depend on i =
1, 2, 3, 4 at the origin of R2) don’t vanish in V . Thus, as in the elliptic-
elliptic case, the level sets of f don’t have any tangency with ΣV . Hence,
no rank 1 critical point of F can be a critical point of L, which shows
that m0 is thus an isolated critical point of L.

The Hessian determinant of aq1 + bq2 is again a2b2 with a 6= 0 and
b 6= 0; thus the Hessian of L at m0 is non-degenerate.

(d) Hyperbolic-elliptic subcase.
We still argue as above. However, the Hessian determinant in this

case is −a2b2 6= 0.

Summarizing, we have proved that rank 0 critical points of F correspond
to isolated critical points of L; all of them non-degenerate.

Putting together the discussion in the rank 1 and 0 cases, we have
shown that the critical set of L consists of isolated non-degenerate criti-
cal points and isolated 1-dimensional submanifolds on which the Hessian
of L is transversally non-degenerate. This means that L is a Morse-Bott
function. �

5.3. Contact points and Morse-Bott indices

Since we have calculated all the possible Hessians, it is easy to compute the
various indices that can occur. We shall need a particular case, for which we
introduce another condition on f .

Definition 5.7. Let (M, ω) be a connected symplectic four-manifold. Let
F : M → R2 be an almost-toric system with critical value set ΣF . A smooth
curve γ in R2 is said to have an outward contact with F (M) at a point
c ∈ F (M) when there is a small neighborhood of c in which the point {c} is
the only intersection of γ with F (M).

In the proof below we give a characterization in local coordinates.
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F (M)

γ

c

Figure 13: An outward contact point.

Proposition 5.8. Let (M, ω) be a connected symplectic four-manifold. Let
F : M → R2 be an almost-toric system with critical value set ΣF . Let f be
a Morse function defined on an open neighborhood of F (M) ⊂ R2 such that

(i) The critical set of f is disjoint from ΣF ;

(ii) f has no saddle points in F (M);

(iii) the regular level sets of f intersect ΣF transversally or have a non-
degenerate outward contact with F (M). (See Definitions 5.5 and 5.7.)

Then f ◦ F : M → R is a Morse-Bott function with all indices and co-indices
equal to 0, 2, or 3.

Proof. Because of Theorem 5.6, we just need to prove the statement about
the indices of f . At points of F−1(Crit(f)), we saw in (7) that the transversal
Hessian of f ◦ F is just the Hessian of f . By assumption, f has no saddle
points, so its (co)index is either 0 or 2. We analyze the various possibilities
at points of Crit(F ). There are two possible rank 0 cases for an almost-
toric system: elliptic-elliptic and focus-focus. At such points, the Hessian
determinant is positive (see Theorem 3.3), so the index and co-index are
even.

In the rank 1 case, for an almost-toric system, only transversally ellip-
tic singularities are possible. We are interested in the case of a tangency
(otherwise f ◦ F has no critical point). The Hessian is computed in (9)
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and we use below the same notations. The level set of f through the tan-
gency point is given by f(x, y) = f(g(0, 0)). We switch to the coordinates
(ξ1, q) = g−1(x, y), where the local image of F is the half-space {q > 0}. Let

h = f ◦ g − f(g(0, 0)).

The level set of f is h(ξ1, q) = 0, and h satisfies d0h 6= 0, ∂h
∂ξ1

(0, 0) = 0,
∂2h
∂ξ21

(0, 0) 6= 0 (this is the non-degeneracy condition in Definition 5.5). By

the implicit function theorem, the level set {h = 0} near the origin is the
graph {(ξ1, q) | q = ϕ(ξ1)} of a function ϕ, where

ϕ′(0) = 0, ϕ′′(0) =
−∂2h
∂ξ21

(0, 0)

∂h
∂q2

(0, 0)
.

This level set has an outward contact if and only if ϕ′′(0) < 0 or, equivalently,
∂2h
∂ξ21

(0, 0) and ∂h
∂q2

(0, 0) have the same sign. From (9) we see that the index
and coindex can only be 0 or 3. �

5.4. Proof of Theorem 2 and Theorem 5

We conclude by proving the two theorems in the introduction. Both will
rely on the following result. In the statement below, we use the stratified
structure of the bifurcation set of a non-degenerate integrable system, as
given by Proposition 5.3.

Proposition 5.9. Let (M, ω) be a connected symplectic four-manifold. Let
F : M → R2 be an almost-toric system such that F is proper. Denote by
ΣF the bifurcation set of F . Assume that there exists a diffeomorphism
g : F (M)→ R2 onto its image such that:

(i) g(F (M)) is included in a proper convex cone Cα, β (see Figure 3).

(ii) g(ΣF ) does not have vertical tangencies (see Figure 1).

Write g ◦ F = (J,H). Then J is a Morse-Bott function with connected level
sets.

Proof. Let F̃ := g ◦ F . The set of critical values of F̃ is Σ̃ = g(ΣF ). We wish
to apply Proposition 5.8 to this new map F̃ . Let f : R2 → R be the projection
on the first coordinate: f(x, y) = x, so that f ◦ F̃ = J . Since f has no critical
points, it satisfies the hypotheses (i) and (ii) of Proposition 5.8. The regular
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levels sets of f are the vertical lines, and the fact that Σ̃ has no vertical
tangencies means that the regular level sets of f intersect Σ̃ transversally.
Thus the last hypothesis (iii) of Proposition 5.8 is fulfilled and we conclude
that J is a Morse-Bott function whose indices and co-indices are always
different from 1.

Now, since F̃ is proper, the fact that F̃ (M) is included in a cone Cα,β
(by hypothesis (i)), easily implies that f ◦ F̃ is proper. Thus, using Propo-
sition 4.5, we conclude that J has connected level sets. �

Proof of Theorem 2. From Proposition 5.9, we conclude that J has con-
nected level sets. It is enough to apply Theorem 4.7 to conclude that F̃ (and
thus F ) has connected fibers. �

Proof of Theorem 5. Using again Proposition 5.9, we conclude that J is a
Morse-Bott function with connected level sets. By the definition of an inte-
grable system, J cannot be constant (its differential would vanish every-
where). Thus we can apply Theorem 5.2, which yields the desired conclu-
sion. �

It turns out that even in the compact case, Theorem 2 has quite a striking
corollary, which we stated as Theorem 3 in the introduction.

Proof of Theorem 3. The last two cases (a disk with two conic points and
a polygon) can be transformed by a diffeomorphism, as in Theorem 1, to
remove vertical tangencies, and hence the theorem implies that the fibers of
F are connected.

For the first two cases, we follow the line of the proof of Theorem 1. The
use of Proposition 5.8 is still valid for the same function f(x, y) = x, even
though now the level sets of f can be tangent to ΣF . Indeed, one can check
that, in the present case, only non-degenerate outward contacts occur. Then
one can bypass Proposition 5.9 and apply directly Proposition 4.5. Therefore
the conclusion of the theorem still holds. �

Acknowledgements

We are very grateful to the referee of this article for the careful reading of
the previous version of this paper, and the many constructive comments,
which have helped us clarify and improve the paper. In particular, the deep
insight concerning the relation between our paper and the work by Leung
and Symington [15] is greatly appreciated. Most of the material in the last
paragraph of Section 2 concerning the Leaf Space was suggested by the
referee.



i
i

“4-401” — 2015/3/28 — 17:11 — page 383 — #41 i
i

i
i

i
i

Fiber connectivity of almost toric systems 383

We also thank Denis Auroux, Thomas Baird, and Helmut Hofer for
enlightening discussions. The authors are grateful to Helmut Hofer for his
essential support that made it possible for TSR and VNS to visit AP at
the Institute for Advanced Study during the Winter and Summer of 2011,
where a significant part of this paper was written. Additional financial sup-
port for these visits was provided by Washington University in St Louis
and by the NSF. The authors also thank MSRI, IHES, the Mathematisches
Forschungsinstitut Oberwolfach, Washington University in St Louis, and
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Panorama et Synthèses, Soc. Math. France, 22, 2006.
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